Distributed Multiagent Learning with a
Broadcast Adaptive Subgradient Method

R. L. G. Cavalcante, A. Rogers, l. Yamada
N. R. Jennings Tokyo Institute of Technology
University of Southampton Dept. of Communications and Integrated
School of Electronics and Computer Science ] Systems _
{rlgc,acr,nrj}@ecs.soton.ac.uk isao@comm.ss.titech.ac.jp
ABSTRACT been acknowledged that many important problems would Igreat

benefit from alternatives [2]. In light of this observatiowe
address multiagent learning from an engineering point efwi
where the objective is to minimize a global collective fuont
through local decision making [3]. Examples of applicasion
multiagent systems that fall within this framework are presin
many seemingly distinct areas including, but not limitedgame
theory [4], control [5], and signal processing [6-9]. In tparlar,
here we consider problems where agents forming a network mus
optimize a global convex cost function defined by the sum cédllo
convex functions, each of which is known by only one agent (a
At problem that occurs in many coordination, control and cnssge

settings [5-9], and in particular we consider here the mmobbf

coordinated source localization by multiple simple rangessrs

[7,8,10]). In this setting, the main challenges faced bysatgms
g for convex optimization are that the agents have only dartia
knowledge of the global function and limited communication
capabilities (i.e., not all agents can directly commurgaaith each
other).

Given this background, there has been a great deal of effort
devoted to the development of non-hierarchical iteratiger@thms
to handle the above convex optimization problems [5-9]. eBaty
speaking, these iterative schemes differ in the way thahtage
exchange information and improve the estimate of a minimite
the global function.

Incremental methods where agents are activated sequgntial
one at a time, have a long history in the literature [8, 9]. ldwer,

Many applications in multiagent learning are essentiatpvex
optimization problems in which agents have only limited
communication and partial information about the functiainig
minimized (examples of such applications include, amorgst,
coordinated source localization, distributed adaptiveéerfihg,
control, and coordination). Given this observation, weppse a
new non-hierarchical decentralized algorithm for the gstytic
minimization of possibly time-varying convex functionsn éur
method each agent has knowledge of a time-varying local cost
function, and the objective is to minimize asymptoticallglabal
cost function defined by the sum of the local functions.
each iteration of our algorithm, agents improve their eates
of a minimizer of the global function by applying a partiaula
version of the adaptive projected subgradient method fo liteal
functions. Then the agents exchange and mix their improve
estimates using a probabilistic model based on recenttsesul
weighted average consensus algorithms. The resultingitigo

is provably optimal and reproduces as particular cases many
existing algorithms (such as consensus algorithms andntece
methods based on the adaptive projected subgradient metfod
illustrate one possible application, we show how our atgamican

be applied to coordinated acoustic source localizationeimssr
networks.

Categories and Subject Descriptors

G.1.6 Mathematics of Computing]: Optimization—Convex one of the major issues of incremental approaches is thay man
programming iterations are required to produce an accurate estimate of a
minimizer of the global function in every agent (becausey amle
General Terms agent is active at each iteration). In addition, acquiringash
] visiting all agents in the network is often necessary, arnsl ith
Algorithms, Theory challenging in large networks with sparse communicationi(a
the case with the sensor network we consider here).
Keywords More recently there has also been an increasing interest in

algorithms where agents work asynchronously and in paralle
[5-7]. They are usually faster than incremental methods dmd
not require complex routing schemes, but they are ofteryaedl

by making extensive use of the assumption of simultaneous
1. INTRODUCTION information exchange among agents, which may not be pessibl
Much of the work in multiagent learning has traditionally in every system (e.g., when agents communicate asynchstynou
considered game-theoretic approaches [1], but recerigsitalso Furthermore, they often do not consider agents with timging
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v € RY to the uniquely existing vectoPc(v) € C satisfying
[v — Pe(v)|| = mingec [lv -yl =: d(v, C).
Afunction® : RY — Ris said to beconvexf vV, y € RY and

