The nature of grain refinement in equal-channel angular pressing: a comparison of fcc and hcp metals
The nature of grain refinement in equal-channel angular pressing: a comparison of fcc and hcp metals
Equal-channel angular pressing is an effective tool for producing exceptional grain refinement in bulk polycrystalline metals. Typically, processing in this way refines the grains to the submicrometer level in a wide range of metals but recent experiments have established that the mechanism of grain refinement is different in fcc and hcp metals. Specifically, the refining of grains in aluminum involves the introduction of elongated bands of cells or subgrains and the subsequent evolution of this structure into an array of ultrafine grains whereas in magnesium the limited number of slip systems leads to the formation of new grains along the existing grain boundaries. Because of these limitations, magnesium alloys are especially susceptible to the production of materials having bimodal grain distributions
1638-1648
Figueiredo, Roberto B.
2e0060b8-6368-4d87-825a-c3cb90e92145
Langdon, Terence G.
86e69b4f-e16d-4830-bf8a-5a9c11f0de86
2009
Figueiredo, Roberto B.
2e0060b8-6368-4d87-825a-c3cb90e92145
Langdon, Terence G.
86e69b4f-e16d-4830-bf8a-5a9c11f0de86
Figueiredo, Roberto B. and Langdon, Terence G.
(2009)
The nature of grain refinement in equal-channel angular pressing: a comparison of fcc and hcp metals.
International Journal of Materials Research, (12), .
Abstract
Equal-channel angular pressing is an effective tool for producing exceptional grain refinement in bulk polycrystalline metals. Typically, processing in this way refines the grains to the submicrometer level in a wide range of metals but recent experiments have established that the mechanism of grain refinement is different in fcc and hcp metals. Specifically, the refining of grains in aluminum involves the introduction of elongated bands of cells or subgrains and the subsequent evolution of this structure into an array of ultrafine grains whereas in magnesium the limited number of slip systems leads to the formation of new grains along the existing grain boundaries. Because of these limitations, magnesium alloys are especially susceptible to the production of materials having bimodal grain distributions
This record has no associated files available for download.
More information
Published date: 2009
Organisations:
Engineering Mats & Surface Engineerg Gp
Identifiers
Local EPrints ID: 72220
URI: http://eprints.soton.ac.uk/id/eprint/72220
PURE UUID: 52f09825-ccd9-4120-bb63-5cd820a0330e
Catalogue record
Date deposited: 01 Feb 2010
Last modified: 11 Dec 2021 03:48
Export record
Contributors
Author:
Roberto B. Figueiredo
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics