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Abstract

The theoretical framework of estimating the population totals from the Census, Survey

and an Administrative Records List is based on capture-recapture methodology which has

traditionally been employed for the measurement of abundance of biological populations.

Under this framework, in order to estimate the unknown population total, N , an initial

set of individuals is captured. Further subsequent captures are taken at later periods. The

possible capture histories can be represented by the cells of a 2r contingency table, where r

is the number of captures. This contingency table will have one cell missing, corresponding

to the population missed in all r captures. If this cell count can be estimated, adding this to

the sum of the observed cells will yield the population size of interest. There are a number

of models that may be specified based on the incomplete (2r−1) table of observed counts,

and if a model is found that adequately fits these observed counts an estimate of the

unobserved cell can be derived. The thesis will be concentrating on the log-linear model

specification of capture-recapture models.

In the simplest capture-recapture model, there are two lists (for example, a Census and

a Survey) leading to a 2x2 contingency table, with three observed counts and an unobserved

cell count. By assuming there is independence between the Census and Survey, an estimate

of the unobserved cell can be obtained. It will be shown that when there is information

from individual capture in the Census, Survey and a third (the Administrative List) it is

possible to account for different dependencies, specifically the association between capture

in the Census and Survey. The assumption of independence which is pivotal to the case

when there are only two captures can now be relaxed. However, the introduction of the

Administrative List means that overenumeration cannot be assumed to be negligible.

Therefore, the proposal is to use latent class models, where the idea is that there

is a latent variable with two classes - one representing the real enumerations and the

other, erroneous enumerations. Under the classical parameterisation of latent class models,

there is the assumption of local independence, implying that the Census, Survey and

Administrative List are conditionally independent given the latent variable. Consequently,

when an individual’s enumeration in the Census is associated with their enumeration in

the Survey this latent model is invalidated. There are a number of locally dependent

latent class models, but within a triple system scenario most encounter problems regarding

model identifiability; to be precise, the model solutions are not unique. Thus the thesis

investigates the use of the Expectation Maximization (EM) algorithm to fit a locally

dependent (and identifiable) latent model to capture-recapture data from three systems.
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Chapter 1

Introduction

1.1 Research Background

The importance of an accurate head count of the population is something that cannot be

over-emphasized. Most countries in the world conduct a regular census of their populations

through either a direct enumeration of the population, surveys, administrative systems or

hybrid schemes that combine some or all of the aforementioned methods. These days,

reliable census data are not needed at just the national level but also at a supra-national

level; for example EU member states have a statutory requirement to produce periodic

reliable population estimates. In the UK, the decennial census is used as a basis from which

other official statistics are derived. As such its functionality is fully maximized when it

achieves a near-complete coverage of the population. Paradoxically, it is inevitable that

whenever a census is held, there will be some people missed, and the experiences of the

2001 UK census - and internationally in the 2000 round of censuses - suggest that there

will be challenges to the achievement of high coverage of the population.

Now in the 2001 UK census, a dual system estimation methodology was employed, us-

ing an initial population count (the ‘Census’), and a post-enumeration survey (the ‘Census

Coverage Survey’). The (Census Coverage) Survey was basically an intensive repeat enu-

meration of the population, for a small sample of areas. The purpose of the Survey was to

assess how well the Census enumerated the population, and inform the extent of underenu-

meration, overenumeration and the accuracy of the responses. An underlying assumption

of the dual system approach was that the Census and Survey processes were independent;

when there is a lack of independence then bias is introduced into the population estimates.

However, there is no way of determining the extent of this bias, unless through some ad-

ditional information. Furthermore, overenumeration, which could occur through people

being duplicated or erroneously enumerated, was assumed to be negligible. Thus, data

from a third source - an administrative records system - is proposed in this thesis as a

way of augmenting for this bias. This is the definition of triple system estimation being

proposed in this thesis, and is equivalent to a three-system capture-recapture approach as

1



employed in biological populations.

1.2 Context of Research

When both the Survey and Census have relatively low levels of coverage (as happened

in some areas in the 2001 census), the dual system estimation methodology faces some

difficulties in estimating the population undercount with accuracy. In recent decades

many countries have encountered problems with underenumeration when conducting a

traditional census, and this is becoming particularly challenging in Western countries.

The traditional census is only viable when participation amongst the general population

is high. Germany, for example, has not carried out a traditional census since 1987, and it

has been even longer in the Netherlands which has not had one since 1971. In both these

countries the previous census response rates had been very low. To that end, they have

turned to alternative data sources in the form of administrative registers. It has to be said

that the countries that currently rely on administrative registers have spent a remarkable

amount of resources developing and maintaining them, and so under most circumstances

the traditional census enumeration still remains an indispensable, and the most viable,

option.

There has not been a lot of work undertaken in combining traditional census enumera-

tion with population registers, and this is where most of the PhD research will be focused.

It will be looking at how information from existing administrative registers can be used to

supplement the census process. In sum, the thesis will be exploring techniques to obtain

population totals when there is data from three imperfect data sources. The imperfections

are because firstly, some people will be missed by all three sources, and secondly some

people will be counted more than once or wrongly counted.

1.3 Objectives of Research

The main objectives of the research are two-fold:

a. to bring under one framework the existing methodology of capture-recapture methods

as applied to censuses,

and

b. to provide a log-linear modelling framework that can estimate the population size, with

an estimate of both the underenumeration and overenumeration.

2



1.4 Organisation of Thesis

The thesis first reviews the present literature on capture-recapture and population mea-

surement and then goes on to present the different methods used to estimate the population

size in general multiple capture-recapture models. Data from capture-recapture experi-

ments can be represented in a contingency table, and the relationships that exist between

the cells can be investigated by log-linear modelling. The focus of the thesis is on the three

capture-recapture model since the overarching aim is to investigate how population totals

- with an adjustment for the level of underenumeration and overenumeration - can be de-

rived when there is data from the initial census enumeration, a post-enumeration survey

and an administrative list. There has been a wide amount of literature that deals with

adjusting population totals for underenumeration; however the literature that examines

methods for adjusting for overenumeration, on the other hand, is sparse. In actuality, the

early capture-recapture models made an explicit assumption that all individuals had been

correctly identified, which basically translated to mean that there is no overenumeration.

In the thesis the proposed method of accounting for the level of overenumeration is

through latent class analysis, and as such there is a detailed review of latent class mod-

elling, in particular within the framework of capture-recapture models. As will be ex-

plained in Chapter 3, by writing the latent class model as a log-linear model the existing

capture-recapture models can be extended to cope with overenumeration. The interpreta-

tion of the unobservable latent variable is that it is responsible for the observed patterns

and associations in the contingency table counts, and can be thought to represent an un-

derlying classification in terms of the enumeration status. Here, the general idea is that

the latent variable is made up of two distinct latent classes - one characterizing the real

enumerations and the other, erroneous enumerations.

Although in capture-recapture the observed data likelihood is often intractable, the

complete data likelihood is usually relatively simple. Therefore, the Expectation Max-

imization (EM) algorithm will be employed to maximize the likelihood and derive the

(unknown) population size estimate. It will be shown that within the log-linear latent

class framework the EM algorithm can be naturally extended to determine the population

size, adjusted for both underenumeration and overenumeration.

The thesis is organised into six other chapters, in addition to this introductory chap-

ter. Chapters 2 and 3 review the historical and methodological literature. Chapter 4

presents the results of a simulation study of different population estimators. Chapter 5

is a ‘real’ census application of the techniques proposed in the thesis. Chapter 6 outlines

how population estimators could be derived for triple system data that has both overenu-

meration and underenumeration. Chapter 7 gives a summary of the thesis and presents

some suggestions as to how these estimators could be expanded and generalised to differ-

ent applications as well giving a brief sketch of some ideas for future work.
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Chapter 2 provides a brief historical review of capture-recapture methods and places

census measurement within this context, with a focus on the measurement of underenu-

meration in UK population censuses since the 1980s. Dual system estimation, with its

underlying assumptions, is introduced. When these assumptions are contravened there is

some bias introduced into the population estimates derived under dual system estimation.

The chapter therefore concentrates on two such violations - heterogeneity and dependence

- and considers some ways to ameliorate the bias that arises. One such way is to move

to triple system estimation and so the next part of the chapter reflects on the existing

administrative sources in the UK, and in particular Scotland. Scotland, as well as being

a microcosm of the UK, does have a reasonably maintained health register, which can

be used in addition to the Census and Survey in triple system estimation. However, the

assumption of no overenumeration that is required under dual system estimation is still

needed for the basic triple system estimation model. If the overenumeration is believed to

be an underlying characteristic of individuals that cannot be directly measured but man-

ifests itself through the observed patterns and inter-relationships, it is possible to model

this through latent class models. As such the final part of the chapter expounds on la-

tent class models, and notes that these models are actually not new in capture-recapture

since they have previously been used to account for heterogeneous captures within the

population. Finally it concludes with a brief review of Bayesian methods.

Chapter 3 gives more of a methodological overview of the techniques that are used

in the thesis. The original ideas of capture-recapture methods were developed in wildlife

population measurement, but as time has progressed the methods have found uses in a

wide range of applications, and there has been an expansive amount of literature. The

motivation of this chapter is to bring together this literature under one framework and

in application to a triple system census. Besides reviewing the literature it also seeks to

clarify concepts and definitions so as to contextualise the work undertaken in this thesis.

The results that appear within this chapter are, in the most, not new since they appear

in the texts cited. However, the contribution of this part of the thesis is to present a

methodology that can be used to estimate the population size for data collected from

three systems that have both overenumeration and underenumeration.

This methodology employed is hugely reliant on log-linear modelling and the Expec-

tation Maximization (EM) algorithm. Initially in Chapter 3 the assumption is made that

there is no overenumeration, so results of the missing cell estimates under different list de-

pendencies (which can be modelled as a log-linear model) are presented. The latter part of

the chapter, focusing on the case where there is both overenumeration and underenumer-

ation, introduces latent class modelling. In the literature there are two parameterisations

of the latent class model: one based on conditional probabilities, and referred to as the

Goodman parameterisation, and the other is based on log-linear models and is referred to

as the Haberman parameterisation. For both parameterisations the latent model under

triple system estimation is presented in this chapter. Though closed form solutions exist
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when there are no erroneous enumerations, it is much more difficult to estimate latent

class models due to the latent, unobservable, variable, and hence this motivates the EM

algorithm. The chapter concludes by proposing a model that can be fitted using the EM

algorithm that copes with both overenumeration, underenumeration and dependence.

Chapter 4 is an evaluation of different population estimators in a simulation study,

while Chapter 5 presents the results of an application. In Chapter 4 the objective is to

assess the performance of different dual and triple system estimators when there are differ-

ing levels of dependency introduced. The initial simulations presented are for a simulated

population with dependence but no overenumeration. Later on in the chapter, results are

presented for the simulation study conducted to ascertain the impact of overenumeration

on the performance of the dual and triple system estimators. In Chapter 5, data was

obtained from the US Census Dress Rehearsal that was carried out in 1988, prior to the

1990 US census. Different dual and triple system models were then fitted to these data to

derive estimates of the missing population, and compared. Owing to the measures taken

by the US Census Bureau to clean and validate the data during the Dress Rehearsal, an

assumption was made that there is no overenumeration. This assumption is checked in

Chapter 6.

Chapter 6 presents a generalized framework for estimating population totals when there

is data from three lists that are imperfect measures of the population. Three issues are

considered here, namely dealing with dependence, heterogeneity and identifiability. The

EM algorithm implemented in the previous chapters is developed further to cope with

both dependence and heterogeneity. Using a grouping covariate an identifiable model is

fitted to some Feasibility Study data and also the US 1990 Dress Rehearsal data to give

an alternative interpretation to the results in Chapter 5. Finally, measures of precision of

the parameter estimates are also presented.
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Chapter 2

Review of Literature

2.1 Introduction

The strength of a census rests upon its near-complete coverage of the population. However,

the experiences of the 2001 One Number Census in the UK (and in support, the 2000 round

of international censuses) suggest that the challenge of achieving high coverage was, and

is going to be, substantially difficult. One of the issues from the analysis of the last census

is that modern societal changes do impact on the census methodology. Undeniably, the

‘traditional family’ household that was the norm in the 1970s, and to some extent in the

1980s, is very much different to that of the new millennium. The current UK population

household structure has an increasing number of cohabiting couples, families with part-

resident children and multiple occupancy households. Additionally, some sections of the

population are increasingly mobile. Moreover, there is some difficulty in constructing

adequate address lists with clearly defined vacant, derelict, communal establishments and

commercial properties in the UK. The postal address file was used in the 2001 census, and

provided a starting point for enumerators, who were meant to amend them to account for

hidden or new households. But this does have some challenges: based on Scotland data

supplied by the Scottish Government Housing Statistics Department every day 4 new

dwellings are formed by conversion of old properties, 66 dwellings by new developments

and 10 dwellings are demolished1.

The review of literature undertaken seeks to give an overview to how census under-

enumeration measurement has progressed. With the continuing difficulties encountered

during population measurement, more innovative techniques are needed to adjust the ini-

tial census counts for underenumeration. So the review initially starts with the historical

development of capture-recapture methods. It goes on to give an overview of the US

and UK census underenumeration strategies. The rest of the review concentrates on the

methodology of triple system estimation, firstly looking at the motivation, given that the
1Data supplied courtesy of Jan Young, Scottish Housing Statistics, Scottish Government and are for

the period 2001-2004.

6



basic capture-recapture model assumes homogeneity and independence, and these were

pertinent issues after the 2001 One Number Census, and secondly considers latent models

in coping with overenumeration in the systems. The review also looks at the different

approaches of population size estimation, both in the classical and Bayesian paradigms.

The chapter is organised as follows. Section 2.2 gives a brief historical account of

capture-recapture methods in censuses and details the census undercount measurement,

Section 2.3 brings into focus the UK census undercount measurement since 1981 and intro-

duces dual system estimation while Section 2.4 explains how dual system estimates could

be biased due to heterogeneity and dependence and goes on to present how an administra-

tive list could correct this bias through triple system estimation. Section 2.5 gives a brief

overview of current overenumeration measurement strategies. Since the prevailing way of

presenting capture-recapture models is through contingency tables, Section 2.6 describes

some methods of analyzing contingency tables, specifically when there is data from three

sample captures. Section 2.7 introduces latent class models and expounds on how these

models are to be used to cope with overenumeration. Finally Section 2.8 presents a review

of Bayesian capture-recapture models models.

2.2 History of Capture-Recapture Methods in Censuses

The problem of estimating the size of a population is one of the oldest statistical problems.

Seber (1982) traces the first use of capture-recapture back to the 18th century when

Laplace sought to measure the population of France in 1786. The present statistical

framework owes a great deal to the pioneering work of Petersen (1896), Lincoln (1930) and

Schnabel (1938) on dual lists. In their time, the application of capture-recapture sampling

was primarily intended for the estimation of ecological populations - for example, Petersen

and Lincoln’s work focused on estimating the size of fish and waterfowl populations residing

in their natural, wild habitats.

Although the origins of the models and methods of capture-recapture estimation lie in

human population measurement, it has always had a firm footing in ecology because of

its intuitive appeal. The use of capture-recapture techniques in epidemiology came much

later (the earliest paper being Wittes and Sidel (1968) who evaluated the frequency of

birth defects). One of the main reasons for this could be the fact that the independence

and homogeneity assumptions, which were pivotal in earlier work, could not be reasonably

applied in an epidemiological setting. The development of the log-linear framework allowed

for the generalization of the basic dual list problem to multiple lists; in the main because

it allows for dependence among lists and heterogeneity of capture among individuals.

In 1949, Chandrasekar and Deming applied the approach to the estimation of the

birth and death rates using a population register and a survey. This proved to be a

major advance in using capture-recapture techniques in human population measurement
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(Chandrasekar and Deming (1949)). Their technique, later given the name dual system

estimation, found an application in census estimation when it was used to adjust the totals

obtained from the census and the follow-up survey.

Notably, the US Census Bureau have sought to measure census errors using a special

survey since the 1950 census. However, it was in 1980 that an explicit use of the dual sys-

tem estimation methodology was employed, via data from the census and a survey (known

as the Current Population Survey). This resulted in a set of estimates that subsequently

could be combined to give estimates of underenumeration (Hogan (1992)). It was first

noted here that the census underenumeration was non-random, and varied disproportion-

ately by social stratum and race. Therefore, any re-enumeration survey will also be likely

to be susceptible to underenumeration, and miss people in the sampled areas. Thus, the

dual system methodology allowed for an adjustment to be made for different population

groups; in effect underenumeration varied by geography and socio-demographic factors.

Unfortunately the 1980 census was criticised for using such an evaluation programme

to adjust for underenumeration - previously any follow-up survey served the purpose of

measuring the quality of the census, so the final 1980 census population estimates were

left unadjusted. This is because in the United States as well as the census counts being

used to distribute federal funds, they also serve as a basis for the apportionment of con-

gressional representation. Consequently, underenumeration became politically important

and inevitably, there was some questioning of the census results, leading several city and

state governments taking the US Census Bureau to court (see Werker (1981)).

The initial ruling found in favour of the plaintiffs and concluded that the methodology

for the 1980 census was reasonable in its objective to adjust for differential underenumer-

ation since a failure to adjust the initial census counts would lead to an underestimation

of some areas and a subsequent loss of funds in areas where the census failed to count a

significant proportion of the population - a case in point was New York State, and specif-

ically New York City. It was, however, admitted that despite the detailed procedures set

out by the Census Bureau, there were some problems in enumerating the population in

large cities (Hogan (1992))2. This does show what a tricky issue census adjustment is; as

well as being statistically robust, there is the requirement for it to be ‘politically robust’.

Following on from the problems after the 1980 census, statisticians began to realise

that the achievement of complete-coverage was an almost impossible task (Ericksen et al.

(1985)). The futility of the task was due to the fact that trying to achieve complete

coverage relied on procedures that were not cost effective, and in most cases increased

the number of erroneous inclusions. They advocated for a properly carried out census

that achieves as high coverage as possible, followed by a well designed follow-up survey

to adjust for the differential levels of undercount. A subsequent article by Ericksen et al.

(1989) set out the strategies for dealing with the issues raised by the 1980 census. The
2This ruling was subsequently overturned on appeal by the US Census Bureau (Werker (1981)).
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key assumption in the design of the follow-up survey was that the sample blocks are

made up of much more homogeneous sub-sections of the population, as recommended by

Chandrasekar and Deming (1949).

In 1990, a much larger scale evaluation programme was undertaken, and the language

moved from achieving ‘complete-coverage’ to ‘near-complete’ with a more ‘statistically

defensible method of adjustment’ (Hogan (1993)). The evaluation programme was based

on demographic estimates and a post-enumeration survey (PES). The PES was designed

in a similar manner to the previous censuses, but with a much more detailed focus on

sampling. A national sample of block clusters was selected after stratifying on region,

race, housing tenure as well as age and sex at the national level based on what was known

about the distribution of census underenumeration in 19803. Hogan (1993) concluded that

operationally the 1990 post-enumeration survey was a success and was practically feasible

in that it achieved the data processing in the specified time-frame. Nevertheless, as in 1980

the issue of underenumeration was subjected to considerable litigation and contestation;

more so, after the then Secretary of Commerce, R.A Mosbacher, announced his decision

not to adjust the 1990 census4.

Much of the debate surrounded the ability of the dual system estimation and the

models used to adjust the census counts in non-sampled areas. Furthermore, there was the

assumption of homogeneity between the individual states which was deemed contentious.

Thus for instance in California, the estimate of the state population was calculated using

synthetic estimates of individuals in the different post-strata as found in the state but the

same post-strata could have applied for an entirely different state, such as North Carolina.

As such, the synthetic adjustments were found to have some failings attributed to the fact

that the PES did not have a large enough sample to facilitate the production of direct

estimates for the state totals (Skerry (2001)).

After the 1990 census and in the build-up to the millennial census further refinements

were made to the census estimation strategy. This was because when evaluating the 1990

census, it was discovered that certain population sub-groups were more likely to be missed

by the census - this is what is referred to as biased or differential undercount. Hogan (1993)

claimed that the only methodology that can feasibly measure the amount of differential

undercount at relatively low levels of geography was a large scale post-enumeration survey

followed by dual system estimation. As a consequence, the 2000 census involved an initial

census count followed by an independent coverage measurement survey similar to the

1990 census. To that end, a larger post-enumeration survey was implemented which took
3Hogan (1992) and Hogan (1993) provide detailed discussion of the 1990 census methodological and

operational processes.
4Again New York City, and a number of cities with large numbers of ethnic minority residents, sued

the federal government to compel for adjustment of the census. The judgement was made in favour of the

defendants, upon which subsequent appeals were made. Finally in January 25, 1999 the US Supreme Court

ruled that adjusted figures may not be used to apportion congressional seats but it may be permissible for

other purposes, where feasible (Skerry (2001)).
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account of the differential underenumeration as well as to produce small area population

estimates that were fairly unbiased. The key difference was that the 2000 census post

enumeration survey was much larger than that carried out in the 1990 census (i.e. 300,000

housing units in 2000 compared with 165,000 in 1990).

The work carried out by the US Census Bureau over the previous censuses has shown

that the estimation of census underenumeration is entirely feasible. A properly designed

large scale follow-up survey that re-enumerates a sample of small groups of housing units

should be undertaken independently of the initial census enumeration. This allows the

initial census counts to be adjusted for the estimated underenumeration, since the survey

sample facilitates the estimation not only of those missed by the census but those incor-

rectly counted by the census. The dual system estimation methodology also accounts for

the fact that the survey will fail to count its areas perfectly and as a consequence some

individuals will be missed by both the census and the survey.

2.3 History of UK Census Undercount Measurement

The 2001 census was, to all intents and purposes, the first census in the UK to make

a serious concerted effort to measure the census undercount and adjust the population

estimates to correct for undercount. This is not to say that the previous censuses did

not attempt to measure census errors. In fact since the 1971 census, there has been a

process of evaluating both the quality and coverage of the results ((Brown, 2000, page

21)). For example, in 1971 census there was some adjustment of the population counts,

by demographic analysis using the mid-year population estimates.

The next census in 1981 was, however, the first to use a separate survey, the Follow-up

Survey, to assess the quality of the census. The census evaluation programme was under-

taken on the basis of this survey, using a stratified multi-stage sampling design. Firstly,

the UK was stratified by region and area (of which there were four types - metropolitan,

non-metropolitan, inner-London and outer-London). From these strata, a sample of 300

blocks (known as enumeration districts) was selected, of which 29 were in Scotland. To

account for the fact that it is advantageous to assess the coverage of the census in par-

ticularly difficult to enumerate areas, the selected blocks were graded using the national

classification of residential neighbourhoods (see Webber (1977)). Thus, enumeration dis-

tricts classified as difficult to enumerate were selected with probability proportional to

twice its estimated size. The second stage chose a cluster of four households per selected

enumeration district. In the same vein, in districts classified as difficult to count under the

Webber (1977) classification, the number of chosen households was doubled. Britton and

Birch (1985) state that the objectives of the 1981 evaluation programme were three-fold:

(a) to check whether all persons present on census night in a private household had actu-

ally been correctly enumerated by the census;
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(b) to verify the classification by the census enumerators of unoccupied residential accom-

modation;

(c) to assess the quality of replies given to the census questions, and hence the accuracy

of the published 1981 census results.

As the objectives show, the focus of the 1981 census evaluation programme was mainly to

identify the types of census errors, i.e. the quality of the census outputs. The evaluation of

the census coverage was of secondary importance because undercount was thought to be

small - the net level of undercount was estimated to be 0.45% (Britton and Birch (1985)).

In 1991, a much more integrated approach was undertaken to assess the quality and

coverage of the census, using the Census Validation Survey. This survey was similar to

the 1981 Follow-up Survey. It involved a multi-stage sampling design, with an initial

selection of enumeration districts, then an enumerator selected samples of households to

assess the different sources of census errors. The Census Validation Survey of 1991 was

found to be unsuccessful in assessing the census coverage (Heady et al. (1994)). This

was because comparisons with the demographic estimates showed the 1991 census failed

to take account of the differential levels of undercount, especially amongst young males.

For example, the sex ratios of adjusted census counts for young males were found to be

below one. There were two possible explanations why this might have happened. Firstly,

there may have been a disproportionately larger mass of undetected emigration between

1981 and 1991 for men than women. The second, and more plausible, was that there was

a differential underenumeration of young males which the Census Validation Survey was

unable to detect.

The sampling design of the Census Validation Survey relied on the assumption that

underenumeration was homogeneous across (suitably defined) groups of the population.

Hence, the major metropolitan cities were all assumed to have the same level of under-

enumeration. This level of aggregation was found to be too high, because differential

underenumeration existed within these cities - the less affluent parts of the metropolitan

cities experienced much higher proportions of people missed. Another shortcoming of the

1991 Census Validation Survey was that it was difficult to ascertain at which level the

undercount adjustments were to be made, whether at ward or enumeration district level.

This brought about some difficulties as to the validity of the census counts, particularly in

terms of resource allocation (Brown, 2000, page 24). Additionally, the undercount figures

were only known by age and sex, so it was difficult to discern how the people missed

differed from the general population by other important characteristics such as education

and employment.

Obviously, these issues were instrumental in influencing the design of the 2001 census.

Therefore in 2001, the population measurement strategy used a new methodology with

the primary purpose of adjusting the census counts to account for this differential under-

count. There was a general perception that the problems in identifying underenumeration
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in 1991 were due to operational difficulties. These operational difficulties were not re-

alised in 1981; for example, enumerators encountered problems contacting households and

individuals - in both the actual census and the survey. One of the main causes of this

is due to changing household patterns. A lot more people now live in multi-occupied

houses, and in purpose-built flats in buildings that utilise electronic entry systems. Ad-

ditionally, changes in employment patterns and an increase in out-of-home activities -

consequences of modern demographic behaviour referred to as the second demographic

transition (as proposed by Lesthaeghe and van de Kaa (1986)) - had an adverse effect

on census response. In order to get around this, the 2001 census was the first to use a

postal enumeration strategy. Although it does reduce part of the problem, the removal of

the crucial enumerator - respondent interaction leads to an additional complication in the

identification of households.

Brown (2000) does say that compared to other similar census-taking countries, the

1991 UK census was not a particularly poor census. The specific problems encountered

were in counting special population sub-groups, for example Armed Forces personnel and

students. He goes on to put it succinctly, on page 25, that

“the more serious problem [in 1991] was not so much the existence of the underenumera-

tion, but the inability of the [Census Validation Survey] to measure underenumeration.”

Accordingly in 2001, an independent follow-up survey (known as the Census Cover-

age Survey, CCS) was carried out after the official Census had taken place. Matching

techniques were used to link records from the Census Coverage Survey to those from the

Census. This results in a 2x2 contingency table (see Table 2.1), and the objective is to ob-

tain an estimate of the people missed by both the Census and Census Coverage Survey. A

key assumption here is that the first and second processes are (statistically) independent.

Table 2.1: Dual System Estimation

Census Coverage Survey

Counted Missed

Counted n11 n10

Census

Missed n01 n00

In 2001 this independence assumption was met by post-stratification at a low level of

geography (here, postcode) of the population by age, gender and other covariates (identi-

fied through the Hard-to-Count (HtC) Index, which is discussed later). When the popula-

tion has been suitably stratified it can now be reasonably assumed that the probability of

enumeration in the second process given enumeration in the first is identical to the prob-

ability of enumeration in the second, given that person was missed in the first process.

This identity assumption provides a basis for estimating the number of people that were

not enumerated in either the Census or the Survey. Consequently for each stratum, this
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population undercount was combined with the census population to give an estimate of

the true population, adjusted for undercount, of the sampled areas.

In effect the dual system estimation process used in the 2001 census methodology

estimated the people missed by both the Census and Census Coverage Survey (n00) by

considering the relative number of people observed by

• both the Census and Census Coverage Survey (n11);

• the Census but not the Census Coverage Survey (n10); and

• the Census Coverage Survey but not the Census (n01).

Dual system estimation relies on two assumptions - independence and homogeneity. Firstly,

there is independence between the processes that yield the Census and Census Coverage

Survey counts, leading to estimates that are ultimately unbiased. Secondly, for any age-

sex group within a chosen postcode, the probability of a person being in the Census or

Census Coverage Survey is assumed to be the same for all individuals. The first condition

is met by ensuring that the Census and Census Coverage Survey processes are opera-

tionally independent. Simulation work undertaken by Brown et al. (1999) demonstrated

that, provided the response rates are high, the effect of any dependence is minimal, even

for extreme levels of dependence. The majority of postcodes are small and can be assumed

to contain ‘similar types’ of people; hence the second condition is likely to be met.

In addition to the fact that the dual system estimates depend on the assumption that

the events of inclusion in the Census and Survey are independent, it is also important that

there is an appropriate sampling scheme which chooses blocks for inclusion in the Census

Coverage Survey such that inferences from the sampled blocks reasonably extend to the

unsampled blocks. The probabilities of inclusion in the Census and the Survey are known

to depend on the various characteristics of the population, thus post-stratification (based

on the Hard-to-Count Index) was used to produce sub-groups with relatively homogeneous

inclusion probabilities.

The HtC index (see Brown et al. (1999) and Chapter 3 of Brown (2000)) was a more effi-

cient way of grading enumeration districts. The previous censuses used the Webber (1977)

classification and simply oversampled areas that were deemed to be hard to enumerate.

Another shortcoming of the Webber classification was that it was based on deprivation.

The 1991 census showed that although a disproportionate number of poorer people were

missed, suggesting a link between underenumeration and deprivation, there were other

related indicators (Brown et al. (1999)). Therefore, the HtC index utilized all the vari-

ables associated with census underenumeration, taking account of both deprivation and

transiency. Areas with high numbers of privately rented, multi-occupied households and

young migrants were indicative of highly mobile (or transient) populations.

Eventually, on completion of the 2001 census, estimates of the populations for each

local authority by age and sex were produced using a combination of regression and small

area techniques. Households and persons estimated to have been missed by the census
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were imputed to produce a fully adjusted Census database. All population estimates were

quality assured using demographic analysis and comparisons to aggregate level adminis-

trative data. Further adjustments were made, if deemed necessary, to meet the consistency

requirements. The methodology of the 2001 One Number Census project is outlined in

Brown et al. (1999) and given in a lot more detail in Steele et al. (2002).

Albeit the 2001 census methodology is deemed to be the best presently available for

carrying out a conventional census, it does not (unfortunately) correct for the most ex-

treme circumstances. There was evidence of poor enumeration in some areas with address

lists failing to capture substantial redevelopment (Treasury Select Committee (2002)). In

areas where this was particularly severe, the ability of the census methodology to make a

robust adjustment for the differential undercount was stretched. Therefore, in Manchester

and Westminster City Councils there were potential discrepancies between the council

administrative lists and the address lists collated by the Office for National Statistics.

It must be noted that the perceived failures of the One Number Census in Manchester

and Westminster were driven by separate issues. In Manchester, the Census Coverage

Survey design was not detailed enough to cope with rapid regeneration, predominantly

attributable to the Commonwealth Games held there in 2002. However, in Westminster

there was a general failure of the enumeration process with a 74% enumeration rate, com-

pared to a national rate of 94% (see Office for National Statistics (2004) and Statistics

Commission (2004)). Thus, the Manchester and Westminster Matching Studies set out to

investigate the census estimates. The results of the studies led to minor revisions of the

2004 mid-year estimates (Office for National Statistics (2004)). One point to come out of

these studies is that there needs to be continuing dialogue between the census takers and

the local authorities before, during and after the census, so that any concerns are rectified

much earlier.

2.4 Issues Surrounding Census Underenumeration

The previous sections have given a historical overview of census methodology, concentrat-

ing on how methods have been developed in the US and the UK that seek to supplement

the enumeration process and improve the initial census count using a carefully conducted

and executed sample survey. This section looks at two issues surrounding dual system

estimation in modern censuses - dependency and heterogeneity - and then assesses how

an additional list, in the form of an administrative records list, can be used to adjust the

census process in light of these issues.

2.4.1 Dependency and Heterogeneity

As mentioned briefly earlier on, the simplest capture-recapture model involves two samples

and relies on five key (but untestable) assumptions:
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• the population is closed,

• individuals can be matched from capture to recapture,

• the capture in the second sample is independent of capture in the first, and

• capture probabilities are homogeneous across across all individuals5

• there are no erroneous captures in either the first or second sample.

In the most elementary two-sample capture-recapture model, it is impossible to as-

certain whether the samples are independent. Usually some control can be exercised by

the experimenter in the design to ensure that the assumptions are met, nevertheless the

matching, independence and homogeneity assumptions are closely intertwined. This is

because homogeneity of capture is a condition for independence; and vice versa6. Further,

the assumption of homogeneity follows from the matching assumption since the latter im-

plies that marked and unmarked individuals have the same probability of being caught

in the second sample, so that capture in the first sample does not affect capture in the

second. What this shows is that a failure of any one of these assumptions can invalidate

the others.

In most cases failure leads to biased population estimates. This bias is termed corre-

lation bias and can be due to two types of dependencies:

(i) List dependence: - the act of being included in the first list makes an individual more

or less likely to be included in the second list, i.e. inclusion in the first sample has

a direct causal effect on inclusion in the second. This is sometimes referred to as

causal dependence.

(ii) Heterogeneity: - even if the two lists are independent within individuals, the lists may

become dependent if the capture probabilities are heterogeneous among individuals.

This is similar to the Simpson Paradox which shows that an aggregation of two

independent 2x2 tables may result in a dependent table. This is sometimes referred

to as apparent dependence.

In practice, these two types of dependencies are confounded and cannot be separated unless

additional information is provided. There is also the likelihood that, in human populations

especially, the homogeneity of capture within lists may be violated. After the results of

the 2001 One Number Census were analysed there was some concern as to the validity of

one (or both) the homogeneity and independence assumption for some scenarios (Simpson

et al. (2003) and Brown, Abbott and Diamond (2006)). If people in the same post-stratum

have different probabilities of response, then the same people might be likely to be omitted

from both the Census and Census Coverage Survey. In this instance, estimates based on

the independence assumption have a correlation bias which is indicative of a systematic

under-estimation of the true population.
5Technically, this assumption can be relaxed and Wolter (1986) demonstrated that it is only required

to have homogeneity across one list.
6Again strictly speaking at an individual level, as long as there is independence between the list capture

probabilities, then homogeneity of capture, although desirable, is not necessary.
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On the other hand, the direction of the correlation bias due to the effect of causal (or

list) dependence is less certain: the effect inclusion in the Census has on the individual’s

propensity to be included in the Census Coverage Survey can be either negative or positive.

An individual included in the Census could be deemed more aware of the Census process

and hence would be more likely to participate in the Census Coverage Survey, than those

individuals missed by the Census. This correlation bias is positive and leads to an under-

estimation of the population estimate. Alternatively, the individual could feel that they

have already responded to the Census, and hence would be more resistant to be included

in the Census Coverage Survey, than someone who was originally missed. This type of

dependence leads to an over-estimation. It is difficult to ascertain which of these two

types of causal dependence is more likely. In other words, it is unclear as to whether

correlation bias due to list dependence would lead to under-estimation or over-estimation

of the population under dual system estimation.

The difficulty lies in the fact that these assumptions are untestable. Thus, several

authors have made significant contributions to relaxing some of them. In the context of

census underenumeration, work has been undertaken that looks into relaxing the inde-

pendence assumption. Isaki and Schultz (1986) proposed several alternative dual system

estimates to incorporate the correlation bias due to list dependence. Wolter (1990) and

Bell (1993) suggest the population totals and sex ratios as additional demographic in-

formation to assess the dependence. Zaslavsky and Wolfgang (1990) and Zaslavsky and

Wolfgang (1993) proposed using an administrative list as a third system. Alho (1990)

and Alho et al. (1993) modelled heterogeneity using a logistic model containing several

explanatory variables under the assumption of independence. If there are no covariates

that can explain the heterogeneity, then individuals can be thought of as having some

random effects that determine their catchability in each sample. So under the assumption

of independence across individuals, Darroch et al. (1993) and Agresti (1994) allow for het-

erogeneous capture probabilities by using a logit model with random effects. This model

is the same as that suggested by Rasch (1960) in an application to educational testing,

with individuals differing on a continuous scale.

2.4.2 Administrative Lists as a Source for Census Estimation

One simple way of getting around the restrictive assumptions imposed by two-sample

capture-recapture is to increase the number of samples. This has been the preferred

option in biological capture-recapture. Thus in a census application, triple system esti-

mation, proposed by Zaslavsky and Wolfgang (1990) and Zaslavsky and Wolfgang (1993),

brings data from an administrative list matched to both the census and survey. The main

advantage is that a third list allows for the possibility of two-way interactions between

the counts derived from the different sources. Therefore, the independence assumption

which underlies dual system estimation is no longer necessary. The advent of log-linear

models has also made it possible to consider a far greater number of models, under dif-
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ferent dependency scenarios. However, it may be necessary in some cases (e.g. log-linear

models) to ensure that when there are multiple recording systems, each record system

has homogeneous inclusion, such that individuals have the same probability of capture

(within sub-strata)7. So in a census context, the individuals can be captured in three

possible sources - namely the Census, post-enumeration Survey and the administrative

List. After matching, the data can be represented in terms of a 2x2x2 contingency table

with cell counts given by {nijk}, where 1 means counted, 0 means missed, and i is the

Census, j is the Survey and k is the Third List (shown in Table 2.2).

Table 2.2: Triple System Estimation

Third List

Counted Missed

Survey Survey

Counted Missed Counted Missed

Counted n111 n101 n110 n100

Census

Missed n011 n001 n010 n000

Administrative lists have been widely applied in population estimation, with several

Western European countries (the Netherlands, Norway and Sweden, for example) relying

on population registers as their main source of population estimates. These countries use

surveys to evaluate the coverage and quality of the administrative records. In the UK,

population estimation from administrative records has been proposed but remains con-

troversial, partly because of issues pertaining to privacy and confidentiality. Nevertheless,

falling census participation and the improvement of administrative records due to tech-

nological advancement has led to experimentation using administrative data. Advocates

cite the wide availability of administrative sources, their ease accessibility in digital form,

the rapid development of new information technologies and the computationally intensive

statistical methodological advances.

The use of administrative data for the production of statistics is not an entirely new

concept in the UK - it could be said that this is one of the fundamental reasons for the

collection of such data. An example that illustrates this point is the use of Department

for Work and Pensions (DWP) records on those in receipt of unemployment benefits to

calculate the level of unemployment. There are currently a wide range of administrative

sources that collect data on employment, education, housing, business, etc. from the pop-

ulation, and this is one of the main reasons why countries have resorted to harnessing

this richness in their population census estimation. In some Nordic countries that rely

solely on administrative data for census estimation, there is an obligation for the national

statistical office to first examine whether the data exists in an administrative source be-

fore commencing on a data collection process (UNECE (2007)). The advantage of such
7When there is heterogeneity introduced in this way, one solution is to use Latent Class Modelling,

considered in detail later.
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an approach, in addition to the obviously more efficient use of resources, is that there is

minimum inconvenience to the population which can have the effect of improving response

rates.

There is a plethora of potential ways in which administrative records can be used to

improve census coverage. In triple system estimation two scenarios where administrative

records can be employed in population estimation come to mind. Firstly, the Survey

and the Administrative List could be assumed to cover the same sampling blocks. This

would lead to an estimate of underenumeration using triple system estimation for the

blocks where the Census, Survey and Administrative List counts are available. Standard

estimation techniques can then be applied to the adjusted counts to gain estimates of the

population. Under a second scenario, the Administrative List records could be assumed

to be available across the whole country. These records could be matched to each other

and the Census, yielding a combined list across the entire country. This augmented list

of the population can then be matched, in the sampled areas, to the Survey; dual system

estimation can effectively be implemented.

The assumption is that different types of people are missed by either the Census or the

Administrative List, so combining them yields greater population coverage. The Survey

can be designed as usual with the assumption that within the sampled blocks there is near-

complete coverage. Both scenarios have their advantages and disadvantages, but according

to Stuart and Zaslavsky (2002) even though the second scenario requires assembling much

larger files, the logistical cost would not be proportionally more than that required to

obtain an Administrative List for just the sampled blocks, since the same systems must

be accessed. The issue here is that the administrative data collection methodology is very

different to that of the census or survey processes. Thus the assumption of independence

is now more reasonably valid. Moreover, the addition of the third source brings extra

degrees of freedom allowing dependency between the census and survey processes to be

taken account of during the estimation.

During the 1980s - particularly in the period leading up to the 1990 census - the

US Census Bureau conducted an Administrative List Supplement programme, with the

primary purpose of evaluating the feasibility of including information from administrative

lists in census coverage assessment. It should be noted that the US Census Bureau use

the E-list to represent those individuals enumerated by the Census, the P-list to represent

individuals enumerated by the post-enumeration survey process, and the A-list to represent

the individuals on the administrative list.

The culmination of this programme was the 1988 Census Dress Rehearsal where triple

system estimation - in application to the census - was first trialled out. On the basis of data

from the 1980 census, it was found that black males were particularly difficult to enumerate

(Zaslavsky and Wolfgang (1990)). Furthermore, the post-enumeration survey did not

achieve sufficiently high levels of coverage for this subgroup either. So the estimates under

a simple dual system estimator were thought to yield biased population estimates, due to
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the likelihood of correlation bias. To that end, an inner-city area of St Louis, Missouri,

was chosen owing to it having a large Black population resident in tenement buildings.

The A-list was constructed from merged state and federal government drivers’ licence, tax

revenue, military selection and military veterans administrative records (Darroch et al.

(1993)). This data will be considered in greater detail in Chapter 5.

It follows that in theory triple system estimation is superior to the dual system ap-

proach. However, in practice the needs of an administrative list bring additional complica-

tions. For example, the matching of three different lists is a non-trivial matter. Presently

(in the UK and for that matter the US) there is a distinct lack of a single high quality,

reliable and accurate administrative data source that encapsulates the whole population,

at all levels of geography. The alternative is linking several databases, as done in the US

(by Stuart and Zaslavsky (2002) and Stuart and Judson (2003)) but this is problematic

in terms of the different individual record-identifiers used.

An example of such a linked database is the Statistical Administrative Records Sys-

tem (StARS), set up by the US Census Bureau in the run-up to the 2000 census. This

consists of seven merged data sets including Internal Revenue Service returns, drivers’

licensing, selective service files, Medicare records and residence information from the De-

partment of Housing and Urban Development Tenant Resident Assistance Certification

System (TRACS). TRACS is effectively similar to the UK postal address file (PAF). How-

ever, it has the advantage that it is operated by a US government department. The major

problem of the StARS is that the potential for duplication on it can be high since in-

dividuals will appear on the different lists, at different times. Furthermore, the address

information on the files may be incomplete, incompatible or erroneous, thus leading to

geocoding errors, with people counted in the wrong place. Additionally, the files may not

be completely current. For example, although Drivers’ records may be kept up-to-date

since a driving licence is most people’s sole mode of identification in the US, Medicare

records on the other hand may not be updated after a move, unless the person needs

medical assistance.
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2.4.3 UK Population Registers

A population register incorporates information on births, deaths and mobility within a

geographical area, for instance a city or council area. Some registers can also incorporate

immigration and emigration. They have the advantage that they can be updated on a

regular basis, and population registers are considered the future of census taking (Martin

(2007)). Many countries have some form of population register at either a local or national

level that covers certain population subgroups - e.g. the Department of Work and Pen-

sions (DWP) has information on benefit recipients and national insurance contributions.

In principle, one or a combination of these registers can replace the traditional census; in

practice the quality and usability of such information at very low levels of geographical

detail constrains the feasibility of registers as a main source of population estimates. Un-

like countries where population registers have been in use for decades, the UK has not

had a single administrative database that encompasses the full spectrum of the popula-

tion sub-types. In countries where this is not in existence there is at least a concerted

effort to coordinate the existing recording systems, using individual-specific multi-purpose

identification numbers.

In the Netherlands, for example, a Social Statistics Database is used as a population

register, and is constructed by combining a variety of lists. The key to the success of this

database is the existence of the unique social-fiscal number. Although there is no law

making registration compulsory, generally speaking it is virtually impossible to function

in Dutch society without being registered. As an example, any one working without being

registered pays the top rate of income tax (Schulte Nordholt et al. (2004)). The difference

between this and the UK National Insurance number is the fact that every Dutch resident

uses their social-fiscal number to access key services, on a regular basis, and in most cases

commits it to memory. Also, unlike the National Insurance number which is applied for

when seeking employment or access to benefits, the social-fiscal number is given at birth.

Obviously there is a major obstacle to such registers being fully implemented in the UK

because of the public perception and acceptance of them. Key to the Dutch Social Statistic

Database functioning as well as it is, is its approval by the general population8.

In the UK, health registers are the current best candidates to serve the purposes of

a population register. In their current format health record data in Scotland are the

most useable when compared to England, Wales and Northern Ireland for these purposes.

In Scotland, there are two health-related registers - the National Health Service Central

Register (NHSCR) and the Community Health Index (CHI). The NHSCR is the oldest

and was set up to organise payments to doctors after the National Health Service was

set up in 1948 (although there was a fore-runner established during the 1939 pre-World

War II national registration). It has been carefully maintained to contain one record for
8There were some demonstrations for a period in the 1970s when it was being implemented. Thus a

wide scale exercise was undertaken to make the public aware of why the database was a good idea, and

how it was a means of improving the ways they accessed key services.
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every resident in Scotland. Later on (circa 1970) the CHI was set-up as a regional primary

care pilot data repository used to manage child and adult health screening programmes,

in addition to facilitating payments to general practitioners. After the success of the pilot

the CHI was rolled out to other health authorities in Scotland. Unfortunately the CHI

was administered by the different health authorities, and so when someone migrated to a

different health board they were given a new number. The differences between the CHI

and NHSCR are minor and mainly operational. The key difference being that the NHSCR

contains basic demographic patient information, while the CHI contains a great deal more

(see Table 2.3), and therefore is more useable as a population register.

Table 2.3: Information contained on the CHI

a. CHI number    b. NHS Number     
c. Date of Birth    d. Sex 
e. Surname    f. Birth Surname    
g. First Forename    h. Second Forename 
i. Alternative Forename 
j. Marital Status    k. Previous Surname 
l. Date Surname changed 
m. Address    n. Postcode 
o. Area  of Residence 
p. Reason for transfer 
q. GP code 
r. GP GMC Number 
s. Date Accepted on GP list 
t. GP name 
u. Practice Code 
v. Contact Date 
w. List of Hospital contacts 

 Source: Ganka Mueller, Demography Division, General Register Office for Scotland 

 

Since its inception a person’s CHI number has been a 10-digit number, of which the

first six digits are their date of birth and includes a gender identifier. So, in the late

1990s work was carried out to ensure that each individual had a unique patient identifier,

i.e. the CHI number. Previously, as pointed out, it was common for a person to be

registered more than once on the CHI due to migration. The one-to-one correspondence

was accomplished by first creating one database from the eight different CHI databases

which maintained computer records about the people living in different geographical areas

in Scotland. This used the fact that when a person migrates and re-registers with a new

medical practice, a transfer request is made for the patient’s medical records. Therefore,

it was possible to use probability matching to link the patient’s CHI details across health

boards making duplicate records a far rarer occurrence9. The CHI number now currently

appears on every NHS registration card, and is allocated to every to new born baby, or

new GP registration. Unfortunately, one of the problems of using the CHI as a source of

population data is due to the problem of list size inflation. As the data used to update

the CHI comes from medical practice list records, the removal of emigrants and deaths
9The difficulty occurs if the person has emigrated to other parts of the UK and failed to re-register with

a new GP.
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tends to take some time.

Figure 2.1: The Census and CHI population, by local authority (in April 2001)

Percentage Difference between Census and CHI population estimates
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A properly maintained administrative system has a quality assurance aspect such that

there is a constant monitoring process to ensure the reliability and validity of the data.

However, validity and reliability in the CHI present ongoing challenges. Apart from the

issues surrounding migration across different health boards, the CHI has been found want-

ing in a number of situations. In 1996 the CHI had an overall inflation of about 8%, mainly

attributable to people who had moved or died (Womersley (1996)). In fact, at a small

area level these inflation rates were revealed to be as high as 20%. There were also age

differentials in the inflation rates, with over 75s and 20-30 year olds having the highest

inflation rates. This does make sense, as people in their 20s (especially males) are more

likely to be transient. Also, it was found that married women are duplicated when they

change their names. A few years later, after the 2001 One Number Census was completed

a similar exercise was undertaken by the General Register Office for Scotland (GROS) to

compare the CHI to the Census results and they estimated a discrepancy of 5% between

the mid-year estimate of the population and the CHI counts of patients registered (see

Table 2.4).

The GROS results (presented in Figure 2.1 and Table 2.4) do provide some support

to Womersley’s results that at higher geographical levels the CHI population counts are

fairly similar to the census population estimates, although they show that in all local

authorities the CHI population estimate is always higher than the Census, and more so in

cities. So in effect the CHI does count young people, but unfortunately this occurs in the

wrong place. Womersley estimated his overcount figures by cross-checking whether people

on the CHI were resident at the address given on their records. On the basis of this there
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is some potential of using information on the CHI to provide data about particularly hard

to enumerate people.

Table 2.4: Difference between the Census and CHI population, by local authority (in April 2001)

Local Authority 
Census 

Population CHI Population 

% Difference 
between CHI 
and Census 

Aberdeen City 211,960 226,496 6.42 

Aberdeenshire 226,450 231,791 2.30 

Angus 107,784 112,108 3.86 

Argyle & Bute 87,946 90,664 3.00 

Clackmannanshire 48,017 49,220 2.44 

Dumfries & Galloway 147,633 150,481 1.89 

Dundee City 145,552 156,362 6.91 

East Ayrshire 120,135 123,814 2.97 

East Dunbartonshire 108,198 115,709 6.49 

East Lothian 90,028 93,690 3.91 

East Renfrewshire 89,247 94,027 5.08 

Edinburgh City 447,193 490,755 8.88 

Eilean Siar 26,475 27,655 4.27 

Falkirk 145,078 148,249 2.14 

Fife 348,025 359,276 3.13 

Glasgow City 577,404 652,428 11.50 

Highland 208,239 217,626 4.31 

Inverclyde 84,100 90,524 7.10 

Midlothian 80,710 84,890 4.92 

Moray 83,735 84,311 0.68 

North Ayrshire 135,653 144,181 5.91 

North Lanarkshire 320,867 340,593 5.79 

Orkney Islands 19,237 19,422 0.95 

Perth & Kinross 134,785 138,853 2.93 

Renfrewshire 172,678 183,099 5.69 

Scottish Borders 106,666 110,356 3.34 

Shetland Islands 21,956 22,037 0.37 

South Ayrshire 111,890 117,679 4.92 

South Lanarkshire 302,070 317,959 5.00 

Stirling 86,108 90,511 4.86 

West Dunbartonshire 93,155 99,192 6.09 

West Lothian 158,577 164,001 3.31 

         

Scotland   5,047,551 5,347,959 5.62 
Source: Ganka Mueller, Demography Division, General Register Office for Scotland 

 

Finally, in theory the CHI should register any time an update to patients’ records is

made, and so for transient young males it may be possible to know their last address - this

information would prove very valuable when matching to the Census and Survey. However,

at lower levels of geography, for example at the postcode level, the CHI will not be very

accurate. Nonetheless, the CHI does contain a considerable amount of information (as

shown by Table 2.3) and though the CHI poses problems when it comes to deducing from

it a comprehensive count of the population at very low geographies due to the levels of

erroneous enumerations, it can be useful during the census. In paraphrasing Womersley’s

concluding remarks;

it does seem a shame not exploit this invaluable data source to the full.
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2.5 Measurement of Overenumeration in Censuses

Although not explicitly stated it is assumed that the observed counts in the 2x2 contin-

gency table (see Table 2.1) have been cleaned of any overenumeration. In fact, it may be

construed from the assumption that individuals can be matched from capture to capture

that every census enumeration is correct. However, in actuality, this may not entirely be

true; some enumerations will be erroneous. To that end, most census taking countries

undertake some procedures within the census assessment to adjust for these errors. In the

UK, for instance, there are a number of clerical matching and data processing techniques

that make sure that the counts of those enumerated in either the Census or Survey are

devoid of any erroneous counts. Further, the Survey collects data on possible locations of

where individuals could have been counted in the Census, and ad hoc adjustments can be

made to age-sex dual system estimates (Brown, 2000, page 112). However, in the US, ov-

erenumeration is a more serious issue owing to the broad range of erroneous enumerations

that exist (e.g. duplicates, fictitious census returns and incorrect census imputations). Ac-

cordingly, the US Census Bureau has a part of their accuracy and coverage evaluation that

explicitly tackles the estimation of overenumeration. This is done through two surveys,

namely the E-sample and P-sample.

The E-sample can be thought of as the initial enumeration of the population (i.e. the

‘Census’ in the context of the UK) while the P-sample is the subsequent independent

survey of the population, and is equivalent to the UK’s Census Coverage Survey. In order

to obtain an estimate of overenumeration, a sample of census returns are re-visited to

check for fictitious data and erroneous or incorrect enumerations. The sample is restricted

to those people who fail to match the P-sample records. It is now possible, in theory, to

determine for each individual whether they were enumerated in the Census despite being

missed in the P-sample, or whether they were erroneously enumerated.

The E-sample and P-sample are used to estimate an adjustment for both the underenu-

meration and overenumeration by calculating the proportion of the population correctly

included in the Census, which is estimated by the P-sample match rate, and the propor-

tion of the Census counts that were correctly included, which is estimated by the E-sample

correct enumeration rate (Citro et al., 2004, page 160). The dual system estimate of the

population is

N̂ = (Cel)
(
Ecor
Ne

)(
Np

Pmat

)
(2.1)

where Cel is the number of census counts that are eligible to be matched to the P-sample,

Ecor is the number of E-sample persons who were correctly enumerated in the Census,

Ne is the total number of E-sample persons, Pmat is the number of P-sample persons who

match with the E-sample, and Np is the number of P-sample persons. The equation (2.1)

follows from the independence assumption that the probability of being enumerated in the

Census is not related to the probability of being enumerated in the P-sample. In other

words as a result of the independence between the P-sample and Census, the estimated
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proportion of P-sample people who match to the Census, Pmat
Np

, is a good estimate of the

proportion of people who were correctly enumerated in the Census, Ecor
N̂

. So

Pmat
Np

= Afac
Ecor

N̂

where Afac = Cel
Ne

is an adjustment factor to account for the fact that only a proportion

of those counted in the Census are real people, but the matching of the P-sample is

across the whole Census10. This can be contrasted to Canada where no dual system

estimation is employed, nonetheless the final population estimates are adjusted for both

underenumeration and overenumeration through a Reverse Record Check. The assumption

is that, after matching, the number of persons in neither the Census nor the Reverse Record

Check is expected to be negligible relative to N (Martel and Caron-Malenfant (2007)), so

the estimate of the population is

N̂ = NC + Ũ − Õ, (2.2)

where NC is the number counted in the Census, Ũ is the estimate of undercount and Õ is

the estimate of overcount.

The US has conducted extensive research on alternative methods of coverage assess-

ment. One such method, referred to as CensusPlus (Mulry and Griffiths (1996)) works

by undertaking an intensive enumeration of a sample of the population. But whereas

in dual system estimation the results from this sample are matched to information from

the census, CensusPlus seeks to obtain as accurate a count of the sample population as

possible through using the best staff and resources available. A crucial assumption here is

that complete coverage of the sample can be achieved. However, Judson (2006) suggests

that, although appealing, complete coverage in the sample is too heroic (and possibly

untenable) an assumption to make.

These techniques detailed above are very different to the one being proposed in the

thesis. The proposal here is to use contingency table analysis to fit different models in

order to directly obtain estimates of population size that are adjusted for the existing

overenumeration and underenumeration.

2.6 Contingency Table Analysis

The contingency table framework of the capture-recapture information has led to the

application of more sophisticated statistical theory and inferential procedures. The work

by Darroch (1958) and Darroch (1962) laid the foundations of the mathematical framework

of this topic, and was largely reliant on the seminal Bartlett (1935) paper. His eponymous

result, the Bartlett criterion, allowed the investigation of the associations in complex

contingency tables, starting with a simplistic 2x2 (first-order) case (as shown in Table 2.5)

10cf: Under DSE, count in first sample
population total

= count in both samples
count in second sample

⇒ n1+

N̂
= n11

n+1
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and builds up to a more general case; specifically, the Bartlett criterion extends tests for

independence across multi-dimensional contingency tables.

Table 2.5: Two sample capture-recapture

Second Sample

Counted Missed

Counted n11 n10

Second

Missed n01 n00

Prior to this paper the existing tests of independence were based on Yule and Pearson’s

work which only strictly applied to 2x2 contingency tables (see Yule (1900) and Pearson

(1900)). Further, it was here that a methodology was put in place for the computation of

the maximum likelihood estimates for contingency tables.

The association in the table can be measured by the sample odds ratio θ̂, given by

θ̂ =
n00n11

n01n10
. (2.3)

When the population odds ratio θ = 1, the first and second samples are independent and

this results in the dual system estimator of the missing cell,

n̂00 =
n01n10

n11
. (2.4)

For the 2x2x2 case, as shown in Table 2.6, the ratio of the odds ratios in the layers of the

contingency table can be used to measure the association.

Table 2.6: Three sample capture-recapture

Third Sample

Counted Missed

Second Sample Second Sample

Counted Missed Counted Missed

Counted n111 n101 n110 n100

First Sample

Missed n011 n001 n010 n000

Simply put, assuming that there is no three-factor interaction effect (i.e. all pairs of

samples may exhibit dependence but the amount of dependence in each pair is assumed to

remain unaffected when conditioned on the third sample), then Bartlett’s criterion shows

that the test for three-factor interaction effects is equivalent to

π000π011π101π110 = π001π010π100π111 ⇒ π000 =
π001π010π100π111

π011π101π110
.

Forcing this relationship on the cell counts gives

n000n011n101n110 = n001n010n100n111. (2.5)

The missing cell can therefore be written as

n̂000 =
n001n010n100n111

n011n101n110
. (2.6)
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As in the independence assumption in the 2x2 case, it is required to make the untestable

assumption that there is no three-factor interaction here11. Another non-trivial point to

make from equation (2.5) is that it is not possible for n̂000 = 0; this implies that there is

always someone in the missing cell. Put differently, no combination of the three lists has

full coverage of the population.

For categorical data presented in a contingency table, the log-linear model is a good

tool in the analysis of the relationships of the variables. It is especially useful in testing the

hypothesis that the cell counts in the cross-classified table are consistent with statistical

independence. Regression models can be used, but the advantage a log-linear model has

is that it can be employed to address the different types of departures from statistical

independence. The log-linear model is relatively new, compared to regression models but

according to Sobel (1995) its origins can be traced to the work of Pearson (1900) and

Yule (1900). Pearson’s χ2 test for independence and Yule’s Q measure of association are

both similar to the odds ratio that underlies log-linear models. Birch (1963) was the first

to express the log-linear model in its current form, and developed the basic asymptotic

theory under Poisson and multinomial sampling.

In a census application Fienberg (1972), using Darroch (1958) as a basis, fitted a log-

linear model to the incomplete contingency table that results from a capture-recapture

experiment. He derived different models to fit the observed data under different depen-

dency assumptions. An estimate of the missing cell is then found under the simplest

(parsimonious) model for the data, and this consequently yields an estimate of the total

population size. Chapter 6 of Bishop, Fienberg and Holland (1975) gives a comprehensive

overview of capture-recapture population estimation. The book also gives the asymptotic

variance results for the population estimate under different log-linear models. These vari-

ance estimators are based on the assumption of normality of the population size estimate

derived in Sanathanan (1972a) and Sanathanan (1972b) using maximum likelihood esti-

mation. However, maximum likelihood estimation has a disadvantage in its assumption

of asymptotic normality in capture-recapture. Seber (1982) and Agresti (1994) showed

that the distribution of the population size estimator can be markedly skewed, and so

the assumption of asymptotic normality may be flawed. Buckland and Garthwaite (1991)

suggested a boostrapping procedure as a method of quantifying the precision of the pop-

ulation size estimator. Cormack (1992), Agresti (1994) and Coull and Agresti (1999), on

the other hand suggest a profile likelihood function that views the maximized likelihood

as a function of the unobserved cell count. In fact, Coull and Agresti (1999) found that

rather than being centred in the interval, it is common for the population estimator to be

nearer to the lower end of the interval which is indicative of the skewness. Further, these

non-normal confidence intervals have a feature that they are bounded below by what is

observed.

11Brown, Biemer and Judson (2006) suggest moving to a ‘quadruple system’ model.
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2.7 Latent Class Models

An alternative approach to estimating the population size assumes that individuals cluster

into latent classes, such that individuals within the same class have the same catchability.

This is not a new concept, as this is what was suggested by Chandrasekar and Deming

(1949) when they spoke about post-stratification. They proposed that dividing the popu-

lation into groups based on age, sex and geographical region, results in subgroups within

which the individuals roughly behave in the same manner with regards to their capture

probabilities. This is the basis of their homogeneity assumption.

However, there are some cases where even after stratification by observable traits, some

residual heterogeneity continues to exist in the stratum. The methods mentioned above

do seek to model this extra dependence, but the latent class approach is a different way of

achieving the same objective - in fact the Rasch model can be thought of as being a latent

class model with potentially as many latent classes as there are individuals. Thus, when it

is not possible to account for the heterogeneity of capture probabilities by taking account

of the observed covariate information, a latent class model can be found that classifies the

individuals into a small number of groups with homogeneous capture probabilities and

list independence, conditional on the latent classes. So for example in a case where there

are two latent classes in an animal capture-recapture experiment, the population can be

treated as a mixture of two types - ones that show an aversion to trapping (hard to count)

and the others who show an attraction to trapping (easy to count). Within each latent

class it is assumed that the animal captures are independent.

From another view point, the underlying assumption of independence implies that the

probability of enumeration in the Survey, given enumeration in the Census is identical to

the probability of enumeration in the Survey given that the individual was missed in the

Census. This assumption can be too strong and fail to hold, because of the heterogeneity

in individuals’ probability of being captured in either of the two processes, as mentioned in

the earlier discussion of correlation bias. The normal way of trying to rectify this situation

is by post-stratification, also mentioned earlier. However, there are some cases where it

may be inevitable that the post-stratification fails to account for all the heterogeneity, and

thus the Census and Survey inclusion probabilities vary from person to person within a

post-stratum. The latent class approach is therefore an appropriate way of handling this

heterogeneity. Although the data may have been post-stratified using the demographic,

socio-economic and household factors known to affect underenumeration12, some individ-
12The Hard-to-Count Index used in the 2001 One Number Census utilised the variables known to be

associated with census underenumeration, such as high levels of multi-occupancy and private rented ac-

commodation, but not necessarily those factors that increase the enumerator work load such as a large

geographical area. Nevertheless, inasmuch as it was to sought to include all possible variables, some factors

were missed that were later found to have an impact on the the level of underenumeration, for example

the number of second homes and the rate of redevelopment and regeneration, as evidenced in parts of

Westminster and Manchester (see Office for National Statistics (2004)).
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uals with differing levels of ‘catchability’ could be placed within the same post-stratum.

The interpretation is that there is some underlying, hidden variable which when taken

into account successfully splits the population into homogeneous sub-groups.

Latent class analysis is justified in epidemiological capture-recapture studies because

in most cases the lists used in the measurement of the population are set up for various

purposes, which could introduce relationship structures that cannot always be modelled

using the observed covariates. There is also unobserved heterogeneity due to complex

patterns that may exist as a result of the phenomenon under study. In the context of a

three-system capture with the Census, Survey and Administrative List, the data collection

methodologies of each of the systems can be envisaged as different. Although the Census

and Survey processes could be construed to be similar, the Administrative List does have

some peculiarities that are only applicable to it.

In the 2001 One Number Census it was assumed that there were no erroneous enumer-

ations in the Census and Survey counts. This was done by clerical matching to ensure that

any duplicates were duly corrected for. In actuality, albeit the matching process managed

to remove the obvious duplicates and errors (for example census forms returned for Don-

ald Duck at Disneyland), it was much more difficult to determine where to correctly place

some other people.

Two particular sub-groups were identified. The first group were children of divorced

parents, who split their time between both parents. In some cases, the matching process

using the relationship matrix13 did manage to identify these children. However, the dif-

ficulty arose as to where to place these children. The information from the relationship

matrix became difficult to match on when the parents had remarried. There were other

complex relationship patterns that the matrix could not cope with, especially when the

households were large.

The second group were students. Following the consultation process after the 1991

census it was decided to capture information about both term-time and home addresses of

students in 2001. The matching process worked on the basis that the student’s parents had

put them on the census form. There were some obvious difficulties - students fall within

the most difficult to enumerate age group, so the census returns from their parents had

them enumerated, but in most instances at the wrong location. For areas where students

form a large proportion of the population the potential impact of failing to count them in

the correct location poses a lot of difficulty when it comes to resource planning.

What this shows is that when a third list is introduced into the population estimation

process the plausibility of erroneous enumerations becomes a very real issue. From the

review of literature, the most probable administrative register that can be used as the third
13In the 2001 Census form the relationship matrix showed how household members were related to each

other. However, it must be noted here that the recent rounds of census tests (carried out in 2006 in

Scotland and 2007 in England and Wales) did not have a relationship matrix on the census forms.
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list is the National Health Service Central Register. However, it was not set up originally

to serve as a population register. During the set-up of the National Health Service, a

patient register was established for the primary purpose of organising remunerations to

General Practitioners; so the more patients the practice had, the more money it received

from the government. The onus was on the practice to inform the NHS that a person had

died or moved. With increasing GP patient lists this house-keeping process became less

frequent, as other duties took priority.

When a general audit was carried out in the 1970s (after the NHSCR began to be

touted as a population register) it was found that a large number of dead people were still

on the register (Redfern (1989)). The checks used were quite crude - only persons over

the average life expectancy were followed up, so it could be construed from this that the

figures may actually under-estimate the extent of erroneous enumerations. There is also

the problem of relying on people remembering to register with a new medical practice as

soon as they move. However, with the hecticness surrounding house moves this features

probably at the bottom of the list. People will only remember to register when they are ill

- this poses a problem for young adult males who are known to visit their GPs less often.

The basic premise of latent class analysis as applied in a triple system setting is that

the observed covariation between the Census, Survey and Third List is actually better

represented by each of the Census, Survey and Third List’s relationship with an unobserved

latent variable. In fact, (McCutcheon, 1987, page 11) argued that one way of suggesting

that a latent model might be appropriate could be when the variables are so inter-related

to suggest that any observed patterns of associations could not be wholly attributed to

chance only. In other words, for the triple system application, even with n000 observed, the

best fitting model will be the one that has all the interaction terms. So it would appear

that the Census, Survey and Third List are correlated. However, bringing in a latent

variable results in there being independence between the Census, Survey and Third List

(after controlling for the latent variable). In consequence, the latent variable is the ‘true’

source of the observed associations between the Census, Survey and Third List. Since this

latent variable is unobserved, the crucial part of the analysis lies in the interpretation of

the classes of the latent variable. In triple system estimation, the latent variable is meant

to characterize unobserved (unexplained) heterogeneity, and this could be due either to a

failure of the post-stratification mechanism or capture error.

The two interpretations of the latent class (i.e. enumeration difficulty or enumeration

error) are very different and lead to conflicting population estimates. In the first case, the

latent class represents people according to how difficult they are to enumerate. Therefore,

everyone is included in the total population. In the second case, it represents whether

or not the enumerations are real or erroneous people. Here the total population is only

those deemed to be real; any erroneous counts can be then removed. The decision as to

how to interpret the latent classes after analysis is therefore very subjective, and is one

of the major drawbacks to the application of latent class modelling in census estimation.
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Latent variable modelling is often viewed as a dubious exercise fraught with unverifiable

assumptions and näıve inferences (Skrondal and Rabe-Hesketh, 2004, page 6). Neverthe-

less, considering latent variables in the analysis is useful in providing explanations as to

how the different systems used in census estimation work. For example, a latent class

analysis on a cross-section of the data may subdivide the data into contiguous groups,

separating out the ‘different types’ of people. Looking at the make-up of these groups

(using the observed covariates such as demographic and household information) it may be

possible to give simple interpretations to these groups, which in turn can provide valuable

insight to the whole population, or provide better post-stratification.

There are two different parameterizations of the basic latent class model - the first

attributed to Goodman (1974) and the second to Haberman (1979). The Goodman pa-

rameterization is based on conditional probabilities, while the Haberman parameterization

uses log-linear models. A latent class model can, in essence, be regarded as a log-linear

model in which only marginal totals are observable. Since the latent variable is unobserved,

the counts within the latent classes are unknown - i.e. only the marginal totals summed

over the latent variable are known. In a capture-recapture application the marginal total

over the unknown (missing) cell is additionally unobserved.

In either parameterization, there are two key assumptions used to specify the latent

class model. Firstly, the population is assumed to consist of a set of mutually exclu-

sive and exhaustive homogeneous subgroups (in the latent model being considered during

the course of the thesis there are two classes). These groups are the latent classes, by

definition. Secondly, within a given latent subgroups all observable indicators are statisti-

cally independent. This is what is known as local dependence - in essence the observable

variables are conditionally independent given the categories of the latent (unobserved)

variable. More recently Skrondal and Rabe-Hesketh (2004) classify latent class analysis

into exploratory or confirmatory. Exploratory latent class analysis makes no a priori re-

strictions on the parameters of the model, while confirmatory analysis does place some

restrictions. In confirmatory analysis prior information - from substantive theory or pre-

vious results - is used to determine the latent classes. They define exploratory analysis

as an inductivist method to discover the optimal set of latent classes. Therefore, whether

an exploratory or confirmatory approach is taken will influence how the latent classes

are defined. Notwithstanding these concerns, it can be assumed that for a suitably post-

stratified population, the latent class model is an intuitive solution to coping with both

dependence and overenumeration.
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2.8 Bayesian Methods

Bayesian methods for capture-recapture have been scarce, and this is surprising given that

the population estimate is found by updating information from previous capture histories.

An individual’s previous capture information plays a pivotal role in the assumptions in de-

termining the estimate of the population size. This is the main ethos of Bayesian statistics

as it provides a mathematical framework for revising knowledge based on prior informa-

tion. Further, as mentioned earlier, the classical approaches have encountered problems

when it comes to the formulation of confidence regions for the population estimator. The

classical method for obtaining a confidence interval entails an approximation and an as-

sumption. Initially, an approximation for the standard error of an approximately unbiased

estimate is obtained. Then the point estimate is assumed to have a normal distribution

and symmetric confidence intervals are constructed. Even under profile likelihood estima-

tion, a distributional assumption is required, and hence the intervals are not exact. In

the Bayesian paradigm, however, given the observed data likelihood and the prior, the

intervals are exact. On the other hand, frequentists would argue that Bayesian intervals

are also inexact since they rely on the specification of the prior. What is apparent is that

with the advancement of computationally intensive statistical methods, Bayesian inference

has an important role in capture-recapture population size estimation (King and Brooks

(2001)).

Castledine (1981), Gazey and Staley (1986), Smith (1988), Smith (1991) and Zelter-

man (1988) are the earliest Bayesian analyses of capture-recapture. In a census context,

Zaslavsky (1993) used a Bayes-type approach (i.e. loss functions) to produce estimates

of the population using data from the 1990 Census, Dual System and Evaluation Study.

More recently Nandram and Zelterman (2007), using an incomplete 2x2x2 contingency

table of Spina Bifida cases in New York from 1969-1974, utilized rejection-sampling and

a Bayesian log-linear model to estimate the population size. The aim was to investigate

the prevalence of Spina Bifida based on data from birth, death and medical rehabilitation

records. In classical model selection, there is the risk that the model chosen may be wrong,

but there is no way of determining the validity of the results. So the advantage of the

Bayesian paradigm within the capture-recapture situation is that each model can be given

a posterior probability which is representative of how likely the model is, in turn allowing

model uncertainty to be (explicitly) incorporated into any decisions or predictions.

Thus to estimate the population size using a log-linear model, the best-fitting model is

selected and the missing cell count that maximizes the likelihood under the chosen model

is estimated. There are three problems with this approach. In the first instance, as the

number of sources grows, the number of possible models increases exponentionally. It

can therefore become difficult to differentiate between models. Secondly, the maximum

likelihood estimator for the missing cell, and relatedly the estimate of the total population

size is often sensitive to the choice of model. It can become difficult to assign much
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confidence to the results obtained. Accordingly, the Bayesian paradigm seeks to overcome

these problems by calculating the posterior probability of each model. Thirdly, there are

some times when more than one log-linear model can be found that fits the data well. The

classical population size estimation methods do not take advantage of information on the

size of the population, which may be available a priori, and cannot incorporate covariate

information easily.

Madigan and York (1997) use a Monte Carlo Markov Chain (MCMC) approach for

investigating model uncertainty, while Dellaportas and Forster (1999) use a reversible

jump MCMC approach. In the first approach only decomposable models are given a

posterior probability, so not all models are considered. For models with a large number of

variables, the total number possible models will make the calculation of model probabilities

prohibitive. Thus a reversible jump MCMC is a quicker way of considering all the models

while speeding up the computational process. King and Brooks (2001) used this approach

in a capture-recapture application.

The most current use of Bayesian inference in regards to human population censuses is

the work for the US Census Bureau by Stuart and Zaslavsky (2002) and Stuart and Judson

(2003). In a triple system census - with data from the Census, Post-Enumeration Survey

and Administrative Records - they relax the assumption that the population is closed

and propose a hierarchical model, seeking to tackle the problem of measuring transiency.

The proposed model has three levels, with the first level describing the probabilities of

observation in each of the available systems, the second level describing the migration

process, and finally the third level describes the priors governing the global parameters.

Their motivation was the fact that one of the drawbacks of using administrative records

is that their coverage periods may not often coincide with the date of the census. The

hierarchical model developed looked to model migration by predicting whether someone is

still a resident on census day given that they appear on more than one recording system.

The advantages of this are plentiful. First, if the administrative records are available

nationally, the model developed can be used to provide small area underenumeration

estimates across the whole country. These estimates are based on the whole population

and not on the sampled blocks and therefore the final population estimates rely less on

synthetic estimation. Second, it may be used to add or subtract people for whom there

is evidence that they were or were not in the area on census day. Theoretically, the post-

enumeration survey may be used to accomplish this task but, again, the estimates will

only apply to sampled blocks and not the entire population. Additionally, there are fewer

assumptions of homogeneity across areas, and so the local underenumeration estimates

can be more reliably obtained.

There are, however, some limitations, the first being that the independence assump-

tion across systems is unrealistic, and dependence cannot easily be implemented in the

model. Secondly, there was the susceptibility of the model to over-estimate the population

size, when file coverage and migration parameters were wrongly estimated - i.e. the im-
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plications of model mis-specification had not been accounted for. Lastly, the assumption

of high quality perfect matching and non-duplication is ambitious. In reality matches

are imperfect and dates and address information may be wrong. But, more positively,

the hierarchical model can be useful in targeting individuals for more intensive follow-up.

Individuals with high or low probabilities of census day residency could be given compar-

ative follow-up probabilities. The advantage of such an approach is that resources could

be targeted to individuals that have ambiguous results. The current extension of the hi-

erarchical model considered by the US Census Bureau looks at developing the model at a

household level, with the hope that it would lead to better estimation - most moves are,

after all, at a household level (Stuart and Judson (2003)). Also, migration is often depen-

dent on geographical area, thus incorporating local information and migration patterns

could be beneficial. Further extensions of the general hierarchical model could assimi-

late inexact matching, erroneous enumerations, heterogeneity of capture probabilities and

heterogeneous forms of migration.

2.9 Demographic Analysis as an Alternative Method of Cov-

erage Evaluation in Censuses

Census methodologies can be broadly divided into

(a) Traditional Enumeration: - a canvass of all individuals in the population is undertaken.

(b) Register-based Enumeration: - information about individuals is combined from a num-

ber of different administrative sources.

(c) Survey-based Enumeration: - population estimates are derived from nationally repre-

sentative survey data.

Each methodology has its advantages and disadvantages. Nevertheless, in general, the

choice of which methodology a country uses to produce population estimates is dependent

on national circumstance and resources. More often than not, countries use a mixture of

methodologies in order to produce population estimates that are considered accurate and

reliable. The UK, for example, undertake a traditional enumeration but in addition to

using a post-enumeration survey for coverage assessment also make use of aggregate-level

administrative source data to quality assure the census results.

In the preceding discussion, there has been a focus on dual and triple system estimation

as methods for assessing the coverage of the population census. It has to be mentioned here

that there other non-statistical methods available, the most widely used being demographic

analysis. In demographic analysis the estimate of the population is arrived at by rolling

forward the most recent population estimate allowing for births, deaths and net migration.

This can be given as

Pt+1 = Pt +Bt −Dt +M I
t −ME

t ,
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where Pt+1 is the new population estimate, Pt the current population, Bt the number of

births, Dt, the number of deaths, M I
t the number of immigrants and ME

t the number

of emigrants. In reality, although the number of births and deaths can be estimated to

a fairly decent degree of accuracy from administrative resources, the estimation of net

migration is far from easy.

In the UK (documented) migration data is primarily obtained from two sources -

the UK Borders Agency (UKBA) and the International Passenger Survey (IPS). The

UKBA is the government department that is responsible for managing migration, while

the IPS is a randomized face-to-face survey of individuals entering or leaving the UK by

air, sea or the Channel Tunnel. It conducts roughly a quarter of a million interviews

of passengers throughout the year; this equates to approximately 1 in 500 passengers

(Office for National Statistics (2007)). Further, the IPS was designed for the compilation

of balance of payments and to provide information about tourism, as well as obtain the

characteristics and numbers of migration in and out of the UK. Therefore, it is clear that

the IPS cannot provide sufficiently detailed micro-level migration information, particularly

at lower geographical levels due to the design and small sample size.

At a national level (or macro-level), however, demographic analysis can be useful. In

both the US and UK demographic analysis is used to check the assumption of independence

between the initial census enumeration and post-enumeration survey (see Wolter (1990),

Bell (1993) and Brown, Abbott and Diamond (2006)). The estimate of the national

level population post-stratified by age and sex obtained from the Census and Survey can

be compared to the historical data on births, deaths and migration. Another important

aspect of demographic analysis is the ratio of males to females in the population, otherwise

known as the sex ratio. The theory is that the sex ratios obtained under the census should

be roughly similar to those under demographic analysis. If there is a discrepancy, then

the belief is that this discrepancy is evidence of dependence between the Census and

Survey. Therefore, dependency adjustments can be applied to national age-sex population

estimates. This is what happened in the 2001 UK Census.

Demographic analysis can be - and is - used as a method of census coverage evaluation.

Nationally, it can be used to quality assure the census figures, in particular when there

is reason to doubt the independence assumption. Subnationally, however, demographic

analysis encounters problems due to lack of reliable individual level demographic data.
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2.10 Conclusion

In the 2001 UK One Number Census, dual system estimation was used to estimate the

total population size including those missing. The two systems considered were the Census

and the Census Coverage Survey, and relied on the two basic assumptions of homogeneity

and independence. Another assumption was that there was relatively high coverage across

the population achieved. A failure of any of the initial assumptions, combined with low

levels of coverage introduces bias into the population estimates. The factors that made

enumeration difficult in 2001 - changing demographic, socio-economic, complex household

structures and public attitudes - are expected to feature more strongly in 2011. Thus data

from a third source - an administrative list - has been proposed as a means of correcting

for this bias. This becomes triple system estimation where individuals are cross-classified

according to their presence or absence in each of three lists: the Census, Survey and the

List, and has far less restrictive assumptions. Administrative lists are unique in terms

of their accessibility, inclusiveness and flexibility and so can reasonably be considered as

being independent of the Census and Survey.

The most feasible administrative list for triple system estimation, in the format envis-

aged by this thesis, is the National Health Service patient register. However, the current

UK-wide health registry data is not very useable because of the lack of unique person iden-

tifiers. Nonetheless, Scotland’s Community Heath Index (CHI) has demonstrably shown

that, owing to a concerted effort in the 1970s to ensure that every person living in Scotland

(or for that matter, who has lived in Scotland for an extended period) has a unique health

number, there is some promise. Even accounting for the fact that young males, who have

been found to be most problematic to count in previous censuses, are less likely to visit

their GPs, there is a wealth of information that can be harvested from the CHI. However,

admittedly, the introduction of the third list brings with it some added complications.

Overenumeration, assumed to be negligible in previous censuses, is introduced into the

cell counts due to imperfections in the CHI. Nevertheless, the idea is that a log-linear

model (either in a Classical or Bayesian paradigm) can be used to estimate the population

size after matching information gathered from the Census, Survey and CHI14.

There is another approach, using latent class models, to estimate the population size.

The latent class approach becomes particularly useful when there is unobserved hetero-

geneity. This unobserved heterogeneity can be due to a failure of the post-stratification

mechanism or there being some erroneous enumerations. The latent class model specified

under the Haberman parameterization can be written as a log-linear model.

14The chosen blocks are presumed to have reasonably high coverage for both the Survey and the CHI.

Matching over these blocks is less prohibitive than carrying out the process over Scotland, or the UK for

that matter. On another note, the time and difficulty it takes for this to be performed for the sampled

blocks will give some indication as to how long it will take for the whole of the UK.
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Chapter 3

Population Estimation in

Capture-Recapture Models

3.1 Introduction

The aim of this chapter is to unify the methodology of capture-recapture from a number

of sources, namely Cormack (1972), Cormack (1989), Fienberg (1972), Fienberg (1992),

Goodman (1974), Smith (1988), El-Khorazaty et al. (1977), International Working Group

for Disease Monitoring and Forecasting (1995a), International Working Group for Disease

Monitoring and Forecasting (1995b), Biemer et al. (2001a), Biemer et al. (2001b), Lazars-

feld and Henry (1968), Chapter 6 of Bishop, Fienberg and Holland (1975), Chapter 10

of Haberman (1979), Seber (1982), McCutcheon (1987), Hagenaars (1993), Chapter 9 of

Little and Rubin (2002), Chapter 8 of Agresti (2002), Chapter 12 of Congdon (2005) and

Brown (2000).

Some of the results have been presented in the above texts but what is different here

is that they have been brought together under the same framework and applied to census

estimation, with the hope of giving some background to the techniques used in the thesis.

Furthermore, although the chapter does review the current capture-recapture literature,

there are some new ideas presented here, particularly those pertaining to extending the

latent class methodology to coping with both dependency and overenumeration.

Throughout the thesis unless otherwise stated, an assumption is made that the popu-

lation has been suitably stratified so that individuals have been divided into distinct and

non-overlapping sub-populations. This ensures that with respect to individuals in different

sub-populations there is heterogeneity, but within each sub-population there is internal

homogeneity - meaning that the individuals in the sub-populations have the same inclusion

probabilities. This is fairly important as the event of an individual’s inclusion or exclusion

from one system may be different for different types of individuals. However, after the

stratification there is homogeneity across individuals. Moreover, this assumption implies
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that the bias in the population estimates can be fully attributed to list dependence.

3.2 Dual System Estimation

In order to introduce the notation, it is best to start with the simple two-sample capture

recapture problem. Let N be the total number of individuals in the population, n1+

the number of individuals in the first sample and n+1 the number in the second sample.

Similarly, n11 is the number of individuals observed in both samples, n10 is the number

of individuals observed in only the first sample, and n01 is the number of individuals

observed in the second sample but not the first. The data can be arranged in the form of

a 2x2 contingency table, as shown in Table 3.1 where n00 is the count corresponding to

the missing, and unobservable, cell.

Table 3.1: Two sample general capture-recapture problem

Second Sample

Counted Missed

Counted n11 n10

First Sample

Missed n01 n00

Denote the number of individuals observed in the two samples by n. Thus

n = n11 + n10 + n01. The dual system model assumes independence between the two

samples, which implies that the probability of being in the (i, j)th cell, πij , is the product

of the marginal probabilities πi+ and π+j , where πi+ =
∑

j πij and π+j =
∑

i πij . So in

addition to assuming independence across individuals, the dual system model makes an

explicit assumption of independence within individuals. Also let π11 be the probability

of an individual being observed in both the first and second samples, π1+ the probability

of an individual being in the first sample and π+1 the probability of being in the second

sample.

Suppose we assume independence between the two samples, then π11 = π1+π+1 since

πij = πi+π+j under independence. Further, assuming that n, the total number of individ-

uals observed, is fixed, then the cell counts are multinomially distributed with probability

function(
n

n01, n11, n11

)
(π11)n11 (π10)n10 (π01)n01

(π11 + π10 + π01)n

=

(
n

n01, n11, n11

)
(π+1π1+)n11 [π1+ (1− π+1)]n10 [π+1 (1− π1+)]n01

[1− (1− π1+) (1− π+1)]n
.

Now, since the probability of being observed in at least one of the two samples is

(1 − (1 − π+1)(1 − π1+)), another way of re-expressing the cell counts is as a binomial
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distribution, with probability function(
N

n

)
[1− (1− π+1) (1− π1+)]n [(1− π+1) (1− π1+)]N−n . (3.1)

Obviously, N is unknown but for given values of π1+ and π+1, it is possible to find the

value of N̆ that maximizes equation (3.1) to be

N̆ =
n

1− (1− π1+) (1− π+1)
. (3.2)

Using the fact that the maximum likelihood estimates of the probabilities π1+ and π+1

are

π̂1+ =
n11

n+1

and

π̂+1 =
n11

n1+
,

then the maximum likelihood estimate of the population size is

N̂ =
n1+n+1

n11
. (3.3)

Trivially, N̂ and N̆ can be shown to be the same, on the proviso that π+1 = π̂+1 and

π1+ = π̂1+. Further, the estimator (3.3) is what is known as the Lincoln-Petersen estimator

(see Seber (1982)).

Equations (3.1), (3.2) and (3.3) are the same as the respective equations (6.2-5), (6.2-6)

and (6.2-7) in Bishop, Fienberg and Holland (1975).

When two samples are not independent, then π11 6= π+1π1+,

and
π11π00

π10π01
= γ. (3.4)

This can be re-expressed as

π11 (1− (π1+ + π+1 − π11))
(π1+ − π11) (π+1 − π11)

= γ (3.5)

and yields the quadratic

π11
2 (1− γ) + π11 (1− π+1 − π1+ + γ (π+1 + π1+))− γπ1+π+1 = 0. (3.6)

It is not possible to estimate the dependence unless there is some additional information

provided (Bell (1993) and Brown, Abbott and Diamond (2006)), since there are four

independent unknowns but three pieces of information available in equation (3.4).
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3.3 Triple System Estimation

It is evident that another way of expressing the estimate of the missing cell under dual

system estimation is

n̂00 = γ
n10n01

n11
, (3.7)

where γ is the odds ratio or the dependence, which is unknown in dual system estimation.

Therefore, it is assumed that γ = 1 (i.e. the samples are independent of one another).

If there is an additional list, then it becomes possible to investigate whether the as-

sumption of independence in the dual list problem holds. For a three sample capture-

recapture, the capture history can be represented in a 2x2x2 contingency table (see Table

3.2), with the missing cell denoted by n000. As in dual system estimation, N and n repre-

sent the (unknown) total population size and the (known) number of individuals observed

in the samples, respectively.

Table 3.2: Three sample general capture-recapture problem

Third Sample

Counted Missed

Second Sample Second Sample

Counted Missed Counted Missed

Counted n111 n101 n110 n100

First Sample

Missed n011 n001 n010 n000

In a capture-recapture study the sample size is not known or fixed in advance, so for

this reason the multinomial distribution is a good working distribution. Furthermore,

the multinomial can statistically arise from the product of binomial distributions or of

independent Poisson distributions, conditioned on the observed sample size; this result will

be useful later on when trying to maximize the multinomial likelihood. Thus, assuming

n is fixed, then the seven observed cells {n111, n110, n101, n100, n011, n010, n001} follow a

multinomial distribution with probability function(
n

n111, n110, n101, n100, n011, n010, n001

)
(π111)n111 (π110)n110 (π101)n101 (π100)n100 (π011)n011 (π010)n010 (π001)n001

[(π1++ + π+1+ + π++1)− (π1+1 + π11+ + π+11) + π111]n
.

(3.8)

The denominator is the probability of being observed in at least one of three samples,

expressed as a function of the observed cells.

Now this distribution can also be expressed as a function involving the unknown pa-

rameter, N ,

N !
(N − n)!

∏
S nijk!

(
1−

∑
S

πijk

)N−n∏
S

(πijk)
nijk (3.9)

where S represents the set of all cells apart from the (0, 0, 0) cell. The maximum like-

lihood estimation of the probabilities based on the multinomial distribution specified by
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equation (3.9) is complicated. Therefore, Sanathanan (1972a) suggests using a conditional

maximum likelihood estimation, where the likelihood function can be ‘broken’ into two

terms and then maximized; with the first being conditioned on the second. In essence

the parameters are estimated by maximizing the conditional likelihood of the observable

capture histories given that the individuals were captured at least once.

In capture-recapture the {πijk} are cell probabilities of a multinomial random variable,

the π000-cell is unknown and subsequently the population size N is also unknown, but the

population size of the observed cells is known to be n. Therefore, the missing count for

the π000-cell is N − n, allowing the multinomial likelihood function, equation (3.9), to be

re-written as a product of two likelihood terms, L1 and L2.

Since π000 = 1−
∑

S πijk, it follows that (3.9) becomes(
N

n

)
(π000)N−n (1− π000)n︸ ︷︷ ︸

L1

× n!∏
S nijk!

∏
S

(
πijk

1− π000

)nijk
︸ ︷︷ ︸

L2

(3.10)

where S represents the set of all cells apart from the (0, 0, 0) cell, and remembering that

(1− π000)
∑
S nijk = (1− π000)n.

It is clear that L1 is a binomial function involving the unknown population size, N , and

the probability of being missed, p000, and L2 is the multinomial likelihood giving the

conditional distribution for the observed cells.

Evidently, (3.10), is easier to maximize than (3.9) since (3.9) requires simultaneously

maximizing with respect to both N and {πijk}. The conditional maximization carried out

in (3.10) finds the
(
N̂ , π̂000

)
pair that maximizes L1 and L2, allowing for the fact that L1

is conditional on L2. Given that L2 effectively precedes L1, it follows that L2 needs to be

maximized first.

Let the observed probabilities be given by

π
′
ijk =

πijk
1− π000

, (3.11)

such that
∑

S π
′
ijk = 1 where S represents all cells apart from the (0, 0, 0) cell.

Also let n represent the observed vector of cell counts {n001, n010, n011, n100, n101, n110, n111}.
Then the likelihood can be written

L (N, πijk|n) = L1 (N, π000|n)× L2

(
n, π

′
ijk|n

)
. (3.12)

L2 is multinomial, and can be maximized with respect to the seven observed cell proba-

bilities as

π̂
′
ijk =

nijk
n

for all (i, j, k) 6= (0, 0, 0) . (3.13)

In addition, since L1 is a binomial, it can be maximized with respect to the missing cell

probability as

π̂000 =
n000

N
. (3.14)
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It becomes clear that (3.14) has three unknowns, but without loss of generality,

π̂000 =
n000

N
=
N̂ − n
N̂

,

and after re-arranging this becomes

N̂ =
n

(1− π̂000)
=

n∑
S π̂ijk

. (3.15)

The maximum likelihood estimates are computed by first finding the seven π̂
′
ijk-terms that

maximize L2. After this has been accomplished, N̂ is estimated by maximizing L1 and

making use of (3.11).

Hence, the interpretation of (3.15) is that if an estimate of the missing cell probability

can be found (through a model of some sort, or otherwise) then the population size can

be subsequently found. This estimator is the same as equation (6.3-6) in Bishop, Fienberg

and Holland (1975), with some notational changes. Further, Böhning and Schön (2005)

showed that (3.15) is a Horvitz-Thompson type estimator, because of weighting by the

inverse of the probability of inclusion.

A remark on the Horvitz-Thompson Estimator
Suppose a sample S of size n is selected from a population, N , such that the probability

of the ith being included in the sample is πi. If the objective is to find the population

total, Y then Horvitz and Thompson (1952) found the estimator for the population total

to be given by

ŶHT =
∑
S

yi
πi

where yi is a measurement from the ith unit. (3.16)

The estimator (3.16) is known as the Horvitz-Thompson estimator, and it has the property

of being an unbiased estimator of the population total (Cochran, 1977, page 259). This

estimator is important because it represents a milestone in survey methodology, since

implicit in their estimator was the idea of sampling weights. In other words, the Horvitz-

Thompson estimator can be written as

ŶHT =
∑
S

wiyi where wi is the weight associated with unit i. (3.17)

Before the Horvitz-Thompson paper, data collection in sample surveys was done by sim-

ple random selection, meaning that every unit in the population had the same non-zero

chance of inclusion in the sample. The Horvitz-Thompson estimator only requires the

inclusion probability of each unit to be non-zero, and thus it allowed for (unequal) proba-

bility sampling. With this relaxation of the homogeneous inclusion probability assumption

a wide number of sampling schemes (e.g. probability proportional to size, systematic sam-

pling, inverse sampling etc.) were able to be developed. Within a census application the

Horvitz-Thompson estimator is important because an adaptation of it is used to produce

population estimates based on the post-enumeration survey inclusion probabilities (see

Alho (1994) and Brown (2000)).
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3.4 The Log-linear Model

The log-linear model is a tool used to make deductions about multi-dimensional contin-

gency tables, and since the seminal paper of Fienberg (1972) has become one of the most

widely used techniques in analysing capture-recapture data from multiple lists. The basic

premise is that in order to estimate the unknown population size, the general pattern of

captures will be represented in the form of a contingency table, and it is therefore pos-

sible to model this pattern using the observed individuals. These observed patterns are

taken to be a result of some underlying sampling distribution (usually either a Poisson or

multinomial), and the log-linear modelling framework allows the exploratory examination

and testing of different hypotheses.

The previous Lincoln-Petersen estimator needed to make the explicit assumption of

independence, so each individual had the same probability of being observed. However, in

reality although this probability is allowed to vary between different samples, the proba-

bility of an individual being observed at a certain occasion can be dependent on their past

capture history. The log-linear model therefore allows for the relaxation of this indepen-

dence assumption, especially in the case of multiple lists.

Keeping the same notational format as before, let µijk be the expected number of

individuals in the (i, j, k)th cell of the 2x2x2 contingency table, with µ000 representing the

unobserved cell. Also suppose the observed counts nijk are assumed to have a multinomial

distribution with the probabilities associated with each cell given by pijk. Fienberg (1972)

proposed that, for a capture-recapture experiment with r samples, a log-linear model can

be selected using the standard hierarchical modelling techniques. Thus in the case of a

three-sample experiment, assuming that all cells of the table are fully observed, then the

saturated model is

logµijk = λ+ λ
(1)
i + λ

(2)
j + λ

(3)
k + λ

(12)
ij + λ

(13)
ik + λ

(23)
jk + λ

(123)
ijk (3.18)

where λ(1)
i , λ(2)

j , λ(3)
k are the main effect terms,

λ
(12)
ij , λ(13)

ik , λ(23)
jk are the two-way interaction terms,

and λ
(123)
ijk is the three-way interaction term.

The λ term is the normalizing term chosen to make the cell probabilities sum to one.

As such,

λ = − log

∑
i

∑
j

∑
k

exp
(
λ

(1)
i + λ

(2)
j + λ

(3)
k + λ

(12)
ij + λ

(13)
ik + λ

(23)
jk + λ

(123)
ijk

) . (3.19)

Any solution of (3.18) does not distinguish between the two categories of the cross-classified

variables that represent an individual’s presence or absence on a given list. Thus in order

to be able interpret the model parameters, some constraints are added to (3.19).
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These constraints are∑
i λ

(1)
i =

∑
j λ

(2)
j =

∑
k λ

(3)
k = 0,∑

i

∑
j λ

(12)
ij =

∑
i

∑
k λ

(13)
ik =

∑
j

∑
k λ

(23)
jk = 0,

and
∑

i

∑
j

∑
k λ

(123)
ijk = 0.

The above sum-to-zero constraints effectively treat the parameters symmetrically and

allow different combinations of the variable levels to be easily compared. However, an

additional constraint is needed for the incomplete 2x2x2 contingency table, with the miss-

ing cell. Therefore, the three-way interaction term is set to zero, and the new ‘saturated’

model in a three-sample capture-recapture experiment becomes

logµijk = λ+ λ
(1)
i + λ

(2)
j + λ

(3)
k + λ

(12)
ij + λ

(13)
ik + λ

(23)
jk , (3.20)

with constraints∑
i λ

(1)
i =

∑
j λ

(2)
j =

∑
k λ

(3)
k = 0 and

∑
i

∑
j λ

(12)
ij =

∑
i

∑
k λ

(13)
ik =

∑
j

∑
k λ

(23)
jk = 0.

This assumption of the no-three-way interaction is appealing on two fronts. Firstly,

it makes intuitive sense under the Bartlett criterion (Bartlett (1935)), and as such the

identity
µ̂001µ̂010µ̂100µ̂111

µ̂000µ̂011µ̂101µ̂110
= 1 holds.

Secondly, it becomes possible to define various unsaturated hierarchical models by setting

λ-terms in (3.20) to be equal to zero, as shown in Table 3.3. The restriction for all models

under consideration to be hierarchical implies that when a particular λ-term is set to zero

then all of the higher-order relatives are also zero.

Table 3.3: Log-linear Model Hierarchy

Model Label Constraints (terms to be set to zero)

(A) {123} None

(B) {12, 23, 13} {λ(123)
ijk }

(C) {12, 23} {λ(123)
ijk , λ

(13)
ik }

(D) {12, 3} {λ(123)
ijk , λ

(13)
ik , λ

(23)
jk }

(E) {12} {λ(123)
ijk , λ

(13)
ik , λ

(23)
jk , λ

(3)
k }

(F) {1,2,3} {λ(123)
ijk , λ

(12)
ij , λ

(13)
ik , λ

(23)
jk }

(G) {1,2} {λ(123)
ijk , λ

(12)
ij , λ

(13)
ik , λ

(23)
jk , λ

(3)
k }

(H) {1} {λ(123)
ijk , λ

(12)
ij , λ

(13)
ik , λ

(23)
jk , λ

(2)
j , λ

(3)
k }

(I) Constant {λ(123)
ijk , λ

(12)
ij , λ

(13)
ik , λ

(23)
jk , λ

(1)
i , λ

(2)
j , λ

(3)
k }
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3.5 The Application of the Log-linear Model to the Census

When dealing with a three-sample census there is a missing cell, n000, which represents

the number of individuals absent from the Census, Survey and Third List (see Table 3.4).

Therefore, there are only seven observed cells which implies that the ‘saturated’ model

can only have seven parameters.

Table 3.4: Three sample census problem

Third List

Counted Missed

Survey Survey

Counted Missed Counted Missed

Counted n111 n101 n110 n100

Census

Missed n011 n001 n010 n000

Chapter 6 Bishop, Fienberg and Holland (1975) provides the derivation of the maximum

likelihood estimates under the capture-recapture log-linear framework. The following sec-

tion summarizes some of the key results, applied in a triple-system setting.

Now for any unsaturated log-linear model, the maximum likelihood estimates for the

expected values are given by setting the expected values of the marginal totals correspond-

ing to the highest order λ-terms in the model to be equal to their observed values. It is

usual when modelling contingency tables to assume that all the main effects are present,

and so the simplest model is the one with mutual independence. Darroch (1958) con-

sidered the case where there is sample independence between the three lists, with the

corresponding log-linear model becoming

logµijk = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k . (3.21)

For this model the maximum likelihood estimates for the expected values µijk are given by

equating the marginal totals corresponding to the highest order terms to their observed

values

µ̂i++ = ni++ µ̂+j+ = n+j+ µ̂++k = n++k. (3.22)

There is no closed for solution for this independence model since n0++, n+0+ and n++0 are

not observed, but there are some indirect techniques that can be used to find a solution.

For data presented as an incomplete 2x2x2 contingency table, there are a total of

eight possible hierarchical models - the independence model (3.21), three models with a

single two-factor interaction term, three with exactly two two-factor interaction terms,

and the ‘saturated’ model with all three two-factor terms. Given that µ000 is the expected

number of unobserved individuals, then the Bartlett criterion assumption of no three-factor

interaction implies that
µ111µ001

µ101µ011
=
µ110µ000

µ100µ010
. (3.23)
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It follows that the maximum likelihood estimate for the missing cell count µ000 is given by

n̂000 = µ̂000 =
µ̂111µ̂001µ̂100µ̂010

µ̂101µ̂101µ̂011
. (3.24)

Figure 3.1: Partitioning of the 2x2x2 contingency table.

Partition A 

Complete sub-table  Incomplete sub-table 

n111   n101  n011   n100 

n011   n001  n010   n000 

       

Partition B 

Complete sub-table  Incomplete sub-table 

n111   n110  n101   n100 

n011   n010  n001   n000 

       

Partition C 

Complete sub-table  Incomplete sub-table 

n111   n110  n011   n010 

n101   n100  n001   n000 
 

Equations (3.23) and (3.24) depend on how the 2x2x2 table is partitioned into two

2x2 sub-tables so that one table is complete, and the other is incomplete as it contains

the unobserved cell. Figure 3.1 shows the three ways in which the partitioning could take

place. Whichever way the partitioning takes place, it can be seen that the equations used

to estimate the missing cell in the form of (3.24) make use of all the available information,

and is therefore saturated. The objective is to find the (unsaturated) model with the

fewest possible parameters that efficiently accounts for any dependencies that may exist

between the different samples. In fact the eight hierarchical models can be summarized

into four different models:

1. If the Census, Survey and Third List are mutually independent then

logµijk = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k Model I

2. If the Census and Survey are partially independent of the Third List then

logµijk = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(CS)
ij Model II
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3. If the Census and Third List are conditionally independent of each other given the

Survey then

logµijk = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(CS)
ik + λ

(SL)
jk Model III

4. If the Census, Survey and Third List show pair-wise dependence, in other words there

is homogeneous association then

logµijk = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(CS)
ij + λ

(CL)
ik + λ

(SL)
jk Model IV

The different log-linear models can be pictorially represented in terms of conditional in-

dependence graphs shown in Figure 3.2.

Figure 3.2: Independence Graphs of the Different Log-linear models

 

C 

L 

C 

L S 

C 

S L S 

C 

L S 

{C, S, L} {CS, L} {CS, SL} {CS, SL, CL} 

When the interaction between the Census and Survey is included then equation (3.21),

i.e. Model II results, the maximum likelihood equations become

µ̂ij+ = nij+ and µ̂++k = n++k. (3.25)

This implies that

µijk =
µij+µ++k

µ+++
where N = µ+++. (3.26)

In the present format it looks as if (3.25) does not have a direct solution since n++0 is not

fully known. However, since the Census and Survey are both independent of the Third

List it follows that individuals who only appear on the Third List do not provide any

information in the estimation of the other observed cells. Therefore, set µ̂001 = n001 and if

n′ = n− n001, n′++1 = n++1 − n001 and n′++0 = n++0 − n000 then {n11+, n10+, n01+} and

{n′++1, n
′
++0} are sufficient statistics for µij+ and µ++k respectively. As a consequence,

the other maximum likelihood estimates can be found by solving the equations

µ̂ijk =
nij+n++1

n′
for (ijk) ∈ {111, 101, 011}

µ̂ijk =
nij+n++0

n′
for (ijk) ∈ {110, 100, 010}. (3.27)
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The estimates from (3.27) can be substituted into (3.24) to subsequently get an esti-

mate of the missing cell count n000. It is important to realise that Model II is different

from the dual system type estimator that is found after summing over the Third List,

resulting in cell count n11+, n10+, n01+ and n00+ (see Table 3.5).

Table 3.5: Contingency table for the DSE, ignoring Third List information

Second Sample

Counted Missed

Counted n111+n110 n101+n100

First Sample

Missed n011+n010 n001+n000

The ensuing DSE under Table 3.5 is given by

n00+n11+

n01+n10+
= 1 ⇒ n̂00+ =

n01+n10+

n11+
. (3.28)

This DSE-type estimator accordingly predicts the margin n̂00+ , and the missing cell n000

is obtained as a consequence by subtraction, since n001 is known. This is an important

estimator, as it will show how valid the independence assumption is. If the DSE under-

estimates the population size then the estimate of n000 will be negative, due to the fact

that the n̂00+ is actually less than the observed count added by the Third List, i.e. the n001

cell. In Chapter 5, in an application to US Census data, it will be shown how a preliminary

analysis of the estimates, n̂00+, n̂0+0 and n̂+00 provides some helpful indications about

where there is possible failure in the list independence assumptions.

Under Model IV, there is homogeneous association between the Census, Survey and

the Third List. Now since the 2x2x2 contingency table can be divided into one complete

2x2 subtable and an incomplete 2x2 subtable, another way of expressing (3.23) is to think

of the odds ratio under the complete and incomplete subtables to be equal. Therefore, the

odds ratio for the incomplete subtable can be estimated from the complete subtable and

the missing cell estimate becomes

n̂000 = θ × n100n010

n110
where θ =

n111n001

n101n011
. (3.29)

It can be seen that when the Census and Survey are conditionally independent of the

Third List then θ = 1 (which is Model III). Otherwise stated, the maximum likelihood

equations have a closed form, and treat µ̂110 = n110, µ̂100 = n100 and µ̂010 = n010 as fixed

but solving the remaining terms using

µijk =
µ+jkµi+k
µ++k

, (3.30)

so that µ̂000 = n+jkni+k
n++k

.

The missing cell is thus estimated as

µ̂000 =
n010n100

n110
. (3.31)

48



The implication is that under conditional independence the information contained in the

complete 2x2 subtable does not play a role in the estimation of the missing cell.

Models II and III are nested and can therefore be directly compared using the standard

chi-squared goodness of fit statistics. In addition, there are other nested versions of the

conditional independence and partial independence models (see Figure 3.3). Nonetheless,

firstly if the Census and Administrative List could be conditionally independent of the

Survey, then the maximum likelihood estimates are derived by fixing

µ̂001 = n001 , µ̂100 = n100 and µ̂101 = n101 and the estimates are given by

µijk =
µij+µ+jk

µ+j+
, (3.32)

so that µ̂ijk = nij+n+jk

n+j+
and the missing cell can be estimated by

µ̂000 =
n001n100

n101
. (3.33)

Secondly, the Survey and Administrative List could be conditionally independent of the

Census, and the estimated expected values reduce to

µ̂001 = n001, µ̂100 = n100 and µ̂011 = n011,

and

µijk =
µij+µi+k
µi++

, (3.34)

with µ̂ijk = nij+ni+k
ni++

and the missing cell estimate is found by

µ̂000 =
n001n010

n011
. (3.35)

Figure 3.3: Independence graphs of the three variants of the conditional independence model.

 
where C, S and L denote the Census, Survey and Third List. 
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According to Chapter 6 of Bishop, Fienberg and Holland (1975) the maximum likeli-

hood equation for the case where all the three samples are independent cannot be solved

directly. Indirectly, however, the iterative proportional fitting (IPF) algorithm (Deming

and Stephan (1940)) can be used to find maximum likelihood estimates of the population

total and cell counts, N̂ and µ̂ijk. The IPF algorithm works by constraining the marginal

totals to the set of minimal sufficient statistics and under the independence model, Model

I, the cell probabilities satisfy

πijk = πi++π+j+π++k.
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So the minimum sufficient statistics are {πi++, π+j+, π++k} and therefore the iterative

algorithm fitted using the observed marginal counts cycles between these three steps

π̂1++ =
n1++

N̂
, (1)

π̂+1+ =
n+1+

N̂
, (2)

π̂++1 =
n++1

N̂
. (3)

until convergence is reached. Thus, the missing cell when the three lists are independent

(i.e. Model I) can be estimated in terms of N̂ and the marginal probabilities as

n̂000 = N̂ (1− π̂1++) (1− π̂+1+) (1− π̂++1) . (3.36)

Alternatively, the preferred approach is given by Darroch (1958) who suggested re-expressing

the independence between the samples as a quadratic in terms of the sufficient statistics:(
N̂ − n1++

)(
N̂ − n+1+

)(
N̂ − n++1

)
= N̂2

(
N̂ − n

)
, (3.37)

which simplifies to the expression

N̂2 (n1++ + n+1+ + n++1 − n)− N̂ (n1++n++1 + n1++n+1+ + n+1+n++1) + n1++n+1+n++1 = 0.

In order to find the best model that fits the data, after the estimated maximum like-

lihood values µ̂ijk are known, then the goodness of fit of the models to the observed data

can be assessed via the Pearson statistic, X2, or the log-likelihood ratio statistic G2, where

X2 =
∑
i

∑
j

∑
k

(nijk − µ̂ijk)2

µ̂ijk

G2 = 2
∑
i

∑
j

∑
k

nijk log
(
nijk
µ̂ijk

)
(3.38)

for (ijk) 6= (000) .

Note that under the chosen model n000 = µ̂000.

Since the complete model, with all parameters separately present (i.e. the ‘saturated’

no-three-way interaction model) is merely a way of re-expressing the data, any of the

models proposed is a special case of this ‘saturated’ model. So if a simpler model truly

represents the data, then the difference in Pearson X2 (or the difference in deviance,

calculated using the likelihood ratio G2) between this model and the more complex model

of which it is a special case has approximately χ2 distribution with degrees of freedom

given by the difference in the number of parameters between the models. For the difference

between models, the deviance is preferred because it provides a better approximation to

the χ2 and also when a succession of models is being considered, the deviance strictly adds

up, while X2 does not.

The eight log-linear models with the maximum likelihood estimates of the missing

cell are given in Table 3.6. In order to make it easier to refer to the models, the table

50



describes each model by their highest order term(s). Incidentally Table 3.6 shows that

closed form solutions of the maximum likelihood estimates of the missing cell exist for all

the models1. Nonetheless, the Expectation Maximization (EM) algorithm will be used to

find the missing cell estimates under different models.