agents. In this algorithm, each agent first improves themesé
of the minimizer of the global function by applying the adept
projected subgradient method [11] (which itself is an estem
of Polyak’s algorithm to handle time-varying cost funcsjrto Vv € [0,1], 0wz + (1 —v)y) <vO(zx) + (1 — v)O(y) (in this
its local function. Then the agents locally and asynchrehou  case© is continuous at every point iR™). Thesubdifferentiabf a
exchange the improved estimates using a communication Imode convex function® : RY — R aty is the nonempty closed convex
inspired by recent results in gossip consensus algorith@&]s This set of all thesubgradientf © aty:
model enables us to exploit the fact that in wireless systdata N N
can be broadcast simultaneously to many agents withogasorg 90(y) :={a e R7[O(y) + (z —y,a) < O(x),V& € R }.
the complexity of the system. In addition, it does not nearlys @
require simultaneous information exchange. To exemplifig o In the sequel,(%2,S,P) always denotes probability spaces
appli;ation of the g_eneral methoq developed he_re, we darhew where( is the sdre 7evén$ is theo-field of events, an@ is the ’
al_gorlthm_ for_ coordinated acoustic source Iocal|zat|or_e (quse probability measure. For brevity, we will often omit the @nlying
.th's application becaysg '.t has an |ntU|t|\{e geometricatmiey, probability spaces. Unless otherwise stated, we alwaysthese
illustrates how the limitations of recent incremental aitjons Greek letterw € Q to denote a particular outcome. Thus, by
can be overcome without incorporating unnecessary hagigty . (X.), we denote an outcome of the random veatc(nnatrii
essentially changing the communication model among apemtd Xw) Wg v'viII also often drop the qualifier “almost surely” (or Ith
shows simple techniques that can be used when many assamptio probability 1) in equations involving random variables.

We now turn to the problem formulation. We represent a system

for the convergence of the proposed method in its most genera
form_do not necessarily ho'_d' In more detail, the main contibns with N agents by a network with a possibly time-varying directed
of this study are as follows: graph denoted bg[:] := (N, &[d]), whereN = {1,...,N}is
e We extend the communication model of the algorithms in the set of agents arfli] C N x N is the edge set [13]. The edges
[6, 7] to enable low-complexity subgradient methods to be of the graph indicate possible communication between tventagy
applied to more general convex optimization problems in More precisely, if agenk can send information to agehat time
multiagent systems. Simultaneous information exchange i, then(k,l) € £[i] (we assume thatk, k) € £[i]). The inward
among agents is not necessarily assumed and the costneighbors of agent are denoted by [i] = {l € N| (I,k) €

functions can be time varying. We name our approach
broadcast adaptive subgradient meth@hd show that
existing algorithms such as those in [6, 7, 12] (and many
others) are particular cases of our method.

We show conditions to guarantee that, with probability one,
the agents minimize asymptotically the (time-varying)glb
function and agree on a minimizer.

We evaluate our approach by using it to derive a new
asynchronous algorithm for coordinated acoustic source
localization. This algorithm is calledasynchronous
broadcast projection onto convex sets (POCS) algorithm
and outperforms existing algorithms (e.g., the increnienta
POCS algorithm [8]) in terms of both convergence speed and
estimation accuracy in practical scenarios without réagir
complex routing schemes.

The structure of the paper is as follows. Sect. 2 outlinegcbas
tools in convex analysis and reviews a class of problemsmihy
applications in multiagent systems. Sect. 3 introducesaatyzes
the proposed algorithm, which solves the problem in Sectin2.
Sect. 4 we specialize the algorithm in Sect. 3 to estimate the
position of acoustic sources with sensor networks.

2. PRELIMINARIES

In this section we give some definitions that will be exteeliv
used in the discussion that follows. In particular, we denot
the component of theéth row and jth column of a matrixX

by [X]i;. For every vectorv € RY, we define the norm
of v by ||v|| := VvTwv, which is the norm induced by the
Euclidean inner productv,y) := vTy for everyv,y € R".

For a matrix X € RM*¥ its spectral norm is| X]||2
max{v/A| \ is an eigenvalue oK 7 X }, which satisfie§ X y|| <
|| X ||2]|y|| for any vectory of compatible size.

A setC is said to be convex ib = vv1 + (1 —v)ve € C
for everyv;,v2 € C and0 < v < 1. If C c RY is a closed
convex set, the metric projectidf : RY — C'is amapping from

Eli]} (i.e.,l € Ni[i] are agents that can send information to agent
k at time:). We assume that each agénhas knowledge of a
local convex cost functio®y[i] : R — [0,00) (i € N). Note
that the local cost function®[i] are possibly time-varying and
not necessarily differentiable. We define the global costfion
O[i] : RM — [0, o) of the network by:

Olil(h) = Y Orlil(h),

keN

@)

which is the function that all agents have to minimize. Atdiin
each agent also has its own estimate,[i] € R* of a minimizer
of ©[i] and do not knowo;[¢] if j # k. We also require that the
agents agree on a minimizer of (2), so an ideal decentratinee
hierarchical algorithm should solve:

S Oil(hsli)

keN
subject to  hy[i] = hy[d],

minimize

Yk, 1€ N. @)

Unfortunately, solving (3) at every time instantis difficult
if the communication among agents is limited because in such
a case agents have only partial information of the problera. T
solve (asymptotically) the optimization problem in (3) kvibw
computational complexity, we add the following assumption

ASSUMPTION 1.

At every time index, the sets of optimizers of the local cost
functions have nonempty intersection, i.e.,

Oli] := (1) Oli] #9, 4)
keN
where
Oulil = {In € B | 0ulil(h) = O3] = inf, ©111(h) |
(keN). (5)



Assumption 1 is valid in many practical problems [6].
Furthermore, while in some applications Assumption 1 dazs n
necessarily hold because, for example, of the presencas# imoa
sensor measurement, we can still use the proposed methadseec
there are simple techniques that can mitigate the effect®isie
(c.f. Sect.4).

In light of Assumption 1, any*[i] € O[i] is a minimizer of (2),
and thus the optimization problem in (3) is solved if evergrdg
agrees on a vector minimizing every local cost function. elasn
this fact, we devise an algorithm that, with probability inimizes
asymptotically all local cost functions and guarantees tha
agents reach asymptotic consensus. Asymptotic mininoizaif
possibly time-varying cost functions is a common requirenie
set-theoretic adaptive filtering [11] and is defined below.

DEFINITION 1. Let ©[i] : R® — [0,00) be a convex cost
function and denote bk[i] € R* an estimate of a minimizer of
O[i]. Assume that, for evelyc N, there is a time-invariant scalar
©* € [0,00) such that®* = inf, cpm O[i](h). We say that an
algorithm minimizes asymptoticalfy[:] if the algorithm produces
a sequencé[i] satisfying

lim O[:](h[]) = ©.
In turn, asymptotic consensus is mathematically expreas§@]
lim [(1 = J)wli)] =0, ®)

wherey[i] := [h1[i]T ... hn[i])7])F, J ;= BBT ¢ RMNXMN,

B :=[by ... by] € RMNM b — (1n @ ey)/VN € RMY,

1y € RY is the vector of onese, € RM (k = 1,...,N) is

the standard basis vector, asddenotes the Kronecker product.
Note thatJ is the orthogonal projection matrix onto the consensus
subspace

C :=span{bi,...,bu}. @

(If ¥[i] € C, theny[i] = Jp[i] and all local estimates [:]

(k € N) are equal, i.e., we have consensis;[i] = h;[:] for
everyk,j € N).

3. THE LEARNING ALGORITHM

To solve (3) asymptotically, as in [6, 7], each aggrfirst updates
h[i] by applying the adaptive projected subgradient method [11]
to its local function®|4]:

(O [i] (R [1]) — Ok[i])
(1%l (R [iD)I[ + ok [i])

O%[i)(hu[i]),
®)

where ki [i + 1] is the resulting estimate after the subgradient
update; 0} [i](hx[i]) € 0Ok[i](hs[i]) (see (1)) is a subgradient
of ©kfi] at hili]; ux[i] € [0,2] is a step size;0%]i]
inf,cpm Okli](h) (K € N); dx[i] > 0 is an arbitrarily small
bounded number B [i](hx[i]) = 0 or 6x[i] = 0 otherwise;
and h[0] is an initial (deterministic) estimate of the parameter of
interest.

In the second step of the algorithm, agents exchange infmma
locally. Given a graphG[i], we consider agents exchanging
information according to:

hili+1]= Y Wylidhjli+1], k=1,...
JEN ]

hi[i + 1] = hefi] — peld]

) N? (9)

where W ;[i] : Q@ — RM*M js a random weight matrix that
agentk assigns to the edde, k) at timei (W ;[¢] = 0if (j, k) ¢

£[7]). The information exchange in (9) is decentralized beceaase
in algorithms for average consensus [12—-14], each agemeds
only the estimates;[:] of its neighborsj € Nj[i] to compute
(9). Note that we can rewrite (9) in the equivalent fofim [i +
07 ... hali 4+ 177 = PERLE+ 17 ... R+ 1077,
whereP[i] : Q — RMN*MN s g matrix havingW i, [i] in (9) as
submatrices. For the algorithm to work properly, we reqtiia,
periodically (c.f. Theorem 1)P[i] be ane-broadcast consensus
matrix conditioned ok [i]” ... hx[i]T]" as defined below.

DEFINITION 2. For ¢ € (0,1], we define ane-broadcast
consensus matrix as a random matdX : Q — RMNXMN
satisfying the following properties:

L |E[PT(I ~ J)P||2 < (1 —¢);
2. |E[PTP]||2 = 1;
3. Pv = v for everyv € C (see (7)).