Table 3.6: Summary of the missing cell estimates under different log-linear models Model       MLE of missing cell  
1. Independence model   )nN̂(N̂)nN̂)(nN̂)(nN̂( 2

111 −=−−− ++++++  
 

2. Census:Survey interaction   001
011101111

010100110
000 n

nnn
nnn

ˆ ×
++
++

=µ        

                001
1

0 n
n
n

×
′
′

=
++

++          

where 00000 nnn −=′ ++++  and     00111 nnn −=′ ++++  
 

3. Census:List interaction  010
011110111

001100101
000 n

nnn
nnn

ˆ ×
++
++

=µ    

                                                                               010
1

0 n
n
n

×
′
′

=
++

++         

  where  00000 nnn −=′ ++++           and        01011 nnn −=′ ++++  
 
 

4. Survey:List interaction    100
110101111

001010011
000 n

nnn
nnn

ˆ ×
++
++

=µ      

                                                                              100
1

0 n
n
n

×
′
′

=
++

++                                   

where 00000 nnn −=′ ++++        and        10011 nnn −=′ ++++  
 

5. Census:Survey and Census:List interactions            
011

001010
000 n

nn
ˆ

×
=µ                                 

 

6. Census:List and Survey:List interactions          
110

100010
000 n

nn
ˆ

×
=µ                                                             

 

7. Survey:List and Census:Survey interactions  
101

100001
000 n

nn
ˆ

×
=µ                    

 

8. ‘Saturated’ no-three-way interaction      
011101110

001010100111
000 nnn

nnnn
ˆ =µ                                 

 

1Even for the independence model which admittedly does not have a direct estimator for n000, the

quadratic estimator is a direct, closed form estimator for N .
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3.6 The Expectation Maximization (EM) Algorithm

The EM algorithm is an iterative tool for maximum likelihood estimation in models where

there is missing information. When Dempster, Laird and Rubin (1977) introduced the

EM algorithm it was designed to be a general iterative procedure for maximum likelihood

estimation for incomplete data problems, but the form of this missingness can be in dif-

ferent guises, and that is the appeal of the algorithm. It will be shown during the course

of the thesis that the EM algorithm can be adapted to cope with both missingness due to

lack of data and the presence of an unobserved variable.

It is composed of two steps, the Expectation (E) step and the Maximization (M)

step. The basic idea of the algorithm starts by finding some initial values for the missing

parameters that make the log-likelihood less complicated, and effectually easier to maxi-

mize. Then this, less complex, log-likelihood is replaced with its expected value calculated

at these initial values of the parameters. This is what is known as the E-step. Next

the modified log-likelihood is maximized, which produces new parameter values. This is

known as the M-step. The process of alternating between E and M steps is continued

until convergence is reached. Dempster, Laird and Rubin (1977) showed that through the

maximizing property of the M-step although convergence to the global maximum is not

always guaranteed, the log-likelihood will not decrease with each change in the parame-

ters, thereby converging to a (local) maximum. So in order to find the global maximum

the algorithm is run from different initial parameter values.

The theory behind the EM algorithm is intertwined with the idea of filling in missing

values after making an educated (or otherwise) guess and iterating to find better estimates

of the missing values, and Hartley (1958) is one such earlier example which is believed to

have laid the ground work for the EM algorithm (see Chapter 8 of Little and Rubin (2002)).

In general the framework defines the complete data likelihood to be ` (θ|Yobs, Ymis), where

the complete data Y is comprised of Yobs and Ymis respectively represents the observed

and missing data.

The E-step: given an initial estimate θ(i) of the parameter θ, then

Q
(
θ|θ(i)

)
=

∫
Ymis

` (θ|Yobs, Ymis) f
(
Ymis|Yobs, θ(i)

)
dYmis

= E
[
` (θ|Yobs, Ymis) |Yobs, θ(i)

]
,

i.e. the expected value of the log-likelihood given the observed data, Yobs and the parameter

estimate, θ(i).

The M-step: maximize Q
(
θ|θ(i)

)
to obtain the next iterate, θ(i+1) such that

Q
(
θ(i+1)|θ(i)

)
≥ Q

(
θ|θ(i)

)
.

Under most cases, the log-likelihood function is linear in Ymis, and so continued updating

of the parameter value at the E and M steps will lead to the maximum likelihood estimate,

θ̂. The convergence is reached when |Q
(
θ(i+1)|θ(i)

)
−Q

(
θ|θ(i)

)
| is small.
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In order to heuristically prove that the E and M steps do iteratively converge to a

solution, it must be noted that the complete data can be factorized as

f (Y |θ) = f (Yobs, Ymis|θ) = f (Yobs|θ) f (Ymis|Yobs, θ)

and the log-likelihood can be decomposed as

` (θ|Y ) = ` (θ|Yobs, Ymis) = ` (θ|Yobs) + log f (Ymis|Yobs, θ) .

It is required to find an estimate of θ that maximizes the incomplete data log-likelihood,

` (θ|Yobs), which is not easy to directly do. However, it may be noticed that incomplete

data log-likelihood can be re-written as

` (θ|Yobs) = ` (θ|Y )− log f (Ymis|Yobs, θ) . (3.39)

The complete data log-likelihood, ` (θ|Y ), and the missing part of the complete data log-

likelihood, log f (Ymis|Yobs, θ), in (3.39) are relatively easy to maximize. Therefore, taking

the expectation of both sides of (3.39) over Ymis given the Yobs and a current estimate of

θ, θ(i) yields

` (θ|Yobs) = Q
(
θ|θ(i)

)
−H

(
θ|θ(i)

)
,

where

Q
(
θ|θ(i)

)
=
∫
Ymis

` (θ|Yobs, Ymis) f
(
Ymis|Yobs, θ(i)

)
dYmis

and

H
(
θ|θ(i)

)
=

∫
Ymis

[log f (Ymis|Yobs, θ)] f
(
Ymis|Yobs, θ(i)

)
dYmis

= E
[
log f (Ymis|Yobs, θ) |Yobs, θ(i)

]
.

At successive iterates,

`
(
θ(i+1)|Yobs

)
− `
(
θ(i)|Yobs

)
=
[
Q
(
θ(i+1)|θ(i)

)
−Q

(
θ(i)|θ(i)

)]
−
[
H
(
θ(i+1)|θ(i)

)
−H

(
θ(i)|θ(i)

)]
.

The maximizing property of the EM algorithm is that if θ(i+1) is chosen such thatQ
(
θ(i+1)|θ(i)

)
is greater than Q

(
θ(i)|θ(i)

)
, then firstly the differences of the Q functions are always pos-

itive, and secondly the differences in H functions are negative2. Hence, for any EM

algorithm successive iterative changes from θ(i) to θ(i+1) leads to an increase in the log-

likelihood; i.e. `
(
θ(i+1)|Yobs

)
− `

(
θ(i)|Yobs

)
≥ 0. A more rigorous proof is presented in

Dempster, Laird and Rubin (1977).

2Using Jensen’s inequality H
(
θ|θ(i)

)
≤ H

(
θ(i)|θ(i)

)
.
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3.7 Variance Estimation

Since the population size, N , is an estimate there is anticipated to be some variability

involved. Although there may be some statistic which asserts that one of the models is

marginally better than the others, it is worthwhile to quote not just the best-fitting model

and its estimate of the population size but an estimate of its precision, as well. There

are a number of approaches for computing confidence intervals for functions of maximum

likelihood estimates, and this section will be considering four of them that were used in

the thesis - the profile likelihood-based, the Delta Method-based, Bootstrap resampling

and the Supplemented EM algorithm-based confidence intervals.

The profile likelihood confidence intervals are based on the asymptotic χ2 distribution

of the generalized likelihood ratio test and are better behaved that the Wald confidence

intervals particularly when there are small sizes (Evans et al. (1996)). On the other

hand, the Delta Method and Supplemented EM (SEM) algorithm both produce asymptotic

variances and are therefore only guaranteed to be inferentially valid under asymptotic

conditions. However, while the covariance-variance matrix obtained using the SEM is

based on the observed second derivatives of the observed data likelihood, the Delta Method

uses a Taylor Series approximation to first expand a function of a random variable about

its mean, and then take the variance of this expanded function. The bootstrap does not

make any distributional assumptions about the sampling distribution, and can therefore

produce better confidence intervals, particularly when there is evidence of some skew to

the data.

3.7.1 Profile Likelihood

In a capture-recapture context Agresti (1994) and Cormack (1992) use the profile likelihood

function, where the profile likelihood writes the likelihood as a function of the unobserved

cell count, n000. Their approach is to construct confidence intervals for N on the basis of

its profile likelihood function found by substituting different values of n000 then estimating

the model parameters by maximizing the likelihood function - in effect the likelihood is

‘profiled’ over n000-values. The deviance can then be evaluated, and the confidence limits

are the values of N = n + n000 that yield a deviance differing from the prescribed χ2
1 (α)

value, here at the 95% confidence interval this value is 3.84. The motivation behind the

use of the profile likelihood is that profile likelihood confidence intervals often have better

small-sample properties than those based on asymptotic standard errors calculated from

the full likelihood (Cormack (1992)). Also, unlike conditional and marginal likelihoods,

profile likelihood methods can always be used (even when the profile likelihood cannot

be written down explicitly, there are numerical methods that can be used). However,

the computation of profile likelihood confidence intervals is not simple and often requires

time-consuming optimization procedures.
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The computation of the profile likelihood can be difficult due the need to search over

all possible values that would lead to the rejection of the null hypothesis, i.e. yield non-

significance. However, most computer packages offer profile likelihood confidence intervals

within their modelling procedures. In the R environment, there is a special function

plkhci, based on Venzon and Moolgavkar’s algorithm (Venzon and Moolgavkar (1988))

available in the special add-on package Bhat which works by inverting the likelihood ratio

test statistics. plkhci requires the negative log-likelihood which for the multinomially

distributed contingency table is

− logL = − N !∏
i

∏
j

∏
k nijk!

∑
i

∑
j

∑
k

nijk log πijk

= −

{
logN !− log (N − n)!−

∑
S

nijk! + n000 log
(
N − n
N

)
+
∑
S

nijk
N

}

where, as per usual, S represents the set of all cells apart from the (0, 0, 0) cell and n is

the sum of the observed cells.

This likelihood is still not easy to maximize owing in part to the combinatorial term(
N

(nijk)

)
since N is unknown, and as such the conditional likelihood is used which is

given by

Lc (πijk;nobs|n) ∝
∏
i

∏
j

∏
k

(
π
′
ijk

)nijk
.

This yields the negative conditional log-likelihood,

logLc ∝
∑
i

∑
j

∑
k

nijk log π
′
ijk

where

π
′
ijk =

πijk∑
S πijk

⇒ π̂
′
ijk =

nijk
N∑
S
nijk
N

.

3.7.2 Delta Method

The Delta method is used to derive an approximate probability distribution for a func-

tion of an asymptotically normal statistical estimator based on knowledge of the limiting

variance of that estimator. In essence, the Delta method takes a function whose variance

cannot be analytically computed as it is deemed to be too complex. Using results from the

Central Limit Theorem, the Delta method creates a linear approximation of that complex

function and then computes the variance of the simpler linear function which can then be

used for large sample inference. The Delta method is therefore a technique for deriving

standard errors for large sample inference based on finding asymptotic distribution of the

parameter of interest - note that from the Central Limit Theorem the limiting behaviour

of parameter is the asymptotic normal distribution. Bishop, Fienberg and Holland (1975)
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derived the asymptotic variance of the population estimate for the different log-linear

models using the Delta method; these are summarized below.

When the three samples are mutually independent (i.e. Model I), the variance is esti-

mated as

V̂
(
N̂
)

=
N̂ µ̂000

n011 + n101 + n110 + n111
. (3.40)

The asymptotic variance for the model with one pair-wise interaction (i.e. Model II) is

estimated as

V̂
(
N̂
)

= (µ̂000)2
(

1
n++1 − n001

+
1

n̂++0 − n̂000
+

1
n001

+
1

µ̂000

)
. (3.41)

When there is conditional independence, and assuming Model III holds, i.e. the Census

and Survey are conditionally independent of the Third List, then the asymptotic variance

is estimated as

V̂
(
N̂
)

= (µ̂000)2
(

1
n001

+
1

n010
+

1
n011

+
n011

n001n010

)
. (3.42)

Finally for the saturated model, the asymptotic variance estimate is estimated as

V̂
(
N̂
)

= (µ̂000)2
(

1
n111

+
1

n110
+

1
n101

+
1

n100
+

1
n011

+
1

n010
+

1
n001

+
1

µ̂000

)
. (3.43)

In addition the dual system estimate asymptotic variance was derived by Chandrasekar

and Deming (1949), also using the Delta method, and is given by

V̂
(
N̂
)

=
n+1n1+n01n10

(n11)3
. (3.44)

In analysing capture-recapture three-sample data the aim is to fit the incomplete 2x2x2

table by a log-linear model with the fewest possible parameters. It becomes readily ap-

parent that the fewer the parameters in the ‘most suitable’ model for estimating µ000 the

smaller the variance. Thus it becomes ideal not to just use the ‘saturated model’ given in

(3.20). On the other hand if a model with too few parameters is used, bias may be intro-

duced into the resulting estimate of the population size, and the risk is that the variance

formulae (3.40)-(3.43) become meaningless. Essentially, the variance formulae only hold

under the assumption that the correct model has been chosen.

3.7.3 Supplemented Expectation Maximization Algorithm (SEM)

The Supplemented EM algorithm is an extension of the EM algorithm that facilitates

the calculation of the variance-covariance matrix, under large sample conditions. Now, it

is immediate that the information matrices associated with the complete data likelihood

from the EM algorithm do not directly yield valid asymptotic covariance estimates for the

estimated parameters. This is because there is an additional component that is required

to account for the influence of the missingness. Therefore, the SEM algorithm finds the

standard errors of the maximum likelihood estimates, but has the advantage over other

techniques because it does not require the computing and inverting of the information
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matrix; the difficulty of likelihood-based methods lies in the computation of the second

derivative, and then taking the inverse in order to obtain the information matrix.

The SEM algorithm was proposed by Meng and Rubin (1991) where they calculate the

large-sample variance-covariance matrix associated with the parameter estimates (under

maximum likelihood estimation) using

i. the E and M steps of the EM algorithm,

ii. the large-sample complete data variance-covariance matrix, and

iii. standard matrix operations.

Thus under the SEM algorithm, the desired observed data variance-covariance matrix,

Vobs, can be derived from the complete data variance-covariance matrix, Vcom and a matrix

DM , which is determined by the rate of convergence of the EM algorithm. Now define

the complete information to be icom, and the observed and missing information to be iobs
and imis respectively, then it follows that

icom = iobs + imis. (3.45)

Also define the fraction of the missing information to be DM , in other words,

DM = imisi
−1
com = I − iobsi−1

com. (3.46)

Note that equation (3.46) is found by simply rearranging (3.45) and ‘dividing’ by icom.

An associated result (from Dempster, Laird and Rubin (1977)) is that this matrix, DM ,

is the gradient of the EM mapping and controls the EM algorithm’s speed of convergence;

inherently, the larger the fraction of the missingness, the slower it will take to reach

convergence.

Equation (3.46) implies that

i−1
obs = i−1

com[I −DM ]−1

⇒ Vobs = Vcom[I −DM ]−1. (3.47)

Consequently, (3.46) can be re-written as

Vobs = Vcom (I −DM +DM) (I −DM)−1 = Vcom + ∆V,

where ∆V = VcomDM (I −DM)−1 is the increase in variance due to the missing data.

Recall that the EM algorithm works by defining a mapping, M given by

θ(t+1) → M
(
θ(t)
)
, which will converge so that θ∗ → M (θ∗). Then DM is the Jacobian

matrix where

DM =
(
∂Mj (θ)
∂θ

)
|θ=θ∗ ,

which can be numerically estimated.
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The key idea of the SEM algorithm is that even though the mapping, M , does not have

an explicit mathematical form, its derivative, DM can be estimated as a by-product of

the EM calculations. This is due to a special feature of the EM algorithm that means that

the derivative of the mapping, DM , is defined by the EM steps; therefore, the numerical

differentiation is carried out automatically between iterations. Furthermore, despite there

being other techniques available to obtain the variance-covariance matrix based on re-

sampling from the empirical distribution (such as the bootstrap or the jack-knife), the

fact that these re-sampling techniques work best with large samples with independent and

identically distributed structures can be a limitation, particularly in cases where there

are complicated missing data patterns. Since the SEM algorithm obtains the desired

variance-covariance matrix by modifying the complete data variance-covariance matrix

with an increment due to the missing data, and makes no additional assumptions regarding

the data structure, the resulting variance-covariance matrix is a much better asymptotic

approximation than that obtained using the jack-knife or bootstrap (Meng and Rubin

(1991)). Van Deusen (2002), in an application to capture-recapture where a logistic model

was fitted to an open population, compared the estimates of the parameters under the EM

algorithm and the Newton-Raphson iterative procedure and applied the SEM algorithm

to obtain the asymptotic variance-covariance matrix of the parameters.

3.7.4 Bootstrap

The bootstrap is a computationally intensive procedure that relies on resampling from the

observed data and can be used to determine biases, standard errors, confidence intervals,

amongst other statistical parameters of interest, in circumstances where it is not easy to

theoretically obtain these statistics. It was first introduced by Efron (1979), and the theo-

retical ideas more clearly formalised in Efron and Tibshirani (1993). The basic idea behind

the bootstrap is to estimate the sampling distribution of a parameter by resampling. The

concept of the bootstrap is similar to the, more established, jack-knife. However, unlike the

jack-knife which is mostly concerned with calculating standard errors of parameters, the

bootstrap estimates not only the standard errors but also the distribution of the estimator

of interest.

In statistical theory, the sampling distribution is usually derived from random sam-

pling from the population a number of times and through the Central Limit Theorem

inferences may be made from the sample about the population. In bootstrapping, instead

of taking samples from the population, resamples are created by repeated sampling, with

replacement from the initial observed sample that is the same size as the original observed

sample. The bootstrap distribution of the resamples is used to estimate how the initial

observed sample varies due to random sampling. As such the bootstrap procedure is used

to first, estimate the parameter of interest and second, estimate the variability of the pa-

rameter estimate. This is done without recourse to the Central Limit Theorem, and is

therefore the main advantage of the bootstrap over other precision estimation techniques.
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In Efron’s 1979 paper, he distinguishes between the parametric and non-parametric

bootstrap, and the choice of bootstrapping procedure is dependent on whether parametric

or non-parametric inference is being made. In bootstrapping the unknown distribution,

F , is estimated by the empirical distribution, F̂ , which is found by resampling from the

original sample. Therefore for the non-parametric version, each sample item is assigned

equal selection probability. On the other hand for the parametric version, the unknown

distribution is considered to be from a prescribed parametric family. For data collected

by capture-recapture a parametric bootstrap is preferred to a non-parametric bootstrap

(Buckland and Garthwaite (1991)), and in the parametric bootstrap implemented in the

course of the thesis the data are assumed to be from the multinomial distribution.

3.8 A Definition of Identifiability

In statistical modelling, the belief is that the underlying statistical distribution is com-

pletely known, with the exception of a set of unknown parameters. Hence, the primary

objective of modelling is to find (or estimate) these unknown parameters. But it is en-

tirely feasible that several sets of unknown parameters could have generated the underlying

statistical distribution. As such, the problem of identifiability of the model parameters

basically concerns whether or not the values of the parameters are uniquely determined

by the observed data.

A more formal definition, based on Chapter 5 of Skrondal and Rabe-Hesketh (2004),

states that given a model with likelihood function L (ϑ) then the model is not identified

if for ϑ1 6= ϑ2, L (ϑ1) = L (ϑ2). By defining identifiability in terms of the likelihood

function and noting that the likelihood function depends on the information the observed

data carry about the unknown parameters, it becomes clear that the lack of identifiability

translates into a lack of sufficient information. In addition, there is a link between the

variance V
(
ϑ̂
)

, information I
(
ϑ̂
)

and likelihood L (ϑ) where

I (ϑ) = −E
[
∂2

∂ϑ2
log L (ϑ)

]
and

V
(
ϑ̂
)

=
1

I (ϑ)
.

Therefore, in order to be able to compute the variance of a parameter estimate the inverse

of the information needs to be taken, and as a corollary for matrices if the information

matrix is non-invertible, the variance cannot be computed. Rothenberg (1971) made the

connection between non-invertibility of the information matrix and identifiability.

The notion of weak identifiability is much more difficult to formally define (Gelfand

and Sahu (1999)). But simply stated, weak identifiability occurs when the data supplies

little information about some of the parameters. Under the Bayesian paradigm, Gelfand
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and Sahu (1999) say that a parameter ϑ2 is weakly identified if there exists ϑ1 such that

the posterior distribution, f (ϑ2|ϑ1, y) is roughly equivalent to the the prior distribution,

f (ϑ2|ϑ1). So,

f (ϑ2|ϑ1, y) ≈ f (ϑ2|ϑ1) where y is the data.

However they argue, using a result from Dawid (1979), that Bayesian non-identifiability

is equivalent to the lack of identifiability in the likelihood. This, therefore, implies that

identifiability does not depend upon the specification of the prior distribution. In other

words, when the likelihood does not contain information with regards to some parame-

ters, the nature of the prior specification drives the posterior results. A model that does

not contain information on some parameters is said to have a flat likelihood (Lindley and

Smith (1972)). A flat likelihood function means that all possible values of the parameter

are almost equally likely. So in the classical paradigm, maximum likelihood estimation

when there is a flat likelihood can be difficult - for instance, the EM algorithm converges

extremely slowly. On the other hand, the maximum likelihood estimation for a peaked

likelihood function is much simpler and the results are generally more precise (i.e. have

smaller standard errors). For complex models such as the latent class models being pro-

posed in this thesis, identifiability - and specifically weak identifiability - will be shown to

be an issue.

3.9 Latent Class Analysis

The aim of latent class analysis is to define a latent variable as a set of classes within

which the manifest variables are locally independent. Latent class models rely on two

central assumptions. The first one is that the population consists of a set of internally

homogeneous and mutually exclusive subpopulations, which make up a latent classification

that is discrete by nature. The other is local independence, which means that within a

given latent subpopulation, all the manifest variables are statistically independent. In

other words, the manifest variables are conditionally independent given the categories of

the latent variable. The latent class analysis can either be exploratory or confirmatory. In

the former case there are no a priori restrictions on the parameters of the model, whereas

in the latter case some restrictions can be imposed.

In order to evaluate the coverage error in a population census, many countries conduct

a post-enumeration survey which is designed to identify individuals who were missed in

the census, as well as individuals who were counted in the census, but should not have

been. The quality of this evaluation process relies heavily on the ability of the survey to

accurately classify these erroneous enumerations. In previous UK censuses, the number

of erroneous enumerations has been assumed to be negligible in comparison with the un-

derenumeration. This is not necessarily true; as the previous sections have highlighted

that the dual system estimator of the population can be susceptible to some biases arising
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from heterogeneous enumeration probabilities and the lack of independence in enumera-

tion error between the Census and the Survey. Therefore, latent class analysis has been

suggested (for example by Biemer et al. (2001b)) as a way of identifying the individuals

counted in the census process by their true residence status.

In a census enumeration context, let Xp denote a dichotomous variable defined for the

pth person in the population, where

Xp =

{
1 if individual p is an actual enumeration;

0 if individual p is an erroneous enumeration.

The assumption is thatXp is unknown and unobservable - and is therefore a latent variable.

However, there are some observable indicators that can serve as proxies of Xp. Biemer et

al. (2001a) use the Census, the Survey and data from administrative records as a Third

List. On the other hand, Biemer et al. (2001b) use the reconciled re-interview of survey

respondents as the Third List. In both cases there are three indicators of Xp which

correspond to enumeration in the census, denoted by Cp, enumeration in the coverage

survey, denoted by Sp, and enumeration on the third list, denoted by Lp. Like the latent

variable Xp, each of these indicators are dichotomous, taking the value 1 if individual p

is counted and 0 if missed. For brevity, the subscripts in (Cp, Sp, Xp, Lp) are dropped

and the data can be represented in the form of the contingency table, in Table 3.7, with

observed cell counts nijkt.

Table 3.7: Contingency table with a latent variable

Latent Class 1 - Real

Third List

Counted Missed

Survey Survey

Counted Missed Counted Missed

Counted n1111 n1011 n1101 n1001

Census

Missed n0111 n0011 n0101 n0001

Latent Class 2 - Erroneous

Third List

Counted Missed

Survey Survey

Counted Missed Counted Missed

Counted n1112 n1012 n1102 n1002

Census

Missed n0112 n0012 n0102 n0002

There are two parameterizations of the latent class model. One is the classical param-

eterization, developed by Lazarsfeld and Henry (1968) and Goodman (1974), in which the

model parameters are the latent class prevalences and conditional response probabilities.

The other reparameterizes the latent class model as a log-linear model, and was developed

by Haberman (1979). As a result of the ease with which the log-linear models, considered

earlier in Section 3.5, can be expanded to include latent variables the thesis will focus on

the Haberman parameterization. In both parameterizations, Figure 3.4 shows the rela-
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tionship between the Census (C), Survey (S) and Third List (L) indicators and the latent

variable (X).

In this section, for the time being, it is assumed that the 2x2x2 table representing the

capture histories in the Census, Survey and Third List is fully observed, i.e. n000 is known.

The generalisation, with n000 unknown, is considered in Sections 3.10 and 3.11.

Figure 3.4: Independence graph showing the relationship between the latent and manifest variables

 

L 

C 

S X 

To specify the latent class model, let πijk denote the probability that an individual

will be at level (i, j, k) with respect to the joint variable (C, S, L) for i = 0, 1; j = 0, 1;

k = 0, 1; and let πCSLXijkt represents the probability that a randomly chosen individual

will be in the (i, j, k, t)th cell of the joint variable with (C, S, L,X) for the levels of the

latent variable given by t = 1, 2. Also let πXt denote the latent class probability, that is

the probability that an individual will be at level t with respect to the latent variable.

Finally, let πC|Xit , πS|Xjt and π
L|X
kt be the conditional probabilities, where π

C|X
it denotes

the conditional probability that an individual will be at level i with respect to the Census

variable, given that they are at level t of the latent variable X, πS|Xjt denotes the conditional

probability that an individual will be at level j with respect to the Survey variable, and

π
L|X
kt denotes the conditional probability that an individual will be at level k with respect

to the Third List. Then under the conditional probabilities parameterization,

πCSLXijkt = πXt π
C|X
it π

S|CX
jit π

L|CSX
kijt

which is equivalent to

πCSLXijkt = πXt π
C|X
it π

S|X
jt π

L|X
kt . (3.48)

These conditional probabilities given in equation (3.48) are defined in Table 3.8.

The implication is that the probability a randomly selected case will be located in cell

(i, j, k, t) can be decomposed into the product of the appropriate marginal and conditional

probabilities. When the classifiers, C, S, L are assumed to be mutually independent then
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Table 3.8: Conditional Probabilities parameterization

Census Survey Third List

Counted Missed Counted Missed Counted Missed

Class 1 π
C|X
11 π

C|X
01 π

S|X
11 π

S|X
01 π

L|X
11 π

L|X
01

Class 2 π
C|X
12 π

C|X
02 π

S|X
12 π

S|X
02 π

L|X
12 π

L|X
02

this equals the product of the probability of a randomly selected case being at level t of

the latent variable X times the conditional probabilities that an individual in class t of

the latent variable will be located in a certain category of each of the manifest variables.

So simply put, within a latent class, probabilities multiply, as shown in equation (3.48).

The conditional probabilities represent a measure of the degree of association between

each of the manifest variables and each of the latent classes and can be compared to the

factor loadings in a factor analysis. Just like in factor analysis, the latent variables are at

their most useful in terms of explaining the relationships between the manifest variables

if they have some theoretically meaningful interpretation.