If properties 1) and 2) hold when the expectations are regdac
by expectations conditioned on a random vecto(i.e., E[-] is
replaced byE[-|r]), we say thatP is an e-broadcast consensus
matrix conditioned onr.

The above definition raises the question whether the agants c
easily construct such matrices without global informatbiout the
network topology. Fortunately, the answer is affirmativeshese in
Definition 2 we have used properties also satisfied by consens
matrices of existing broadcast consensus algorithms [2]oing
S0, we can now use the rich literature on consensus algaritbm
build (in a decentralized way}broadcast consensus matrices, and
we show below a particular method. This method will be used
later in in Sect. 4 to derive a new algorithm for acoustic sens
localization.

ExampPLE 1. (Random geometric graphs [12]):

For simplicity, consider a time-invariant graptg(\N,&).
Assume that if two agents j € A are within distanceR from
each other, ther(j, k), (k,j) € £. Let the resulting graph be
strongly connectedl.Suppose that only one agent sends data, and
let V., be a sample of a random matrik : Q — RY*V,
where[V ,]i; is a scalar weight assigned to the edgek). With
probability 1/N, let agentk € N be the agent sending data for this
particular realizationw € 2 and define the componentsW{, by

L, jENAk and j=1

Vo 47 GENME) and =1

T2y, jeNN\{k} and 1=k,
0, otherwise,

wherevy € (0,1) is a mixing parameter. Then the random matrix
V satisfies [12]: () |E[V(I — 1/N 1xy1%)V]|]l2 < 1, (i)
E[lVTV|2] = 1, and (i) V1x = 1n. With these properties,
we can verify thatP := V ® I, is an e-broadcast consensus
matrix for0 < e < (1 — |E[V (I — 1/N 1515)V]|l2).

We now summarize and analyze the proposed algorithm.

THEOREM 1. (Broadcast adaptive subgradient method)
Consider the problem in Sect. 2 and assume that, for eiehe
random matrixP[i] : Q@ — RMYXMN gatisfies properties 2) and
3) of Definition 2 with the expectations in those propertegdaced

We refer the reader to [12] and the references therein for the
minimum rangeR to guarantee a strongly connected graph with
high probability.



by expectations conditioned afi;] (¢[i] is defined in (6)). To
solve the problem in Sect. 2, we define a sequence given by

pa[ilon [i]©1 [i] (Ra[i])
Pl - : ;
pn [ilan (1O [i] (R [i])

Yli+1) = Pli]

(10)
where
axfi] = (O[] (hi[i]) — OL[]) /(1O i) (hi [ |* + 6k [i]).-

(NOTE: See also the definitions after (8).) The algorithm1i@)(
satisfies the following:

(&) (Mean square monotone approximation):

Suppose that Assumption 1 holds, and let the step size be

within the intervalu [i] € (0,2) for everyk € . Then
Elllpli + 1] — 4" [{]I"] < Elll9[i] — " [i]°]

for every
P i) € i) .= {[KT BT .. RT)T e RMY | h € O]i]}.
(b) (Almost sure asymptotic minimization of the local cost
functions):
Assume the following:
1. The step size is bounded away from zero and two, i.e.,

there existky, ez > 0 such thatu[i] € [e1,2 — e2] C
(0,2);

2. O[i] =0, €R,i=0,1,...;
3. 0=, Oli] # 0;

4. ||©L[i](hk[i])]| < oo for everyk € N andi
0,1,...

Then, with probability 1, the local cost functions are
asymptotically minimized, i.e.,

P (ilirgo Ou[i](hi]i]) = @;) 1.

(c) (Asymptotic mean square consensus):

In addition to the assumptions above, for some fixed 0,
assume the existence bfe N such that, for any interval
in the form [i,: + I] (¢ € N), there is at least one-
broadcast consensus matrix conditionedfi]. Then we
have asymptotic mean square consensus, i.e.,

Jim B[|(T — J)li]|)] = 0.

(d) (Almost sure convergence and asymptotic consensus):

If the assumptions in item (c) hold and™
{[RT---AT)T" € RMN | h € O} does not lie in a
nondegenerate hyperplane, then, with probability A[;]
converges to a random vectap_, and the agents reach
consensus asymptotically.

PROOF The proof is omitted due to the space limitatiorn.]

Recall that (under Assumption 1) the problem in (3) is
solved when the following properties are satisfied: i) every
local function is minimized and ii) the agents are in conssns
(h1i] = ... = hnli]). These two properties are satisfied

asymptotically when we apply the proposed algorithm. More
precisely, the local cost functions are asymptotically imimed
with probability one (Theorem 1(b)) and agents reach cansen
in mean square (Theorem 1(c)). In addition, under the assonsp

of Theorem 1(d), agents reach consensus with probabilityaoml
their estimatedv,[i] (¢ € N) converge. Theorem 1(a) also says
that, in every iteration of the algorithm, the Euclideantaliee of
[R1[i]T ... hy[i]T]" to a solution of (3) does not increase (in the
mean square sense).

Remark 1. (On Theorem 1)

1. The algorithm in Theorem 1 cannot be analyzed with
the deterministic approach in [6] because the mapping
T : RMN — RMN defined byI'(y)) = P.li] is not
necessarily nonexpansive, i.e.,

IT(z) =TIl < [z - yll

does not necessarily hold for eveny,y € RMY (see
Example 1).

. All assumptions in Theorem 1 automatically hold when
O[i](h) = 0, in which case we reproduce conventional
consensus algorithms (e.g., those in [12]).

. (Asynchronous updates) Let the assumptions in Theorem
1(c) hold. Suppose that the agents do not have a common
clock, so they asynchronously apply subgradient updates
(the updates in (8)). In addition, assume that information
exchange is also performed asynchronously. Theorem 1 can
be used to analyze such an algorithm as follows. iLetN
be the time instants where there is at least one subgradient
update or information exchange among agents. Denote by
T, C N an infinite set of time instants where agérapplies
a subgradient update. We can consider that the sequence of
functions©j[i] is only defined at time instanfs, C N, and,
in (10), agentk is using the extended local function

Ox[i(h),
Ok

~ i € Ty
Oili](h) =

kli](R) { otherwise.
Similarly, suppose that agents only exchange informatton a
time instantsn € Zp C N using i.i.d. random matrices
PIn], whereZp is also an infinite set. We can consider that
(20) is using the random matrix

ﬁmz{

With the above extension®[i](h[i]) is a subsequence of

Or[¢](h[i]), and the convergence &i.[i|(h[i]) to ©F (we

can use Theorem 1 to reach this conclusion) also implies the
convergence 0B [i](h[i]) to ©. Sect. 4 shows a concrete
application based on this idea.

P[],
I

1€1p
otherwise.

. (Adding constraints) Constraints can also be easily adue
considering time-varying cost functions. For examplehwit
the assumptions in Theorem 1(b), &t : R™ — [0, o) be
a (fixed) cost function known by ageit Suppose that the
agent has knowledge of a g6tsuch thatO c C. Then we
can use the following time-varying cost-function instead o
the original function9y, : RM — [0, 0o):

7 odd
ieven,

O (h),
d(h,C) + O}

O[i](h)



4. COORDINATED ACOUSTIC
SOURCE LOCALIZATION

We now specialize the method in Theorem 1 to localize acousti
sources with sensor networks.
localization is calledasynchronous broadcast POCS algorithm

However, note that our method is general and can be applied

to many other problems (e.g., coordination, distributedptisle
filtering, etc.).

4.1 Problem
solutions

The objective is to estimate the unknown locatiehe R? of an
acoustic source by usinly agents distributed at spatial locations
r, € R* (k = 1,...,N). Each agent knows its own position
T, the acoustic source powdr, and is equipped with an acoustic
sensor that can estimate the range of the acoustic sourge fro
the received volume (but not the directidh)The acoustic power
perceived by agerit can be modeled as [10]

. A
[ — ]2

description and  existing

where ny, is noise. For mathematical simplicity;, is often

(The new algorithm for source

new estimate to only the next agent in the path, which repeats
the process. Unfortunately, the acquisition of a path imigiall
agents is a difficult task in large networks or in dynamic scirs
where links can fail, thus the application of the incremER@CS
algorithm is limited to small or medium sized networks.
addition, owing to the sequential nature of the algorithgerds at
the end of the path have to wait a long time for an accuratmeagsi
of the acoustic source position.