The likelihood can be written as

L =
∏
i

∏
j

∏
k

∏
t

(
πCSLXijkt

)nijkt (3.49)

and the log-likelihood is

` =
∑
i

∑
j

∑
k

∑
t

nijkt log πCSLXijkt . (3.50)

Haberman (1979) showed that (3.48) is equivalent to the log-linear model

logµijkt = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t ,+λ(CX)

it + λ
(SX)
jt + λ

(LX)
kt (3.51)

where the µijkt are the expected counts in the (i, j, k, t)th cell.

The relationship between the two formulations of the latent class models can be illustrated

by writing the conditional probabilities in (3.48) as a function of the log-linear parameters

appearing in equation (3.51). Thus for a example, when the manifest variables are binary

(with categories 0 and 1) and the model posits two latent classes (with classes 1 and 2)

then the conditional probability that the individual is missed in the Census given that

they are in the first class is

Pr (C = 0|X = 1) = π
C|X
01 =

exp
(
λ

(C)
0 + λ

(CX)
01

)
exp

(
λ

(C)
0 + λ

(CX)
01

)
+ exp

(
λ

(C)
1 + λ

(CX)
11

) .
It has to be stated here that the latent class framework cannot be applied to the

case with two manifest variables (i.e. dual system estimation). The proof is as follows.

Denoting the latent variable as L, in the usual notation, then the latent class model with

two manifest variables is given by

logµ(CSX)
ijt = λ+ λ

(C)
i + λ

(S)
j + λ

(X)
t + λ

(CX)
it + λ

(SX)
jt under the Haberman parameterization,
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or

πCSXijt = πXt π
C|X
it π

S|X
jt under the Goodman parameterization.

Since there are five free parameters3 to be estimated, namely {λ(C)
1 , λ

(S)
1 , λ

(X)
1 , λ

(CX)
11 , λ

(SX)
11 }

using the Haberman parameterization or {πXt , π
C|X
0t , π

C|X
1t , π

S|X
0t , π

S|X
1t } using the Goodman

parameterization, but four cell probabilities (three knowns because the probabilities should

sum to one), the number of degrees of freedom is not non-negative, and thus the latent

class model is not identified. Some constraints may be imposed on the model, such as

λ
(C)
i = λ

(S)
j and λ

(CX)
it = λ

(SX)
jt (or equivalently πC|Xit = π

S|X
jt ).

The interpretability of the ensuing model may be difficult, as well as being unrealistic.

However, when there are three manifest variables then the model is just identified with

zero degrees of freedom, since there are now seven parameters and eight cell probabilities

(but seven knowns since the probabilities must sum to one). So it follows that the lowest

number of manifest variables possible for the identification of latent class models without

resorting to imposing restrictions is three.

3.9.1 Maximum Likelihood Estimation of Parameters under the Goodman

Parameterization for the Local Independence Latent Model

Maximum likelihood estimation under the two latent class parameterizations (i.e. the

Goodman conditional probabilities and Haberman log-linear models) will now be presented

in greater detail. It must be noted that the contingency table representing the capture

histories is assumed to have no missingness, in other words n000 is known. However, the

extension of the estimation process when there is both latentness and missingness will be

considered later, in Sections 3.10 and 3.11.

The relationship between the manifest variables and the latent variable can be ex-

pressed as follows

πijk =
∑
t

πCSLXijkt = πCSLXijk1 + πCSLXijk2 (3.52)

and

πCSLXijkt = πXt π
C|X
it π

S|X
jt π

L|X
kt

which is given earlier as equation (3.48).

Now the hypothesis is that the system that generated the data in the 2x2x2 table of

counts comes from the latent class model that satisfies equation (3.48). Since by definition,∑
t

πXt = 1

and ∑
i

π
C|X
it =

∑
j

π
S|X
jt =

∑
k

π
L|X
kt = 1, (3.53)

3The others can be found using the identifiability constraints, e.g. π
C|X
i1 = 1− πC|Xi2 or λCXi1 = −λCXi2 .
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it follows then that there are only seven parameters to be estimated, namely πX1 , πC|X0t ,

π
S|X
0t and π

L|X
0t , for t = 1, 2.

In keeping with the notation used in previous sections, πijk and µijk respectively denote

the proportion of individuals and the expected number of individuals in the (i, j, k)th cell

of the 2x2x2 contingency table, so

µijk = Nπijk.

It now remains to introduce the method for obtaining the maximum likelihood estimates

of the parameters in the latent class model (3.48). Let πCSL|Xijkt denote the conditional

probability that an individual at level (i, j, k) of the manifest (observed) variables (C, S, L),

will be at level t of the latent variable X. This conditional probability can be expressed

in terms of the observed and latent probabilities as

π
CSL|X
ijkt =

πCSLXijkt

πijk
or equivalently πCSLXijkt = πijkπ

CSL|X
ijkt . (3.54)

From the definitions of the latent probabilities πCSLXijkt and πXt it follows that

πXt =
∑
i

∑
j

∑
k

πCSLXijkt . (3.55)

Similarly, from the definition of the conditional probabilities,

π
C|X
it =

∑
j

∑
k π

CSLX
ijkt

πXt
,

π
S|X
jt =

∑
i

∑
k π

CSLX
ijkt

πXt
, (3.56)

π
L|X
kt =

∑
i

∑
j π

CSLX
ijkt

πXt
.

From equations (3.54), (3.55) and (3.56) supposing the conditional probabilities πCSL|Xijkt

are known, it becomes possible to estimate the model parameters πXt , πC|Xit , πS|Xjt and πL|Xkt .

This is accomplished by replacing πijk with the observed probabilities pijk, which is true

should the hypothesis hold. The maximum likelihood estimates of the model parameters

are therefore given by the system of equations

π̂Xt =
∑
i

∑
j

∑
k

pijkπ̂
CSL|X
ijkt (3.57)

and

π̂
C|X
it =

∑
j

∑
k pijkπ̂

CSL|X
ijkt

π̂Xt
,

π̂
S|X
jt =

∑
i

∑
k pijkπ̂

CSL|X
ijkt

π̂Xt
, (3.58)

65



π̂
C|X
kt =

∑
i

∑
j pijkπ̂

CSL|X
ijkt

π̂Xt
.

Hence, for a given set of numerical values for πCSL|Xijkt , tentative values of the maximum

likelihood estimates of πXt , πC|Xit , πS|Xjt and πL|Xkt can be obtained after inserting into (3.57)

and (3.58), which in turn can be respectively inserted into (3.54), (3.55) and (3.56), to

get tentative values π̂CSLXijkt , π̂ijk and π̂
CSL|X
ijkt . The initial numerical values of πCSL|Xijkt can

now be replaced by this new estimate, π̂CSL|Xijkt , and then use can be made of (3.57) and

(3.58) to estimate the model parameters. These new estimates can now be inserted into

(3.54), (3.55) and (3.56) which would yield a new estimate of π̂CSL|Xijkt . This process of

alternating between the two sets of equations will be continued until the estimates π̂Xt ,

π̂
C|X
it , π̂S|Xjt and π̂L|Xkt , π̂CSL|Xijkt , π̂CSLXijkt and π̂ijk remain unchanged. The estimates obtained

by this iterative procedure will provide a solution to the system of equations, and if the

parameters in the latent class model have maximum likelihood estimates, then Goodman

(1974) proved that the maximum likelihood estimates satisfy the system of equations.

Although not explicitly put forward in Goodman (1974), his method for obtaining

the maximum likelihood estimates of the parameters in the latent class model uses the

EM algorithm (Dempster, Laird and Rubin (1977)). Since the missing information is

the values of the latent variables, the EM algorithm functions by finding these values

that maximize the joint likelihood (3.49). Therefore, starting with some initial values

{πX(0)
t , π

C|X(0)
it , π

S|X(0)
jt , π

L|X(0)
kt } the procedure is to write down the joint likelihood given

the observed manifest variables and the unobserved latent variables.

The log-likelihood (3.50) is replaced by its expected value (E-step) conditional on

the observed variables. The expected values are estimated with the current values of the

parameters at that iteration. Next this modified likelihood is maximized (M-step) to give

new values for the parameters, and the whole procedure of consecutive E and M-steps

is iterated until convergence. In the earlier discussion in Section 3.6 it was shown that as

a result of the maximizing property of the M-step, even though the global maximum is

not always guaranteed, the marginal likelihood over the missing (i.e. latent) variable will

never decrease with each iteration.

Consequently the E-step is made up of three sub-steps

π̂CSLXijkt = π̂Xt π̂
C|X
it π̂

S|X
jt π̂

L|X
kt , (E1)

π̂ijk =
∑
t

π̂CSLXijkt , (E2)

π̂
CSL|X
ijkt =

π̂CSLXijkt

π̂ijk
. (E3)

The observed cell probabilities pijk can be used to obtain new trial values in the M-step

comprising of four sub-steps

π̂Xt =
∑
i

∑
j

∑
k

pijkπ̂
CSL|X
ijkt , (M1)
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π̂
C|X
it =

∑
j

∑
k pijkπ̂

CSL|X
ijkt

π̂Xt
, (M2)

π̂
S|X
jt =

∑
i

∑
k pijkπ̂

CSL|X
ijkt

π̂Xt
, (M3)

π̂
L|X
kt =

∑
i

∑
j pijkπ̂

CSL|X
ijkt

π̂Xt
. (M4)

Note that the iterative proportional fitting algorithm (IPF) can alternatively be used to

obtain maximum likelihood estimates.

3.9.2 Maximum Likelihood Estimation of Parameters under the Haberman

Parameterization for the Local Independence Latent Model

Denoting the parameters of the model by η and τ , the log-linear representation of the

latent class model is

µCSLXijkt = ητCi τ
S
j τ

L
k τ

X
t τ

CX
it τSXjt τLXkt (3.59)

or equivalently

logµCSLXijkt = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ

(CX)
it + λ

(SX)
jt + λ

(LX)
kt .

This is not an identifiable model; there are more unknown parameters to be estimated

than known cell frequencies in the 2x2x2 contingency table. Identifying restrictions on

the parameters are necessary, and can be accomplished by constraining the sums of each

λ-parameter to zero. These sum-to-zero constrains are represented as follows:∑
i

λ
(C)
i =

∑
j

λ
(S)
j =

∑
k

λ
(L)
k =

∑
t

λ
(X)
t = 0

and ∑
i

λ
(CX)
it =

∑
j

λ
(SX)
jt =

∑
k

λ
(LX)
kt =

∑
t

λ
(CX)
it =

∑
t

λ
(SX)
jt =

∑
t

λ
(LX)
kt = 0.

With the identifying restrictions imposed on the parameters, an exactly identified model

results that requires no additional restrictions on the data. Under this model the observed

cell frequencies are the same as the maximum likelihood estimates of the expected cell

frequencies. Therefore, given the observed 2x2x2 table of counts nijk the objective is to

find the 2x2x2x2 latent contingency table with cell counts nijkt and µCSLXijkt that satisfy

(3.59), subject to the sum-to-zero constraints. For this model the maximum likelihood

estimates are given by

µ̂CSLXi++t = ni++t, µ̂CSLX+j+t = n+j+t and µ̂CSLX++kt = n++kt (3.60)

where the marginal observed sums are given by

ni++t =
∑
j

∑
k

nijkt, n+j+t =
∑
i

∑
k

nijkt and n++kt =
∑
i

∑
j

nijkt.
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The marginal expected sums µCSLXi++t , µCSLX+j+t and µCSLX++kt are found in a similar manner.

However, ni++t, n+j+t and n++kt are not observed but when given nijk, the expected

values of latent table counts nijkt are

n̂ijkt =
nijk
µ̂ijk

µ̂ijkt.

Thus, the maximum likelihood equations can now be written as

µ̂CSLXi++t = n̂i++t, µ̂CSLX+j+t = n̂+j+t and µ̂CSLX++kt = n̂++kt. (3.61)

The iterative proportional fitting algorithm (IPF) is used to find the maximum likeli-

hood estimates of the cell counts such that (3.59) holds. As per usual the IPF algorithm

works by iteratively adapting the initial estimates of the expected cell frequencies to the

observed marginal frequencies to be reproduced by the given model. What is different

here is that the marginal frequencies are ‘known’ as a result of the latent variable. Ad-

ditionally, the starting values for the iterative computations play a greater role because

of the model constraints imposed; without a correct choice of starting values the iterative

process proceeds very slowly and may not converge to the maximum likelihood estimates.

Hence to begin the algorithm some initial estimates are required that satisfy (3.59) and

the sum-to-zero constraints such that

logµCSLX(0)
ijkt = λ(0) + λ

C(0)
i + λ

S(0)
j + λ

L(0)
k + λ

X(0)
t + λ

CX(0)
it + λ

SX(0)
jt + λ

LX(0)
kt . (3.62)

For notational simplicity, µCSLX(r)
ijkt is replaced with µ(r)

ijkt where r represents the rth itera-

tion. Clearly the initial estimates need to be chosen such that they are in agreement with

the hypothesized model (3.59), so given the observed cell counts nijk it becomes possible to

find initial estimates µ(0)
ijkt that satisfy the sum-to-zero constraints, and then subsequently

find the n(0)
ijkt. Given these initial estimates µ(0)

ijkt and n(0)
ijkt, define n(r)

i++t, n
(r)
+j+t and n(r)

++kt

as the estimated marginal observed counts at the rth iteration; and µ(r)
i++t, µ

(r)
+j+t and µ(r)

++kt

as the respective estimated marginal expected counts. The cycle is initialized by

n
(0)
ijkt = µ

(0)
ijkt ×

nijk

µ
(0)
ijk

, (1)

µ
(1)
ijkt = µ

(0)
ijkt ×

n
(0)
i++t

µ
(0)
i++t

, (2)

µ
(2)
ijkt = µ

(1)
ijkt ×

n
(0)
+j+t

µ
(1)
+j+t

, (3)

µ
(3)
ijkt = µ

(2)
ijkt ×

n
(0)
++kt

µ
(2)
i++kt

. (4)

A new cycle begins by re-estimating the estimates such that

n
(1)
ijkt = µ

(3)
ijkt ×

nijk

µ
(3)
ijk

, (5)
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µ
(4)
ijkt = µ

(3)
ijkt ×

n
(1)
i++t

µ
(3)
i++t

, (6)

µ
(5)
ijkt = µ

(4)
ijkt ×

n
(1)
+j+t

µ
(4)
+j+t

, (7)

µ
(6)
ijkt = µ

(5)
ijkt ×

n
(1)
++kt

µ
(5)
++kt

. (8)

As the cycle progresses the estimated latent frequencies should come simultaneously closer

such that the log-linear model is satisfied, under the restrictions, eventually yielding the

maximum likelihood estimates. The reason why the initial estimates are crucial is because

the IPF works by first initializing µ(0)
ijkt where these initial estimates satisfy the log-linear

model and conditions. Therefore, if these initial approximations are not correctly specified

there are problems encountered during convergence of the algorithm. Generally, conver-

gence of the IPF algorithm is much slower than with directly observed frequency counts

(Haberman (1979)).

For the IPF algorithm in this application, the marginal totals, although effectively

unknown, are treated as known and so the iterative procedure described above can be

re-written as an EM algorithm. Here provided some initial values µ̂(0)
ijkt and µ̂(0)

ijk have been

obtained, there is a single E-step

n̂
(0)
ijkt = µ̂

(0)
ijkt ×

nijk

µ̂
(0)
ijk

(E)

and the M-step is comprised of three sub-steps

µ̂
(1)
ijkt = µ̂

(0)
ijkt ×

n̂
(0)
i++t

µ̂
(0)
i++t

, (M1)

µ̂
(2)
ijkt = µ̂

(1)
ijkt ×

n̂
(0)
+j+t

µ̂
(1)
+j+t

, (M2)

µ̂
(3)
ijkt = µ̂

(2)
ijkt ×

n̂
(0)
++kt

µ̂
(2)
++kt

. (M3)

Haberman (1979) went on to show that the series of M-steps can be written as a single

log-linear modelling step as

log µ̂ijkt = λ̂+ λ̂
(C)
i + λ̂

(S)
j + λ̂

(L)
k + λ̂

(X)
t + λ̂

(CX)
it + λ̂

(SX)
jt + λ̂

(LX)
kt ,

where the λ̂-terms are subject to the same identifying constraints∑
i

λ̂
(C)
i =

∑
j

λ̂
(S)
j =

∑
k

λ̂
(L)
k =

∑
t

λ̂
(X)
t = 0

and ∑
i

λ̂
(CX)
it =

∑
j

λ̂
(SX)
jt =

∑
k

λ̂
(LX)
kt =

∑
t

λ̂
(CX)
it =

∑
t

λ̂
(SX)
jt =

∑
t

λ̂
(LX)
kt = 0.
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3.10 Some Issues with the Latent Class Framework in Triple

System Estimation

Latent class models rely on the basic assumption of local independence between the latent

and manifest variables. Obviously in the census scenario with bias introduced due to the

lack of independence between the Census and Survey, the local independence latent class

model is not ideal. Here, a new model specification is undertaken when local independence

is clearly violated. Under the conventional latent class model, the latent variable explains

all the association between the manifest variables. In a local dependence model there

is some residual unexplained association. In the initial work on latent class analysis by

Lazarsfeld and Henry (1968), Goodman (1974) and Haberman (1979) this assumption was

essential in the derivation of the latent class model. However, the constraints imposed in

order to have local independence may be unrealistic (Hagenaars (1993)). In the three-

sample capture-recapture model, there may be some residual association between some of

the lists, even after taking the latent variable into account. For example there could be

a pairwise association between the Census and Survey, leading to the contingency tables

shown in Tables 3.9 and 3.10.

The motivation for this latent model stems from the fact that some dependence may

be introduced between the Census and Survey, firstly, due to the reactions of individuals

to the census enumeration process and secondly, due to associations in the census and

survey logistical operations. Enumeration in the Census or Survey depends largely on an

individual’s attitude to being interviewed (or filling in a form) and their social respon-

sibility in general. The listing of an individual on an administrative records list, on the

other hand, usually depends on factors that provide direct benefit to the individual. This

is certainly true for administrative records that provide tax rebates and unemployment

allowances. Although there may be an issue about the timing, this does hold true to a cer-

tain extent in health registers; a person might forget to contact their general practitioner

to update their medical records but will do so when they are ill. It does, therefore, follow

that whether a person appears on the administrative list should not be greatly influenced

by the individual’s choice or ability to participate in the Census or Survey4.

Table 3.9: Local dependence latent class model

Class 1 - Real Class 2 - Erroneous

Third List

Counted Missed Counted Missed

Counted in both n1111 n1101 n1112 n1102

Census and Survey Counted in Census, Missed in Survey n1011 n1001 n1012 n1002

Missed in Census, Counted in Survey n0111 n0101 n0112 n0102

Missed in both n0011 n0001 n0012 n0002

4Admittedly, this does break down when dealing with people who are perhaps considered to exist on

the fringes of society, i.e. those not registered on any administrative lists and also fail to participate in the

Census or Survey processes.
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Table 3.10: Conditional Parameterization with local dependence

Survey Third List

Counted Missed

Census Census Counted Missed

Counted Missed Counted Missed

Class 1 π
CS|X
111 π

CS|X
011 π

CS|X
101 π

CS|X
001 π

L|X
11 π

L|X
01

Class 2 π
CS|X
112 π

CS|X
012 π

CS|X
102 π

CS|X
002 π

L|X
12 π

L|X
02

The local independence model given in (3.48) becomes

πCSLXijkt = πXt π
CS|X
ijt π

L|X
kt

=⇒ πijk =
∑
t

πXt π
CS|X
ijt π

L|X
kt (3.63)

where πCS|Xijt is the conditional probability of being at level i of the Census variable and

level j of the Survey and is given by

π
CS|X
ijt = Pr (C = i, S = j|X = t) =

exp
(
λ

(CS)
ij + λ

(CX)
it + λ

(LX)
jt

)
∑

i

∑
j exp

(
λ

(CS)
ij + λ

(CX)
it + λ

(LX)
jt

) .
So individuals can still be classified into mutually exclusive and exhaustive latent classes,

but within each class the independence assumption between the indicators needs to be

relaxed to include some additional dependence between the Census and Survey. This is

accomplished by allowing the latent class model to incorporate an additional direct effect

that can account for any additional association between C and S that is not explainable

under (3.48); as shown by Figure 3.5. Therefore, the local dependence model is a standard

latent class model with one dichotomous latent variable X, and two manifest variables

CS and L. Here, within each latent class, CS and L are independent of each other, but

the difference is that elements of C and S of the joint variable CS are permitted to be

associated within latent classes. Therefore, the resulting manifest variables CS and L are

correlated with each other but this correlation disappears when the latent variable is taken

in account.

Hagenaars (1993) suggests accounting for this unexplained variation in terms of an

additional latent variable. However, this is rejected in the triple system scenario as an

additional latent variable further exacerbates the issue of model identifiability. Another

way, which will be considered here, is to observe that the remaining variation is mostly due

to some additional association in the Census and Survey that the latent variable fails to

account for, so by adding a direct effect between the Census and Survey corrects for this.

The log-linear formulation of the latent class model makes it easy to conceptualize how

the direct effects between the manifest variables can be incorporated. All that is needed

is to introduce the extra effect parameters that represent the desired direct effects among

the manifest variables into the log-linear model.
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Figure 3.5: Independence graph showing the relationship between the latent and manifest variables -

with dependence between the Census and Survey
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Thus the local dependence model (3.63) can be written as the log-linear model

logµijkt = λ+λ
(C)
i +λ

(S)
j +λ

(L)
k +λ

(X)
t +λ

(CX)
it +λ

(SX)
jt +λ

(LX)
kt +λ

(CS)
ij +λ

(CSX)
ijt , (3.64)

with constraints∑
i

λ
(C)
i =

∑
j

λ
(S)
j =

∑
k

λ
(L)
k =

∑
t

λ
(X)
t = 0

and ∑
i

λ
(CX)
it =

∑
j

λ
(SX)
jt =

∑
k

λ
(LX)
kt =

∑
i

λ
(CS)
ij =

∑
j

λ
(CS)
ij = 0,

∑
t

λ
(CX)
it =

∑
t

λ
(SX)
jt =

∑
t

λ
(LX)
kt = 0

and ∑
i

∑
j

λ
(CSX)
ijt =

∑
i

∑
t

λ
(CSX)
ijt =

∑
j

∑
t

λ
(CSX)
ijt = 0.

The interpretation of the local dependence model, written in the form (3.64) implies

that the similarity among responses is caused by some subject-specific factors, operating

together with the latent category, and a failure to account for this could lead to a wrong

model being specified. Unfortunately, the above log-linear model (3.64) is not identified as

there are too many unknowns so some conditions are required in order that the parameters

can be estimated. The way forward is to apply some identification conditions to the

model. If the CSX-interaction effect is significantly small (3.64) could be represented by

{LX,CX, SX,CS}. So the ensuing log-linear model becomes

logµijkt = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ

(CX)
it + λ

(SX)
jt + λ

(LX)
kt + λ

(CS)
ij . (3.65)
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However, even with this slight modification the local dependence model given in (3.65)

is still not identifiable - it has nine unknowns and eight observed cells5. There are a

number of restrictions that can be placed on the parameters to ensure that the model

becomes identifiable. Goodman (1974) and Hagenaars (1993) give a wide range of these

restrictions. For example, it may be assumed that the latent classes are equiprobable, and

the process that drives whether a person is a real or erroneous enumeration is the same.

Under this latent class model, the latent classes are completely specified, so

πXt =
1
2

or equivalently exp
(
λ+ λ

(X)
t

)
=

1
2
. (R1)

Another restriction is to set

πCX01 = πCX12 , πSX01 = πSX12 and πLX01 = πLX12

or equivalently (R2)

λ
(C)
1 = λ

(S)
1 = λ

(L)
1 = 1.

The interpretation of this restriction is that it is believed that the conditional probabilities

of being missed given that an individual is real is the same as the probabilities of being

counted given that the individual is erroneous. In other words, the conditional probability

of being counted given person is a real enumeration is equal to that of a person being missed

given that they are an erroneous enumeration. This restriction may be too stringent as

it fails to acknowledge known differences between the Census, Survey and Third List

enumeration processes. A lesser, more realistic, restriction could be to constrain only the

Survey conditional probabilities. Here

πSX01 = πSX12 = 0 or equivalently λ
(S)
1 = 1. (R3)

Albeit these restrictions reduce the number of parameters that need to be estimated since

some of the parameters are specified, they do not all manage to achieve model identifiability

- only R2 leaves model (3.65) identified, since there are six estimable parameters, and eight

cells6. However, R3 is the most intuitively appealing in a triple system census application.

This is because in an adequately designed post-enumeration survey it is not unfeasible

to assume that all the Survey enumerations are error-free; effectively, all the individuals

counted by the Survey are real enumerations. Unfortunately, this local dependence model

with the R3 restriction is still not fully identifiable.

5This identifiability problem is further compounded when dealing with the incomplete 2x2x2 contin-

gency table, where there are only seven observable.
6It must be borne in mind that in actuality there are only seven observable cells in the incomplete

2x2x2 contingency table.
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3.11 Proposed Solution to Local Dependence Model Non

Identifiability

The previous discussion has shown that the major problem encountered in the use of the

latent model in specifying whether an individual is an erroneous or real enumeration con-

cerns model identifiability. The local independence model for the 2x2x2 (with the n000

cell assumed to be observed) is exactly identified, with zero degrees of freedom. But, it

has been argued that the most suitable model to be fitted when there are three systems

- the Census, Survey and Third List - is the local dependence model with an additional

pairwise association term between the Census and Survey. It was also shown earlier, in

Section 3.10, that this model is non-identified as there are too many parameters. Although

it is possible to place restrictions on some of the parameters to ensure identifiability, the

realization is that most of these restrictions are not intuitively appealing. The issue here

is simply that there are too few cell counts for the required model.

Table 3.11: Contingency table of the local dependence latent class model with the gender covariate

Males

Class 1 Class 2

Third List Third List

Counted Missed Counted Missed

Counted in both n1111m n1101m n1112m n1102m

Census and Survey Counted in Census, Missed in Survey n1011m n1001m n1012m n1002m

Missed in Census, Counted in Survey n0111m n0101m n0112m n0102m

Missed in both n0011m n0001m n0012m n0002m

Females

Class 1 Class 2

Third List Third List

Counted Missed Counted Missed

Counted in both n1111f n1101f n1112f n1102f

Census and Survey Counted in Census, Missed in Survey n1011f n1001f n1012f n1002f

Missed in Census, Counted in Survey n0111f n0101f n0112f n0102f

Missed in both n0011f n0001f n0012f n0002f

In the 2001 Census, post-stratification by age, gender and other covariates ensured that

whilst performing the dual system estimation all individuals in the 2x2 contingency table

could be assumed to have the same capture probabilities. Instead of post-stratification,

the log-linear modelling framework makes it possible to directly include the covariates that

introduce heterogeneity into the capture probabilities. So as a representation, consider the

triple system case with a latent variable, then the contingency table stratified by gender

is as shown in Table 3.11.

This can be interpreted that once a person’s gender been accounted for, the relation-

ships amongst the Census, Survey and Third List with the latent variable is the same in

both male and female sub-tables. This additional information has the effect of freeing up
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some degrees of freedom, but this covariate can be difficult to conceptualize since it is only

supposed to be related to the latent variable, that is the effect of gender on the Census,

Survey and Third List is completely mediated through the latent variable, as shown in

Figure 3.6, below.