When noise is present;ops iS Not necessarily unique and
may not be a solution to (13). However, if the number of agents
sufficiently large, we can expect thag, is a good approximation
of »*. The incremental POCS algorithm does not necessarily
converge toropt in such cases [15], but after some iterations the
sequence of estimates generated by this algorithm is ctosé t
in this particular application. In addition, many simpleuhistics,
such as monotonically decreasing the step size after a giveber
of iterations, can further improve the performance [8]. Blor
generally, in different applications where the POCS atbariis
applied, a simple method to mitigate the detrimental effe€hoise
consists of using a small (fixed) step size [15].

broadcast

In

4.2 Asynchronous POCS

algorithm

modeled as Gaussian noise even though this assumption isgying to the nature of wireless channels, if agénbroadcasts

unrealistic becausgy, is always positive. Nonetheless, algorithms
using this unrealistic assumption often gives good peréorce
when deployed in real-world scenarios [10]. By modelingseas
Gaussian, the maximum-likelihood estimatgr, is given by [10]

N

. A7

TML € arg ;Ilrélﬂ?z ; {yk, - m} . (12)

Unfortunately, many simple decentralized algorithms uted
approximateryr, with low complexity, such as the incremental
gradient method, may not provide an estimate closatobecause
the function being minimized is nonconvex. By noticing teath
term in the summation in (12) attains its minimum on the eircl
Cy :={h € R? |||h—7k|| = /A/yx}, the optimization problem
in (12) can be replaced by the alternative convex optinmorati
problem [8]

N
Topt € arg }Ibrgknz ; d(h, Dy), (13)
where Dy, is a convex relaxation of the sét,: D, := {h €

R? | |h—ri| < +/A/yx}. When noise is not present, the solution
set to the optimization problem in (13) i$Y_, Dy > r*. If the
acoustic source position* lies in the convex hull of the agents’
locations, i.e.r* € H where

N N
H—{T‘ER2|T‘_ZQI€TI¢7 ay >0, Zak—l}, (14)

k=1 k=1

then the unique point in the set,_, Dy, the solution to the
problem in (13), isr* = 7opt [8]. The incremental POCS
algorithm [8] can thus be used to solve (13) in this scenario.
This algorithm is a sequential method that can be summassed
follows. In the initialization stage, the algorithm defiresyclic
path visiting all agents in the system. Then agkrih the path
becomes active, improves its estimate of the source latdtjo
projecting this estimate onto the sphdbe, and then sends the

an estimateh;[i], all other agents within a certain distance are
able to receive this information. However, in the incremaént
POCS algorithm, even though more than one agent may be able
to receiveh[i], only the next agent in the cycle uses this available
information. To avoid this loss of useful data in the systeve,
derive an algorithm that uses the communication model imipte

1. In doing so, not only do agents not discard useful datatHayt

also do not need to acquire a path visiting all agents. Wewsttr

the following assumption, previously used in Example 1.

ASSUMPTION 2. The graphG = (N, £) is static and strongly
connected. In addition, agents within distarfi¢éom a given agent
k can receive data transmitted by agént(and vice versa), i.e.,
(k,9), (G, k) € Eif [lr — 7] < R.

In the proposed algorithm, at iteratianand with probability
1/N, agentm € N is activated and other agents remain idle (in
practice this can be easily done with agents having indegyend
clocks ticking according to a Poisson process [12]). Tlweefonly
agentm is able to apply the iterations in (8), thus we assume that
the agents are minimizing asymptoticatly

Okli](h) = {gkhfgk []:])7:é motherwise, -
where
R2, if yr < cxli]
Dili) = {h € R? | [|h — r4 < L.} , otherwise,
Yk — cx[i]

andcy[i] > 0 is a (possibly time-varying) parameter that increases
the radius of the spher®; used in the optimization problem
(13) (note that, by expanding the spheres, we also incrésse t
probability thatr* € Dy[i{] when noise is present). (Atrtificial
expansion of sets is a common technique to mitigate thetefteéc
noise in set-theoretic filtering [11].) Mrea Dk [i] # 0, any point

3This idea is based on Remark 1.3. Similar time-varying cost

2We can use the same techniques developed in [8] to extend thefunctions have also been used in [7], but, as shown in Remark 1

proposed algorithm to the case whetas unknown. For brevity,
we do not consider such extensions here.

the resulting algorithm cannot be analyzed with the theorf7]
because of the communication model.



is this intersection of sets is a minimizer of the global dasttion
O[i](h) = Y ,cn Okli](h). Thus, similarly to the incremental
POCS algorithm, the main idea of the proposed method is to find
a point inNken Dy [¢], which ideally should have a small area and
include the source location*. If we ignore noise for the moment
and setcy[i] to 0, the global function©[:] is guaranteed to be
minimized at any time index only atr*, where we also have
Or[i](r*) = ©5[i] = 0 (see the discussion after (13)). Note that a
subgradient 00 [i](h) = d(h, Di[i]) is [11]

h —Pp,ah) ,
804[i](h) 3 O4[i](h) = { ~d(h, Di[i]) it h ¢ Dgld,
0 otherwise,
(16)
where [15]
h, if h € Dgli]
Poah) = T+ A (h = 7e) otherwise.

yr = crli] [[h =7kl

After applying the iteration in (8) with the local functioirs(15),
agentm broadcasts its improved estimate of the source location.
Then all agents able to receive this information (i.e., ¢hagthin
distanceR from agentk) mix their estimates with the received
estimate by using astbroadcast consensus mat#{i| constructed
with the scheme in Example 1. (NOTE: In the constructioddd],
agents not able to receive,[:] can remain idle because they do
not mix estimates. The matricd3[:] (¢ = 0,1,...) are i.i.d. and
independent o), [n] for everyn.) The whole process is repeated
with a new active agent.