Figure 3.6: Simultaneous Latent Class Models
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(c) Two latent variables, X and Y

Evidently, Figure 3.6(a) can be written under the Haberman parameterization as

logµ(CSLXG)
ijktg = λ+λ(C)

i +λ(S)
j +λ(L)

k +λ(X)
t +λ(G)

g +λ(CS)
ij +λ(CX)

it +λ(SX)
jt +λ(LX)

kt +λ(GX)
gt . (3.66)

It is nonetheless difficult to write the model represented under the Goodman parameteri-

zation; this is one advantage of using the Haberman log-linear parameterization of latent

class models. It follows that if further interaction terms are needed and there is a lack of

degrees of freedom, then other covariates (as shown in Figure 3.6(b)) can be introduced

into the analysis, but it still remains that these covariates need to be related only to the

latent variable, and not the manifest variables. So similarly, Figure 3.6(b) can be written

as the log-linear model

logµ
(CSLXGH)
ijktgh = λ+λ

(C)
i +λ

(S)
j +λ

(L)
k +λ

(X)
t +λ(G)

g +λ
(H)
h +λ

(CS)
ij +λ

(CX)
it +λ

(SX)
jt +λ

(LX)
kt +λ

(GX)
gt +λ

(HX)
ht .

(3.67)

This is what McCutcheon (1987) refers to as the simultaneous latent class model. Clearly,

this could introduce additional complexities in the interpretation, and McCutcheon (1987)

and Hagenaars (1993) suggest framing the problem as a two-latent variable problem. This

model, shown in Figure 3.6(c) has an additional latent variable, Y , brought in to account

for the association between the Census and Survey not fully accounted for by the first

latent variable, X. This modification is a very interesting alternative model as it implies

that a substantive interpretation can now be sought for this ‘new’ latent variable, for
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instance it could represent an individual’s propensity to participate in the Census or

Survey, which is expected to be different from their participation in an Administrative

List due to the different enumeration mechanisms involved. However, this model, written

down in equation (3.68), is not a viable solution in the problem under study due to

identifiability issues.

logµ
(CSLXYG)
ijktyg = λ+λ

(C)
i +λ

(S)
j +λ

(L)
k +λ

(X)
t +λ(Y )

y +λ(G)
g +λ

(CX)
it +λ

(SX)
jt +λ

(LX)
kt +λ

(GX)
gt ++λ

(CY )
iy +λ

(SY )
jy .

(3.68)

3.12 A Note on Bayesian Methods for Capture-Recapture

Models

Oftentimes there is some historical information available regarding the population size N

- for example the One Number Census estimated the population of Scotland at 5,062,011,

and it is not completely unreasonable that this is used as a prior estimate in the de-

termination of the Scottish population at the next census. This goes to show that the

capture-recapture model intuitively lends itself to be formulated in the Bayesian paradigm,

seeing as information about the total population size can be regarded as being updated

from one sampling occasion to the next. Bayesian statistics does, therefore, provide a

mathematical framework for revising knowledge and Smith (1988) demonstrated that it is

possible to find Bayesian estimators of the population size that resemble the traditional

Lincoln-Petersen estimators. Moreover, estimates of precision can be computed in the

Bayesian paradigm without the assumption of normality, which is often needed in the

classical capture-recapture case.

To formulate the basic two sample capture-recapture model under the Bayesian frame-

work, first think of N as being constant, and each individual as having an equi-probable

chance of being in either the first or second sample. (These are basically the same as-

sumptions required under the classical framework.) The conditional distribution of being

in both the first and second samples, given the first and second sample observed totals,

can be written as the hypergeometric distribution

f (n11|n1+, n+1) =

(
n1+

n11

)(
N − n1+

n+1 − n11

)
(

N

n+1

) . (3.69)

Seber (1982) showed that under certain conditions (i.e. that the samples are large and the

number of individuals found in both samples as a proportion of the population is small7),
7This condition will not be entirely appropriate with regards to a human census. For example, in the

2001 UK Census even in areas where the census was deemed to have performed badly, the initial census

enumeration achieved over 60% coverage (Office for National Statistics (2004)).
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this likelihood can be satisfactorily approximated by the Poisson density

f

(
n11|

1
N
,n1+, n+1

)
=

(n1+n+1

N

)n11 exp
(
−n1+n+1

N

)
n11!

. (3.70)

Since n11, n+1 and n1+ are observed counts but N is unknown, any prior information

about the population size may now be incorporated using a Gamma density,

f

(
1
N

)
=

βα

Γ (α)

(
1
N

)α−1

exp
(
− β
N

)
(3.71)

which is a conjugate of the Poisson density. It follows that the posterior is given by

f

(
1
N
|n11, n+1, n1+

)
∝

(n+1n1+

N

)n11 exp
(
−n+1n1+

N

)
n11!

× βα

Γ (α)

(
1
N

)α−1

exp
(
− β
N

)
∝

(
1
N

)α+n11−1

exp
(
−β + n+1n1+

N

)
which is a Gamma(α∗, β∗), where α∗ = α+ n11 and β∗ = β + n+1n1+.

The posterior mean of the Gamma distribution is

α∗

β∗
=

α+ n11

β + n+1n1+
=
(

β

β + n+1n1+

)
× α

β
+
(

1− β

β + n+1n1+

)
× n11

n+1n1+
. (3.72)

Equation (3.72) is a weighted average of the prior mean and the classical estimator, of

form w × prior mean + (1−w) × m.l.e.; on closer inspection this sample mean (equivalent

to the maximum likelihood estimate, here) is the same as the reciprocal of the Lincoln-

Petersen estimator of the population size. Further, since n+1n1+ is generally quite large,

the data does dominate the posterior, but the advantage the Bayesian paradigm has over

its classical counterpart is that suitable choices of α and β can be selected to reflect

the extent of the prior knowledge concerning N . Therefore, the posterior distribution

effectually incorporates the information from the data and any subjective prior knowledge.

This can be generalised for the case where there are more than two captures. Firstly,

define r to be the sampling occasion. If on the rth sampling occasion nr individuals are

captured and mr represents the number of individuals that have previously been captured.

Define Mr to be the total number of marked individuals in the population, just before

sample r is taken. Then the conditional distribution of the number of marked individuals

is a hypergeometric in the sample r, given by

f (mr|Mr, N) =

(
Mr

mr

)(
N −Mr

nr −mr

)
(
N

nr

) . (3.73)

Equation (3.73) is basically the same as that for the two-sample case, and so for multiple

captures the product hypergeometric results

f (mr|Mr, N) =
∏
r

(
Mr

mr

)(
N −Mr

nr −mr

)
(
N

nr

) (3.74)
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which can be approximated as the Poisson density

f

(
mr|nr,Mr,

1
N

)
=

(∑
r nrMr

N

)∑
rmr

exp
(
−
∑
r nrMr

N

)
(
∑

rmr)!
. (3.75)

After choosing a Gamma prior, similar to (3.71) and using the fact that the Poisson and

Gamma are conjugates, the posterior of the multiple capture sample size is

f

(
1
N
|mr, nr,

∑
r

Mr

)
∝
(

1
N

)α−1+
∑
rmr

exp

{
− 1
N

(
β +

∑
r

nrMr

)}
(3.76)

with posterior mean given by

α+
∑

rmr

β +
∑

r nrMr
=
(

β

β +
∑

r nrMr

)
α

β
+
(

1− β

β +
∑

r nrMr

) ∑
rmr∑

r nrMr
. (3.77)

This is a weighted average of the prior mean and the reciprocal of the Schnabel estimator

(Schnabel (1938)).

The posteriors of the population size estimated using equations (3.77) and (3.72) under

the Bayesian paradigm both assume list independence. However, Nandram and Zelter-

man (2007) and King and Brooks (2001) use different (more computationally intensive)

techniques to calculate the posterior distribution when heterogeneity needs to be intro-

duced due to the dependence between the samples. Nandram and Zelterman (2007) place

prior distributions on the marginal probabilities of being present on the lists and the odds

representing the marginal interactions, and uses rejection sampling to find the target pos-

terior distribution. King and Brooks (2001) on the other hand fit a Bayesian log-linear

model to the capture-recapture data. Here instead of specifying priors on the cell counts,

priors are placed on the log-linear parameters. Then using reversible jump Markov Chain

Monte Carlo (MCMC) techniques the best model is chosen by model averaging. Bayesian

model averaging accounts for the uncertainty inherent in the model selection process by

averaging over many different, often competing, models (Dellaportas and Forster (1999)).

It therefore incorporates model uncertainty into the conclusions about parameters and

prediction.

The ideas behind the rejection sampling can now be illustrated in a triple system con-

text. For an incomplete 2x2x2 contingency table with cell probabilities and cell counts

represented by {π000, π001, π010, π011, π100, π101, π110, π111} and

{n000, n001, n010, n011, n100, n101, n110, n111}, with π000 and n000 representing the unob-

served cell, as per usual. Now let {π′001, π
′
010, π

′
011, π

′
100, π

′
101, π

′
110, π

′
111} be the probabilities

of the seven observable cells, where it can be recalled that π
′
ijk = πijk

1−π000
. Finally define θ

to be the three marginal cell probabilities, ηCi , ηSj , ηLk , the three marginal pairwise associa-

tion terms ψCSij , ψCLik , ψSLjk and the three-way association term ψCSLijk . Then the likelihood

of the observed cell counts given θ is

`
(
n001, n010, n011, n100, n101, n110, n111|ηCi , ηSj , ηLk , ψCSij , ψCLik , ψSLjk , ψ

CSL
ijk

)
=
∏
S

(
π
′
ijk

)nijk
=
∏
S

(
πijk

1− π000

)nijk
(3.78)
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where πijk are functions of θ and S is the set of all cells apart from the (0,0,0) cell.

Now the Census marginal probability is given by

ηCi = π1++ =
∑
j

∑
k

π1jk,

the Survey marginal probability is

ηSj = π+1+ =
∑
i

∑
k

πi1k,

and the List marginal probability is

ηLk = π++1 =
∑
i

∑
j

πij1.

Define the marginal odds ratios to be

ψCSij =
π11+π00+

π10+π01+
, ψCLik =

π1+1π0+0

π1+0π0+1
, ψSLjk =

π+11π+00

π+10π+01
,

and

ψCSLijk =
π111π100π010π001

π110π101π011π000
.

It is easy to show that (3.78) is maximized at

`max =
∏
S

(nijk
n

)nijk
, where n is the sum of the observed cell counts. (3.79)

Since there is a missing cell, in the classical framework it is assumed that there is no three-

way interaction term. This assumption can be relaxed under the Bayesian framework.

Here, the rejection sampler is used, but there are a number of other ways the posterior

distribution of N can be found - e.g. the Metropolis Hastings algorithm, Gibbs Sampler

or other Markov Chain Monte Carlo (MCMC) methods. The rejection sampler used here

generates θ, i.e. seven numbers from the priors representing the marginal cell probabilities

and the marginal odds ratios. Given this set of numbers, the iterative proportional fitting

algorithm is used to find eight cell probabilities {p000, p001, p010, p011, p100, p101, p110, p111}
that satisfy θ. At the next stage of the rejection sampler, this generated sample is accepted

with probability `
`max

as an observation from the posterior distribution. Otherwise this

sample is rejected and another sample is generated from the seven priors. This process

is repeated until the number of samples is large enough for the posterior distribution to

be accurately estimated. When implementing this, it was found that there are difficulties

surrounding the acceptance and the algorithm takes a long time before producing a pos-

terior, as a large number of the generated contingency tables are rejected. This is further

exacerbated by the fact that a great deal of effort can be devoted to the construction and

choice of a distribution that characterizes the available prior information without yielding

any substantial benefits (Nandram and Zelterman (2007)).

The above has not considered the case where there is overenumeration. Nonetheless,

since the previous section discussed how to formulate the contingency table with overenu-

meration as a latent class model, which can be represented as a log-linear model it does
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follow that the Bayesian log-linear modelling techniques discussed by King and Brooks

(2001) and Dellaportas and Forster (1999), amongst others, can be extended to the latent

class models.

The main idea behind the Bayesian approach is to construct a joint prior distribution

over the unknown quantities, and so one advantage the Bayesian paradigm has is that

it can cope with non-identifiable models. The earliest application of Bayesian models to

latent class data was a paper by Evans et al. (1989) who fitted a latent class model to a 2x2

contingency table. Traditionally, latent class analysis has been concentrated to the case

where there are at least three manifest variables, because of the issues surrounding model

identifiability (Goodman (1974)). Latent models with two manifest variables have been

predominantly discounted because they rely on a number of assumptions to ensure identi-

fiability. What Evans et al. (1989) do is to place (both informative and non-informative)

priors on the latent class and conditional response probabilities and then obtain posterior

distributions of the model parameters using MCMC techniques. Chapter 12 of Congdon

(2005) illustrates how to fit Bayesian latent class models to data, particularly for the case

when there is local dependence.

In classical inference the data are taken to be random, with the population parameters

taken to be fixed, while in Bayesian inference the parameters themselves follow a proba-

bility distribution. This allows the consideration of models in the Bayesian paradigm that

will otherwise will not be plausible in the classical framework because the Bayesian latent

class model works by augmenting the data to produce a ‘known’ complete data likelihood.

(Congdon, 2005, page 437) does go on to caution about the need to specify suitable priors

to cope with model identifiability - i.e. to ensure that the resulting Bayesian model makes

substantive sense.

3.13 Conclusion

The literature on capture-recapture is expansive and although it was historically confined

to biological populations, the technique has currently been used in a wide range of appli-

cations from computer science to psychology to astronomy. In all these applications, the

common strand is that underenumeration exists and needs to be estimated in order to

gain an accurate representation of the population size. This chapter, has therefore sought

to unify the existing methodology from a number of seminal sources and discuss their ap-

plication to a triple system census, focusing on distinguishing between biases introduced

into the population estimates through heterogeneity and dependence, and additionally

quantify the level of over-enumeration.

In the 1991 UK census, the Census Validation Survey was used to estimate the level of

underenumeration in the Census, but it was assumed that this survey was perfect at finding

those individuals and households missed by the Census, which led to an under-estimation
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of the number of people missing (Brown et al. (1999)). In the 2001 census, a larger

scale survey was implemented, and an extra assumption was made that individuals and

households could be missed by this survey, known as the Census Coverage Survey, as well

as by the Census. Further, if it is assumed that the probabilities of being counted by either

the Census or Survey are homogeneous across the population, in a given post-stratum, and

there is independence between the Census and Survey, then the estimate of those missed

by both the Census and Survey can be found. By careful choice of factors known to affect

an individual’s probability of being counted, post-stratification can be used to split the

population into sub-groups (post-strata), so that there is internal homogeneity within each

sub-group. The independence assumption was difficult to guarantee, although there was

operational independence between the Census and Survey processes (Brown, Abbott and

Diamond (2006)). It is here that the thesis seeks to develop statistical methods that can

adjust census counts for both underenumeration and overenumeration, in the presence of

dependence through triple system estimation.

With information from three sources, it becomes possible to model the observed counts

within a log-linear framework, and use the observed association patterns between the three

lists to estimate the missingness. Overenumeration in the UK is generally perceived to

be negligible in comparison to underenumeration; this was certainly a viable assumption

under dual system estimation, but is clearly not true in triple system estimation. This is

because the third, administrative list, is fraught with duplicates and so overenumeration

does exist, and the objective is to quantify this. It has been shown in this chapter that

it is possible to formulate a latent class log-linear model that can allow for the estimation

of both the level of underenumeration and overenumeration. However, the issue of model

identifiability imposes some restrictions on the model, that can be specified.
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Chapter 4

Evaluation of Different Triple

System Estimators

4.1 Introduction

The independence assumption in dual system estimation is heavily relied upon, but apart

from Brown, Abbott and Diamond (2006) - and earlier by Bell (1993) in the US - there

is currently no comprehensive work carried out to ascertain the performance of the dual

system estimator in the presence of dependence. As it is not possible to estimate the

level of dependence in a dual system framework directly, there is the need to use some

ancillary information in order to test this. Accordingly, by means of information from

administrative sources, Brown, Abbott and Diamond (2006) measured and adjusted for

the dependence between the Census Coverage Survey and the Census counts in the UK

2001 census. They found that in most cases when coverage in both population counts are

reasonably high the dual system estimation methodology was robust enough to cope with

low levels of dependency.

However, an actual grasp of what constitutes ‘low’ and ‘high’ levels of dependency

and ‘low’ and ‘high’ levels of coverage is something that has not been fully realised. Thus

a simulation exercise was undertaken to seek to shed light on this, not just in the dual

system (with data from the Census and Survey) but in a triple system framework when

there is, in addition, data from a Third List as well as from the Census and Survey. The

results of the simulation exercise are presented in this chapter. The chapter first outlines

the motivation behind the Simulation Study and details how it was implemented and also

looks at how the different estimators of the population fared in the presence of erroneous

enumerations.

It must be noted that, in the chapter, it is assumed that the only dependence under

consideration arises from the fact that the probability a person is counted or missed by a

particular list is related to the probability that the same person is counted or missed on a
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different list. There is another source of dependence (not considered here) due to hetero-

geneity between individuals, who because of differences in their behavioural, demographic

or other characteristics inherently, have different probabilities of being observed on any

particular list. Also, it is assumed that the saturated model here is the one with no three-

way interaction, i.e. the homogeneous association model. This is done for two reasons.

Firstly, like the assumption of independence in a dual system setting, this assumption is

required in order to be able to estimate the missing cell. Secondly, and more pertinently,

by design the simulations were on the basis that the Third List was independent of the

Census and Survey - implying that the observed cells contain sufficient information for the

estimation of the population total. Thus it is possible to posit more complicated models

(as will be shown), however these models will be anticipated to over-fit the observed data.

4.2 Simulation Study

The simulation study generated a population of 1000 individuals. Each individual was

given a probability being counted in the Census, the Survey and the Third List. The indi-

viduals are then cross-classified into a 2x2x2 table according to their absence or presence

on the three lists. Since the object is to find the individuals who fall into the (0, 0, 0)-cell

corresponding to those missed in all three lists, attention is restricted to the incomplete

table representing the individuals who are observed.

Different coverage probabilities are considered, and these take values of 30%, 50%,

70% and 90%. Now, since dual system estimation makes the assumption that there is

no systematic relationship between the probability of an individual being counted in the

Census and the same individual being counted in the Census Coverage Survey, the ob-

jective is to determine how robust a method it is to estimate the population size when

some dependence is introduced. The dependence is represented by the odds ratio and took

values in {1, 1.2, 1.4, 1.6, 1.8, 2}. Additionally, in order to investigate the performance of

the population estimators at different odds ratios the reciprocals of the dependency were

considered, i.e. in { 1
1.2 ,

1
1.4 ,

1
1.6 ,

1
1.8 ,

1
2}.

Therefore, for given coverage and dependency levels a 2x2x2 contingency table is sim-

ulated on the basis of whether or not an individual is counted or missed in the Census,

Survey and the Third List. Obviously since in reality the people missed by all three lists

are unknown the n000 cell count is discarded, and the remaining seven cells are taken to

be the ‘observed’ table of counts in the simulated population. The procedure is to then

estimate the missing cell via the EM algorithm. The motivation for using the EM algo-

rithm to find the missing cell count relies on the fact that the cell counts (the observed

and unobserved) have some structure; so what is required is to find this structure. Using

log-linear modelling, it becomes possible to posit different models depending on the per-

ceived structure in the contingency table.
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Since in a capture-recapture contingency table there is one cell missing by definition,

the EM algorithm becomes useful. One often levelled criticism in capture-recapture mod-

elling is that the estimation of the population size is based on a model that is deemed to

closely fit the observed data from the incomplete contingency table which can be biased

simply because the underpinning assumption is that the model describing the observed

data also describes the unobserved individuals. Unfortunately there is no way this assump-

tion can be checked, but it is fairly reasonable to assume, under the chosen circumstances,

that this assumption holds.

Based on the best-fitting model to the observed cells in the contingency table, an

estimate is found for the unobserved cell under this posited model. In essence the EM

algorithm is used to estimate the unobserved cell such that the posited structure modelling

the relationship between the observed cells remains the same. This is accomplished by

the M-step using maximum likelihood estimation to fit the chosen log-linear model to the

data, given an initial estimate of the number of people in the unobserved cell. Since none

of the three lists achieve a 100% count of the population there is at least one person in the

missing cell, but the EM algorithm starts the iterative process with an initial estimate of

zero. The E-step then finds the conditional expectation under the model of the missing

cell given the observed data, and this initial estimate. The M-step and the E-step are

repeated giving new estimates of the unobserved cell until the change in the old and new

estimates are infinitesimally small.

In the exercise three triple system estimators and the dual system estimator were

considered. For each simulated data set, these four estimators were used to obtain the

missing cell count, n000 and the total population size, N . The first triple system estimator

considered is the mutual independence model (TSE1) which assumes that all three lists

are independent of each other. It is important to see how this mutual independence model

fares in comparison to the dual system estimator when there is some dependency. The sec-

ond triple system estimator was the pairwise dependence model (TSE2). Here the model

assumes that the Census and Survey are independent of the Third List. The third triple

system model (TSE3) considered was the ‘saturated’ model, i.e. the homogeneous asso-

ciation model with all pairwise relationships between the Census, Survey and Third List

present. Finally all three models were compared to the dual system estimator (DSE). Of

interest was to determine if all the triple system estimators always outperformed the dual

system estimator, regardless of the amount of dependence or the coverage probabilities.

In order to assess the performance of each of these estimators, the bias and the standard

error were calculated. The process was repeated multiple times1 to yield the average bias

and standard error.

On a cautionary note, the data has been simulated under dependence between the

Census and Survey, and an assumption is made that bringing the Third List into the
1In most cases there were 10,000 iterations, but for a minority of cases this was computationally unfea-

sible and the number of iterations were reduced to 2,000.
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frame does not introduce additional dependence. This assumption seems fairly reasonable

in a UK context because the only feasible individual-level administrative list under con-

sideration in a triple system scenario is the health records list. Further, the mechanism

used to collate health data is sufficiently different to that used in the Census or Survey for

it to be reasonably assumed that the Third List is independent of the Census or Survey.

In other words, the coverage of an individual on the health register (referred to as the

Third List) does not depend on the individual’s coverage in the Census or Survey. This

assumption will not strictly hold in other countries. For example, in the US, the admin-

istrative list used by Zaslavsky and Wolfgang (1990, 1993) was put together to better

count those sub-populations who were difficult to enumerate in the Census and Survey.

As such, in this context there is not only dependence between the Census and Survey,

but the administrative list could be related to the Census, the Survey or both. However,

the log-linear modelling framework proposed here is flexible enough to include additional

dependence terms, if required (as shown in the next chapter).

As anticipated, the dual system estimator (DSE) is the most biased in all cases, when

there is dependence and TSE2 and TSE3 are the least biased. However, TSE3 has larger

standard errors and in some cases seems to over-estimate the population size. This is

intuitive given that TSE3 is fitting the saturated model when a simpler model (with only

the pairwise dependence between the Census and Survey) will suffice. It follows that any

of the conditional independence models (i.e. the model with pairwise dependence terms

between the Census and Survey and Census and List or the one with Census and Survey

and Survey and List terms) may be unbiased, but will suffer from poorer precision when

compared to the simpler model.

Given that TSE2 and TSE3 are virtually unbiased, by definition, the evaluation of

the simulation exercise will be concentrating on TSE1 and how it performs for different

levels of coverage and dependence. This is because it is imagined that the introduction

of the Third List will improve the population estimates, but it is difficult to quantify how

beneficial the Third List actually is. It becomes clear, however, that when there is high

enough coverage on the Census and Survey, the Third List does not improve on the DSE

a great deal, as shown in the plots below.

Figures 4.1 and 4.2 show how different coverage levels on the administrative list affect

the simple triple system estimator that assumes independence between all three lists,

TSE1. It is obvious that TSE1 is expected to be a biased estimator of the population size

when there is some simulated dependence between the Census and Survey. This bias is

positive when the dependence2 γ > 1 and negative when γ < 1. In other words, when the

bias is negative a person who is missed by the Census is more likely to be missed by the

Survey. On the other hand, when the bias is positive then a person who is missed by the

Census is more likely to be counted by the Survey. It is difficult to say which of the two is

more likely to happen. Nevertheless, Figures 4.1 and 4.2 show that this bias is relatively
2where γ = π00π11

π01π10
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small (all the estimators have biases smaller in magnitude than 2.5%) when coverage is

suitably high enough for the chosen range, {1
2 < γ < 2}. On both graphs the bias under

the DSE is plotted as well to give some idea as to the rewards of using the Third List.

As intuitively expected, when there is independence all the estimators are unbiased, but

assuming that the simulated dependence is 2 then the DSE will under-estimate the size of

the missing population by a factor of 2. This follows considering that the estimate of the

missing cell under DSE is given by n̂00 = n01n10
n11

, when it should actually be n̂00 = γ n01n10
n11

.

Figure 4.1: Performance of TSE1 for varying levels of Third List coverage.
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Moreover, Figure 4.1 shows that the benefits of an administrative list when the Census

achieves a population coverage of 90% while the Survey achieves 70% coverage (which

is what was roughly achieved in the 2001 UK census) are relatively minimal in that the

DSE in the most extreme case of dependence is actually relatively unbiased, with an

absolute bias of 2.2%. However, the benefits of triple system estimation in the presence

of dependence become clear in Figure 4.2 which show a somewhat significant reduction in

the bias, even when the Third List only covers 30% of the population. Although it must

be said that a poor covering administrative list becomes less useful when it is realised

that, as is often the case in administrative records, there are erroneous enumerations.

So the advantages of bringing in an administrative list that achieves poor population

coverage are outweighed by the disadvantages due to the requirement to remove erroneous

enumerations from the population estimate. The effect of erroneous enumerations on the

population estimates are considered later on in the chapter.

For Figure 4.1 it is assumed that the coverage probability in the Census is 0.9 and the

Survey coverage probability is 0.7. Here given γ = 2 the relative bias for the simulations

86



Figure 4.2: Performance of TSE1 for varying levels of Third List coverage.

pcen = 0.5   psur = 0.5 

-20

-15

-10

-5

0

5

10

15

20

25

1/2 1/1.8 1/1.6 1/1.4 1/1.2 1 1.2 1.4 1.6 1.8 2

dependence

bi
as

 (%
)

padm=0.3
padm=0.5
padm=0.7
padm=0.9
DSE

when the Third List coverage probabilities are 0.3, 0.5, 0.7 and 0.9 are found to be −1.35%,

−0.86%, −0.46% and −0.11%. By comparison the DSE has a relative bias of −2.17%.

For Figure 4.2 on the other hand, the Census and Survey coverage probabilities are both

taken to be 0.5, and the relative bias when the simulated dependence is 2 for administrative

list coverage levels of 0.3, 0.5, 0.7 and 0.9 are −7.02%, −4.07%, −2.14% and −0.57%.

Apart from when the Third List has a ‘poor’ population coverage of 0.3, the absolute

relative bias in all remaining cases is beneath 5%. This compares favourably to the relative

bias for the DSE of −14.62%.

The presence of the administrative list does improve on the population estimate; more

so, this improvement can be shown to be particularly significant when the Census and

Survey fail to achieve reasonable population coverage. When there is 50% coverage in the

Census and Survey, the DSE bias is −14.62% for γ = 2 and 20.93% for γ = 1
2 . However,

the bias for an administrative list with coverage of 30% is −7.02% and 8.00%, respectively,

which is roughly equivalent to a two-thirds reduction in bias when γ = 2 and a half for

γ = 1
2 . Furthermore, increasing the administrative list coverage to 50%, leads to a bias of

−4.07% and 4.39% (for γ = 2 and 1
2), which is almost a 50% improvement on the TSE

bias and roughly 80% on the DSE bias.