We summarize below our method for coordinated acoustic
source localization, which can be shortly described as the
application of the local cost functions in (15) and thbroadcast
matrices in Example 1 to the scheme in Theorem 1 Wiffi] = 0
(i.e., we ignore the presence of noise).

ALGORITHM 1. (Asynchronous broadcast POCS

algorithm):

1. Initialize the estimates,[i] with an arbitrary h[0] €
R?.

2. Only agentn € N becomes active (agents have the same
probability 1 /N of becoming active).

8. hnli +1] = hunlil + s i] (Pp,, 1 (hm [i]) = Rom[i]) ,
wherep[i] € (0,2) is the step size.

4. Agentm broadcastdh, [i + 1]

5. Agentg € N;,\{m} (i.e, all agents within distancg to
agentm) mix the received estimate,, [ + 1] with their
own estimate# ;[i]:
hjli+ 1] = yhy[i] + (1 = Yhmli+ 1], j € Nn\{m},
wherey € (0,1) is a mixing parameter common to all
agents. (Agents ¢ A, do not perform any operations,
so we can consider that,[i + 1] = hy[i].)

6. Increment and go to step 2.

Note that Algorithm 1 requires neither synchronization nor
agents to be aware of their neighbors. Simultaneous infitoma

not necessary. In our approach, agents randomly become acti
improve their estimate®[:], and broadcash[i] to all other
agents within rang&. We can analyze Algorithm 1 directly with
Theorem 1 in the absence of noise for the following reasons:

1. The subgradients are bounded (see (16)).

2. The se®) (as defined in Theorem 1(b)) is nonempty because
Okld(r*) = 0 for everyk € N andi € N (i.e., r* €
Nken D).

3. At every iteration the algorithm uses samples of @n
broadcast matrices constructed with the method in Example
1 (P]:] and4[i] are independent).

Therefore, all conditions of Theorem 1(a){®an be easily
satisfied by simply choosing step sizeg[:] bounded away from
0and 2.

The assumptions in Theorem 1 do not necessarily hold in
the presence of noise, but nevertheless we can apply the same
ideas used to mitigate the effects of noise in other POC8ebas
algorithms or set-theoretic adaptive filters. Here we chotms
expand the parameters[i], k € A. ldeally, these parameters
should be small real numbers so thdt € Dy[i] and the area
of Nken Dk [i] is small. Unfortunately, computing such values is
not possible, but we can slowly increase the radius of thergph
Dy 7] every time nodé: is activated. Intuitively, if the convergence
of the algorithm is faster than the increase rate of the spher
Dy [i], we can expect that, once.c o Dy [7] is nonempty, all agents
soon find a point imMxen Dk [i] and stay in this point, which is
assumed to be a good approximationrdf This approach has
also been successfully used by algorithms using the asgmyt
simultaneous information exchange [7].

4.3 Numerical smulations

We evaluate the performance of the asynchronous broadCesEP
algorithm in settings almost identical to those in which dhiginal
incremental POCS algorithm was evaluated [8, Sect. V]. In
a 100m x 100m field, at each realization of the simulation we
randomly distributé000 agents and place an acoustic source with
A = 100 atr* = [50 50]T. Each agent measures the acoustic
power at their own locations according to (11). The noigeis
modeled as Gaussian with variangg = 1, and only agents with
perceived power greater or equal thafi.e., yr > 5) take part in
the estimation task. Each agent in the estimation task haisjaely
identifying number from the setl, ..., N}.

We compare the incremental POCS algorithm with different
versions of the proposed broadcast POCS algorithm. We do
not show the performance of the maximum likelihood estimato
because (12) is a nonconvex optimization problem, and idfgas
dealing with nonconvex functions usually have poor perfamoe if
they are not initialized with a point close to the unknown ust®
source location [8].

To construct the sequence of agets . . . sn—1] (sx € N) for
the incremental POCS algorithm, we start with= 1 and set41
to be the nearest agent ¢p that has not been previously selected
(i.e.,sk+1 # s1 1 = 0,...,k). All agents use the same step size
ux[i] = 0.4 in the incremental POCS algorithm. Table 1 shows
the parameters used by the proposed broadcast POCS aigorith
In this table,a[i] is the number of times that agehthas been
activated up to time index

The performance of interest is the mean square error (MSE)
normalized by the number of agemé (becauseV is a random

exchange among agents, a common assumption in previous“The results in Theorem 1 are valid for any sequence of funstio

decentralized optimization using subgradient methodg][3s-also

obtained in one realization of the algorithm.



Table 1: Parameters used by the different versions of the
broadcast POCS algorithm. For each version of the algorithm,
all agentsusethe same valuesfor py[i], R, and .

Name | peli] | cxld] R |y

Broadcast POCS-a 0.4 0 5 105
Broadcast POCS-b 0.4 0 7 105
Broadcast POCS-¢ 1 0.1lagt] | 5 | 0.5
Broadcast POCS-d 1 0lage] | 7 | 0.5

variable in the simulation)

MSE[i] = E

1 al . * 12
3 2 hald =] }

We also show the mean square distance to consensus (MSDC)

normalized by the number of agents, defined by
. 1 ;
MSDC = | 5 (2 = J)lil?|.

(NOTE: ||(I — J)v[i]]] is the distance o#)[:] to the consensus
subspac€ defined in (7). Wheni (I — J)[i]|| is zero, all agents
are in consensus.)

We compute expectations by averaging the results of 100
realizations of the simulation, which, as shown in the figunghis
section, is enough for statistical significance (becausectirves
of the algorithms are smooth enough to draw conclusions en th
relative performance of the algorithms).

Fig. 1 shows the results. The convergence speed of the
broadcast POCS algorithm increases as a functiddwhen other
parameters are kept constant because fewer iterationseaded
to propagate indirectly the information of every agent tigio the
network. We also see that slowly increasing the radiud gffi] (by
increasinge; [¢]) is an efficient method to improve the steady-state
performance. The choice of[:] in Table 1 is intuitively appealing
because agents with low signal-to-noise ratio (SNR), Ugtiabse
with small yx, stop their unreliable subgradient updates in few
iterations (because the relatign < cx[¢] is often satisfied in a
short period of time). Subgradient updates last longer ientg
with high SNR, which improves the quality of the estimate. In
addition, by increasing[i], the probability that the intersection
NkenDi[i] is nonempty increases with time, and the assumptions
in Theorem 1 are more likely to be satisfied. This fact is oler
experimentally by noticing that:

1. In Fig. 1(a), the MSE fluctuations in the curves of versions
(c) and (d) of the broadcast POCS algorithm eventually cease
when the expectation is computed by averaging the results of
only 100 realizations of the simulation. This is an indioati
that the estimates of all agents are converging in all runs
of the simulation for these versions of the algorithm, a fact
predicted by Theorem 1(d).

. The MSDC of versions (c) and (d) of the broadcast POCS
algorithm is converging to 0 (see Fig. 1(b)), another
indication that the conditions of Theorem 1(d) have been
satisfied in all runs of the simulation for these versions of
the algorithm.

Care should be taken in the choice of the parameigis If the
radii of the sphered,[i] grow too fast, the subgradient updates
cease too soon in every agent, and the steady-state perfoema
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Figure 1: Transient performance of the algorithms. (a) Mean
squareerror. (b) Mean square distance to consensus.

decreases. This fact is illustrated in Fig. 2, where we cartisat

the steady-state performance of the algorithm decreasés, @b
increases more quickly. If a typical scenario for the afian

of the algorithm cannot be defined, in which case a good choice
of cx[i] cannot be obtained by means of simulations, we can fix
ck[i] = 0 as done with versions (a) and (b) of the broadcast
POCS algorithms. Even though many assumptions of Theorem
1 do not hold in these versions of the algorithm (because ®f th
presence of noise), as shown in Fig. 1, the convergence spekd
steady-state performance are still satisfactory. We cem @ddvise
schemes wherey[i] is chosen automatically by each agent, but
these approaches will not be investigated here.

The results of the incremental POCS algorithm should be used
only as a rough reference of its achievable performanceuseca
we have only used a small fixed step size to mitigate the sffect
of noise. Techniques to improve further the performancenhis t
algorithm in this particular application domain are out bkt
scope of this study. However, being an incremental methogtrevh



because it is a very general optimization tool that can retidie-

10 varying cost functions.
. Broadcast POCS (ak[i]:o.l)
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