Another observation from the simulation results concerns the symmetry. One of the

reasons behind choosing reciprocals was to look at the behaviour about dependence of 1

(i.e. independence) since there is no bias when γ = 1 but the bias is positive for γ between

(0, 1) and negative for γ between (1, ∞). The relative bias for γ = 1
2 in Figure 4.1 when

the Third List coverage was 0.3, 0.5, 0.7 and 0.9 was respectively 1.10%, 0.75%, 0.35%
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and 0.11%. The DSE bias was 1.79%. However, the relative bias for dependence, γ, of 2

is −1.35%, −0.86%, −0.46% and −0.11%, with a DSE bias of −2.17%. This shows that

there is symmetry for high coverage probabilities, but this symmetry diminishes as the

coverage probability drops. This asymmetry is more evident in the dual system estimator,

as shown in Figure 4.2 where the relative biases under TSE1 at 2 and 1
2 are −0.59%

and 0.59% when the administrative List coverage is 0.9; −2.14% and 2.21% when the

List coverage is 0.7; −4.04% and 4.39% when the List coverage is 0.5; and −7.02% and

8.00% when the List coverage is 0.3. For the DSE the relative bias is 20.93% when the

dependence is 1
2 compared to −14.62% when the dependence is 2. The lack of symmetry is

more apparent when looking at higher levels of dependence. Table 4.1 shows the results of

the relative biases when there is a simulated dependence between the Census and Survey

of 1
8 and 8, and some asymptotic properties of the bias of the DSE are presented below.

Trivially, it may be observed that the TSE biases are bounded by the DSE.

Table 4.1: Relative bias at simulated dependence of 1
8 and 8

Dependence

γ = 1
8 γ = 8

pcen=0.5, psur=0.5

padm=0.3 25.440% -17.387%

padm=0.5 13.217% -10.997%

padm=0.7 6.287% -5.760%

padm=0.9 1.735% -1.691%

DSE 91.718% -32.233%

pcen=0.9, psur=0.7

padm=0.3 2.366% -3.981%

padm=0.5 1.513% -2.580%

padm=0.7 0.811% -1.484%

padm=0.9 0.214% -0.409%

DSE 3.976% -6.389%

The limiting behaviour of the dual system estimator can also be investigated to give

some indication of how the triple system estimators behave since Figures 4.1 and 4.2 show

that the triple system estimator biases lie within the dual system estimator bias. This is

reasonable in view of the fact that the dual system estimator is broadly not as efficient

as the triple system estimators. Given that the triple system estimators are complicated

functions of γ, it is not easy to ascertain how the different TSEs change with varying

dependencies and coverage probabilities. However, simple expressions can be found for

the DSE, at varying levels of dependence and coverage. Furthermore, since it has been

shown that the DSE bounds the TSEs, obtaining expressions of how the DSE behaves as γ

tends to zero and infinity, does provide some information as to the asymptotic behaviour

of the TSEs.
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Recall that in Chapter 3, the Census and Survey coverage probabilities were defined

to be π1+ and π+1, and the dependence, γ, between the two lists is γ = π00π11
π10π01

. It was

shown that another expression for γ is

γ =
π11 (1− (π1+ + π+1 − π11))

(π1+ − π11) (π+1 − π11)
. (4.1)

Now, (4.1) can be expressed in terms of a quadratic function of π11,

π11
2 (1− γ) + π11 (1− π+1 − π1+ + γ (π+1 + π1+))− γπ1+π+1 = 0.

Therefore, supposing the coverage probabilities π1+ and π+1 and dependence, γ, are

known, then

π11 =
− (1− π+1 − π1+ + γ (π+1 + π1+))±

√
(1− π+1 − π1+ + γ (π+1 + π1+))2 + 4 (1− γ) (γπ1+π1+)

2 (1− γ)
.

(4.2)

After obtaining the value of π11, the rest of the probabilities in the contingency table,

Table 4.2, can be found since the marginal probabilities, π1+ and π+1 are already known.

In view of the fact that π11 can be expressed as a function of the dependence, γ, it be-

comes possible to ascertain the limiting behaviour of the relative bias as γ tends to zero

and infinity. It must also be noted that even though there is some dependence between

the Census and Survey, these two are assumed to be independent of the Third List.

Table 4.2: Probabilities from 2x2 contingency table

π11 π01 π1+

π01 π00 (1-π1+)

π+1 (1-π+1)

Now, for the case when the Census (π1+) and Survey (π+1) coverage are respectively

90% and 70%, then Equation (4.2) simplifies to

π11 =
0.6− 1.6γ ±

√
(1.6γ − 0.6)2 + 4 (1.6γ) (1− γ)

2 (1− γ)
. (4.3)

Similarly when the Census and Survey coverage probabilities are both 50%, then

π11 =
−γ ±

√
γ2 + 4γ (1− γ)

2 (1− γ)
. (4.4)

What happens to π11 as γ tends to zero?

As the dependence between the Census and Survey becomes smaller,

lim
γ→0

π11 = 0.6 for π1+ = 0.9 and π+1 = 0.7

or

= 0 for π1+ = 0.5 and π+1 = 0.5.
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Generally, for any set of marginal probabilities {π1+, π+1} as γ tends to zero, the algebraic

limit of (4.2) simplifies to

lim
γ→0

π11 =
(1− π1+ − π+1)± (1− π1+ − π+1)

−2
= max {0, (π1+ + π+1 − 1)}

since π11 ≥ max {0, (π1+ + π+1 − 1)}.

Now having found the probability of being counted by both, π11, the other three

cell probabilities can be found using the marginal probabilities, π1+ and π+1. Thus for

π1+ = 0.9 and π+1 = 0.7 then π11 = 0.7, the four cell probabilities are π11 = 0.6, π10 = 0.3,

π01 = 0.1 and π00 = 0. Also, for π1+ = 0.5 = π+1, {π11, π10, π01, π00} = {0.0, 0.5, 0.5, 0.0}.
Using the fact that the Third List is independent of both the Census and Survey then

πijk = πij+π++k. So assuming the Third List has coverage of 70%, the resulting eight

cell probabilities for the case when the Census and Survey coverage is 90% and 70% are

{0.420, 0.180, 0.210, 0.090, 0.070, 0.030, 0.000, 0.000}. For a population of 1000 people the

estimate of the population under the DSE is given by
n1++n+1+

n11+
= (420+180+210+90)×(420+180+70+30)

(420+180) = 1050. The relative bias is therefore 5%.

Conversely for Census and Survey coverage of 50% and Third List coverage of 70%, the

ensuing eight cell counts are {0, 0, 350, 150, 350, 150, 0, 0}. Since n11+ = 0, the ‘usual’

DSE does not work as it gives an undefined estimate, and so the Chapman corrected dual

system estimator (Chapman (1951))

N̂C =
(n1++ + 1) (n+1+ + 1)

(n11+ + 1)
− 1 (4.5)

is used. This yields a population estimate of 251,001 and a relative bias of 2,500%.

What happens to π11 as γ tends to infinity?

As the dependence increases, then it can be demonstrated that

lim
γ→∞

π11 = 0.7 for π1+ = 0.9 and π+1 = 0.7

or

= 0.5 for π1+ = 0.5 and π+1 = 0.5.

In general for any given marginal probabilities π1+ and π+1, as γ tends to infinity the

expression (4.2) simplifies to

lim
γ→∞

π11 =
(π1+ + π+1)± (π1+ − π+1)

2
= min {π1+, π+1}

since π11 ≤ min {π1+, π+1}.

So for the case with Census coverage of 90% and Survey coverage of 70%, then

π11 = 0.7, π10 = 0.2, π01 = 0.0 and π00 = 0.1. Further using the independence of
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the Third List, and assuming coverage of 70%, the eight cell probabilities are

{0.49, 0.21, 0.14, 0.06, 0.00, 0.00, 0.07, 0.03}. Under the DSE with 1000 people the esti-

mated population is 900, leading to a bias of −10%. Likewise, for Census, Survey

and Third List coverage of respectively 50%, 50% and 70%, then π11 = 0.5 = π00 and

π10 = 0 = π01. Accordingly the eight cell counts assuming a population of 1000 people is

{350, 150, 0, 0, 0, 0, 350, 150}. This gives a DSE of 500, and a relative bias of −50%.

Lastly, it is evident from the limiting behaviour of the DSE relative bias that there is a

lack of symmetry as the dependence, γ, gets larger or smaller. This has been demonstrably

shown by the fact that the lower and upper limits of the relative bias of the DSE are

(-5%, 10%) for 90% Census coverage and 70% Survey coverage, and (-50%, 2500%) for

Census and Survey coverage of 50%.

The preceding discussion has investigated the bias of the different population estima-

tors. However, the bias is concerned with how accurate the estimator is in measuring the

quantity of interest, and is just one measure of an estimator’s performance. The variance

is another measure which looks at how precise this estimator is. Clearly, an estimator

may be precise but inaccurate and vice versa. Thus to determine which of the estimators

was the best the mean squared error can be used (Cox and Hinkley, 1974, page 253). In

essence, the mean squared error rewards small biases but penalises larger standard errors.

It is therefore a useful tool in comparing the performance of the dual and triple system

estimators. In an ideal world, the best estimator will have the lowest bias and the lowest

variance. The simulation exercise showed that on the one hand though TSE3 is unbiased

it comes with large standard errors, while on the other hand TSE1 has some bias, but

the standard errors may be small for some cases. So the objective is to compare which of

these estimators performs the best, under different scenarios.

Figures 4.3 and 4.4 compare the mean squared error for the different triple system

estimators, under the scenarios detailed above when the Census and Survey coverage

probabilities of 0.9 and 0.7, and 0.5 and 0.3. The first thing of note is that the mean

squared error for TSE3 is larger than the respective mean squared errors for TSE1 and

TSE2, which supports the assertion that TSE3 is an inefficient estimator. Although,

TSE3 like TSE2 is relatively unbiased, the associated large variance of the estimator has

the effect of inducing a high mean squared error, in comparison with the biased but low

variability TSE1. When the coverage in the Census, Survey and Third List are high then

there is very little to distinguish between the three estimators, in terms of their mean

squared error. It can also be noticed that as the Third List coverage probability increases

there seems to be very little difference between the mean squared error plots for TSE1

and TSE2. Additionally, as the Census and Survey coverage get higher, it appears that

TSE3 becomes pejoratively less efficient when compared to TSE1 and TSE2.

In both figures the dual system performance is included, and from Figure 4.3 it can

be seen that when the Census and the Survey respectively cover 90% and 70% of the

population but the Administrative List is poor (at 30%), then the DSE copes well with

91



Figure 4.3: Comparison of the root mean square error for different triple system estimators and the

dual system estimator (for pcen=0.9 and psur=0.7).
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Figure 4.4: Comparison of the root mean square error for different triple system estimators and the

dual system estimator (for pcen=0.5 and psur=0.5).
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failures of the independence assumption. Here the DSE, although slightly biased has the

lower RMSE than the two unbiased TSEs. Indeed, for 1
1.2 < γ < 1.2 the DSE is a better

estimator, and for 1
1.4 < γ < 1.4 the biased triple system estimator, TSE1, is the most

efficient. Even when the Census and the Survey do not achieve a decent coverage of the

population (i.e. both have 50% coverage) and the Third List achieves 30%, TSE1 is the

most efficient estimator of the population for 1
1.2 < γ < 1.2. From both figures, it can be
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inferred that only at 50% coverage of the Administrative List is the DSE less efficient than

all the TSEs at all levels of dependence. Indeed, the bottom right plots in both figures

representing an Administrative List coverage of 90% show that the mean squared error of

all the TSEs is much lower than that of the DSE.

There is some degree of reasonableness to these results. For the case when both the

Census and Survey achieve high coverage of the population, the Administrative List does

not have that many people to find (for a population of 1000 people, with 90% Census

coverage and 70% survey coverage, even with dependence of 2, there are only 44 people

expected to be found, whereas with 50% coverage there are now 293 people3.

What the mean squared error plots are crudely saying is that the simplest triple system

estimator (i.e. TSE1) performs reasonably well as it has the lowest root mean squared

error for all dependency levels - despite the fact that TSE1 is biased, the variance is not

comparatively smaller than the other less biased estimators. Further, even though the best

model is TSE2, TSE1 is consistent enough as an estimator of the population size to merit

consideration. There could be an argument to always fit TSE3 to the data since it has

an easy close-form expression, i.e. n̂000 = n111n100n010n001
n110n101n011

. However, the above simulation

exercise has shown that even when there is relatively high dependence between the Census

and Survey, doing this is not the most efficient way of determining the missing cell. A

better way is to fit TSE1, i.e. n̂000 = n̂0++n̂+0+n̂++0

N̂2
which unfortunately does not have a

closed-form solution.

Nonetheless, this result becomes useful because TSE1 can be re-written in an alter-

native way when it is noticed that mutual independence is synonymous with all pairwise

independence, so the probability of being found in the (i, j, k)th cell in the 2x2x2 contin-

gency table is given by

πijk = πi++π+j+π++k.

This can be re-written as

n̂ijk

N̂
=
n̂i++n̂+j+n̂++k

N̂3
,

and so the estimator for the population size under mutual independence becomes

N̂ =

√
n̂i++n̂+j+n̂++k

n̂ijk
. (4.6)

Now, since the marginal sums are sufficient statistics under mutual independence, the

unknown population size can be thought of in terms of only the individuals who were

counted at least once on any of the lists,

¯̂
N =

√
n1++n+1+n++1

n111
. (4.7)

3for γ = 2, n̂00+ = 44 when pcen = 0.9, psur = 0.7 and n̂00+ = 293 for pcen = psur = 0.5
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Equation (4.7) is an interesting triple system estimator, as it implies that when it is

believed that there is mutual independence between the three counts of the population

then the unknown population size can be estimable by only using the observed marginal

totals, n1++, n+1+ and n++1, which is admittedly much more simpler than the previous

mutual independence estimator (for which it must be remembered no closed-form solution

exists). The obvious advantage of this estimator unlike the maximum likelihood estimator

N̂ , is that ¯̂
N has a closed solution and so can be evaluated without the need for a log-linear

model, or the use of the EM algorithm. Darroch (1958) mentions that the above estimator

(which will be referred to as the naive TSE1) is not the maximum likelihood estimate of

the population size. However, is it an ‘unreasonable’ estimator?

An investigation was, therefore, undertaken to ascertain how differently the ‘näıve’

mutual independence TSE fared when compared to the mutual independence TSE that

was found by maximizing the likelihood. The results of which are presented in Figures

4.5 and 4.6. Again, when coverage in all the three lists is high enough (above 70%) then

the ‘näıve’ estimator is not that biased when compared to the ML estimator. Also, as the

dependency term, γ moves away from 1 (i.e. independence) the bias in the ‘näıve’ estimator

becomes greater. Figure 4.6 shows, however, that when the coverage is poor and there is

dependence then the triple system estimator that fails to account for this dependence will

lead to a biased estimate of the population size. In fact, at high levels of dependence and

low coverage levels this näıve TSE is almost as bad as the DSE. Another observation is

that the ‘näıve’ estimator can give negative values of the missing cell, unlike the MLE. As

a demonstration, supposing the census and survey coverage is 50%, but the administrative

coverage is 90%, and γ = 2, then the seven observed cells are {21, 21, 29, 264, 186, 186, 264},
and there are 971 people observed in total. For a simulated population of 1000, the correct

estimate of the missing n000 is 29 people. Yet, the estimate of the total population under

the ‘näıve’ estimator, ¯̂
N , is 923, which gives an estimate of n000 = −48. In contrast, under

the MLE, N̂ = 994, which although biased gives a positive estimate of n000. This is a flaw

in the ‘näıve’ estimator similar to how the DSE behaves when there is poor coverage in

the Census and Survey but good coverage on the Administrative List.

Figures 4.7 and 4.8 plot the standard errors of the ‘näıve’ and maximum likelihood

independence triple system estimators. For both plots the standard errors of the maximum

likelihood TSE are always lower than those of the ‘näıve’ TSE, with the ML TSE standard

errors being roughly between a half to a quarter of the ‘näıve’ TSE. This highlights the

fact that although the biases of the ‘näıve’ and ML independence triple system estimators

may be roughly similar, the spread of the ‘näıve’ TSE is much wider than the MLE.

So the point to make here is that though {ni++, n+j+, n++k} may be sufficient statis-

tics of the mutual independence model, {n1++, n+1+, n++1} are unfortunately not. Indeed

since the variance of the MLE is much smaller than the ‘näıve’ estimator it can be con-

cluded that this ‘näıve’ TSE, although simple to calculate is not very efficient.
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Figure 4.5: Relative Bias of the Mutual Independence Triple System Estimators (for pcen=0.9 and

psur=0.7).
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Figure 4.6: Relative Bias of the Mutual Independence Triple System Estimators (for pcen=0.5 and

psur=0.5).
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Nevertheless, in practical terms, the ‘näıve’ estimator does merit consideration, par-

ticularly when there is high coverage in all three lists, as it has been shown to be almost

unbiased. Finally, there are a number of ways in which the variance can be found. For the

simulation exercise, it was possible to obtain the variance either empirically (directly from

the results of the simulations) or by employing asymptotic formulae (given in Chapter 3).

These asymptotic results rely on there being a large enough sample for asymptotic theory

to hold. However, there has been some concern raised by some authors that in capture-
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Figure 4.7: Standard Errors of the Mutual Independence Triple System Estimators (for pcen=0.9 and

psur=0.7).
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Figure 4.8: Standard Errors of the Mutual Independence Triple System Estimators (for pcen=0.5 and

psur=0.5).
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recapture, the assumption of normality could be unrealistic, since in reality there is a

relatively flat likelihood surface leading to some positive skewness (Coull and Agresti

(1999), (Agresti, 2002, page 513)).

Figures 4.9 and 4.10 show that the asymptotic and empirical standard errors are sim-

ilar for all three triple system estimators and the dual system estimator. This goes to

demonstrate that, in the simulations, the assumption of normality is reasonable. So albeit

the normal approximation may have some limitations, it was found that for the Simula-
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tion Study, this approximation did not have a negative influence on the calculation of the

variance. However, it can be noticed that for the dual system estimator the differences be-

tween the asymptotic and empirical standard errors become more pronounced the further

away from independence. This is another intuitive result stemming from the assumptions

under which the asymptotic variance of the dual system estimator is calculated by using

the Delta method. The Delta method for the dual system estimator asymptotic standard

error relies on the cell counts being independent binomially distributed, which is perfectly

valid under independence but not necessarily so when there is dependence between the

Census and Survey. Nonetheless, the estimated precision of the dual system estimator

using the asymptotic methods is reasonably good, and again this is particularly true when

the coverage levels are high. Also, the DSE standard errors get larger as γ → 0, whereas

the TSE standard errors get larger as γ →∞.

Furthermore, Figures 4.9 and 4.10 show that TSE1 has lower standard errors than

the other estimators. So it can be concluded that despite TSE1 being relatively more

biased than the other two triple system estimators considered during the simulation, the

variance of TSE1 seems sufficiently smaller than the TSE2 and TSE3. Hence, the reason

why the MSE plots (see Figures 4.3 and 4.4) illustrate that TSE1 has a lowest mean

squared error in most cases. Indeed, when the Third List has poor coverage (i.e. 30%)

the standard errors of the (biased) DSE are much lower the (unbiased) TSE3, which fits

the saturated model to the data. This implies that on average, the collection of estimates

of the population total under the DSE are closer to the true population total than the

estimates found using TSE3, even when there is some dependence between the Census and

Survey. In conclusion, it appears that at moderate levels of dependence, the independence

model (TSE1) is the most efficient. This is because, the dependence model (TSE2) and

the ‘saturated’ homogeneous association model (TSE3) although unbiased are susceptible

to high variability.

As a last point, there is a school of thought that suggests a move away from the census

(here, referring to the traditional method of enumeration), with more of an emphasis on

administrative records owing to the challenges of achieving accurate coverage of the pop-

ulation (Keohane (2008)). If the Administrative List has a comparatively higher coverage

of the population than the Census, then it might be better for it to replace the Census.

There is also a definite case to be made for the argument that an Administrative List to be

more likely to be independent of the Survey or Census. So dual system estimation could

be employed, with the Administrative List replacing the traditional census enumeration

as the primary source. The major shortcoming of this argument lies in the existence of

erroneous counts found on the Administrative List, which currently cannot be easily re-

moved. Thus, unless there is an explicit adjustment for the overenumeration that results

from using an Administrative List it will be difficult to produce geographically-accurate

population estimates.
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Figure 4.9: Comparison of the standard errors of the dual and triple system estimators (for pcen=0.9

and psur=0.7).
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Figure 4.10: Comparison of the standard errors of the dual and triple system estimators (for pcen=0.5

and psur=0.5).
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4.3 Impact of Erroneous Enumerations on the Estimators

4.3.1 Erroneous Enumerations only in the Third List

The simulation results presented thus far were based on the assumption that there were

no erroneous counts on any of the three lists. Whilst it may be reasonable to assume that

the Census and Survey clerical matching and checking procedures sufficiently removed

any fictitious enumerations and duplicates, it is difficult to allow this assumption for the

administrative list. One overarching factor lies in the definition of the ‘usual resident’

population, which although will be the same for the Census and the Survey, may be

different for the Third List. As such, though the population counts found by the Census

and Third List at an aggregate level will be similar, when looking at a sub-aggregate

level there will be differences which may have an impact. Health records, which are

currently the most feasible administrative list that can be used as the Third List in the

UK, suffer from overenumeration due to their failure to remove people who have moved.

In 2001, the Survey counted people at their ‘usual residence’. Moreover, the enumerators

collected additional information on other possible locations where individuals may have

been enumerated in the Census. If the same takes place in 2011 for the Census and Survey,

but the Third List is brought in so as to implement triple system estimation, then there

needs to be an explicit adjustment for overenumeration.

The 2001 census made determined efforts to clearly enumerate movers in the correct

place. This was because the treatment of movers becomes important especially when con-

sidering how operational independence between the Census and Survey was implemented

in the One Number Census design. If the first and second counts of the population are to

be carried out in accordance with capture-recapture methodology in the strictest sense,

then the Census and Survey will have to take place on the same day. However for opera-

tional independence to be achieved, it is not possible for the Census and Survey to both

be in field at the same time. Thus in 2001 the Survey was carried out roughly three weeks

after the Census was completed. It becomes inevitable that people will move in or out of

the sampled areas between the time the Census was carried out and the Survey interview-

ers went into the field. Consequently, there was a procedure where some information was

collected on out-movers and in-movers. This information was then matched to enable each

individual to be counted at one, and only one, address. Although this proved to be fairly

successful, when there are three lists this becomes extraordinarily difficult to implement.

More so, given that there is a lag between the time people move and when the Third List

is updated to take account of this move, the problem of people enumerated in the wrong

address is exacerbated in triple system estimation.

Bearing this in mind, the next part of the simulation exercise therefore looked at the

effect of erroneous enumerations on the different estimators. For dual system estimation, it

is envisaged that the data matching and processing of the Census and Survey will remove

any duplicates or fictitious people, and so every individual in the resulting 2x2 table can
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be considered to be ‘real’. This is because, for the sample of areas in the Survey, any

incorrect, fictitious or otherwise erroneous data are duly removed before producing the

table of people missed or counted in the Census or Survey. When information from the

Third List is used, there will be both ‘erroneous’ and ‘real’ individuals in the resulting

2x2x2 table. Mostly the erroneous individuals will be people who are counted in the

wrong location, for example students, children of divorced parents, or highly mobile young

people. So in the design of the simulation exercise another assumption was initially made.

Given that the 2x2 table representing people counted or missed by the Census and Survey

has been cleaned of any erroneous enumerations, the only potential source of erroneous

enumerations should be realistically speaking through the Third List. Subsequently, an

assumption was made that erroneous enumerations will be found only in the cell count

representing those people who are counted on the Third List but missed by both the

Census and Survey, i.e. in the (0,0,1)-cell. For that reason, erroneous counts were added

to the (0,0,1)-cell, and the different population estimators - DSE, TSE1, TSE2 and TSE3

- were re-calculated.

For each simulation, the erroneous enumerations were added to the (0,0,1)-cell sim-

ulated under a N(10, 2) distribution, rounded to the nearest integer. The choice of this

distribution was arbitrary but it was motivated by considering the currently available

health registers. Since the population constituted of 1000 people, it was decided that,

prior to carrying out the triple system estimation, the matching process using statistical

and computer matching software has been able to remove most of the erroneous enumer-

ations. So what remains are the people who have been enumerated in the wrong location,

which should, realistically speaking, not be a substantial proportion of the population. As

a result, for the population being considered it was decided that roughly 10 people are er-

roneous (representing 1% of the population). As a proportion of the simulated population

total these erroneous enumerations maybe considered negligible; they do however make a

fairly significant proportion of the (0,0,1)-cell count.

This is particularly apparent when the coverage in the Third List is high. So for

example, when the Third List coverage is 0.9 and assuming that the Census and Survey

coverage probabilities are 0.9 and 0.7, then there are 27 individuals expected to be counted

in the (0,0,1)-cell. However, supposing there are an additional 10 erroneous people as a

result of the Third List would imply that roughly a quarter of the individuals found in

the (0,0,1)-cell count are not ‘real’.

If on the contrary the Third List coverage is set at 30%, then there are 19 individuals

expected to be found in the Third List only, the majority of them being erroneous. The

effects on the estimators are clear: there will be an over-estimation of the population

size. Accordingly, the simulations concentrated on the cases where the Census and Survey

coverage probabilities both achieve moderate population coverage, i.e. 50% coverage of the

population. It is of interest to determine if, given the Third List has coverage of 0.7, the

four estimators give reasonable estimates of the population - supposing it is known that

101



there are some erroneous enumerations in the observed cell counts.
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Figure 4.11: Bias of the triple and dual system estimators in the presence of erroneous enumerations.

The bottom bottom plot just considers the three triple system estimators, while the top plot includes

the dual system estimator.

Figure 4.11 shows what happens to the estimators in the presence of erroneous counts

in the (0,0,1)-cell. It can be observed here that the population estimate under the dual

system estimator remains unchanged since the presence (or for that matter, absence) of

erroneous enumerations in the (0,0,1)-cell has no bearing on the calculation of the dual

system estimate, as should be the case. Again as anticipated, the effect of introducing

erroneous enumerations is to lead to an increase in the population size, but this increase

is proportionate to the number of erroneous enumerations, due to the additivity property

of log-linear modelling effects. As a demonstration, remembering that the estimate of

N when the independence model holds (under certain conditions) can be re-written as
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¯̂
N =

√
n1++n+1+n++1

n111
, it follows that when there are δ erroneous enumerations in the

(0,0,1)-cell then the ‘new’ estimate of the population is

¯̂
N∗ =

√
n1++n+1+ (n++1 − δ)

n111
=
√
n1++n+1+n++1

n111
− n1++n+1+δ

n111
=
√

¯̂
N2 − δn1++n+1+

n111
.

In the previous section, it was shown that ¯̂
N is not the MLE, although it does exhibit

similar unbiasedness when the coverage in the three lists is high. Also, under pairwise

dependence between the Census and Survey, the estimate of the missing cell becomes,

n̂∗000 =
n110 + n100 + n010

n111 + n101 + n011
× (n001 − δ) = n̂000 − δ

(
n110 + n100 + n010

n111 + n101 + n011

)
.

This result follows from Table 3.6 in the section on the application of log-linear mod-

elling to the census. This goes to show that supposing there are only erroneous enumera-

tions in the Third List (i.e. in the (0,0,1)-cell) and an estimate of these can be found, say δ̂.

Then, by simply extending the results in Chapter 3 it is possible to write down expressions

of the missing cell that take into account the effect these erroneous enumerations have on

the estimate n̂000.

4.3.2 Erroneous Enumerations in the Census and Third List

The simulations carried out above supposed that the erroneous enumerations could only be

introduced through the Third List (i.e. the (0,0,1)-cell). The motivation was based on the

fact that under dual system estimation as applied in the 2001 UK census, it was assumed

that the erroneous enumerations had been removed through the matching processes, and

as such the impact of overenumeration on the dual system estimates was considered to be

minimal. The reality, however, is that there could be some erroneous enumerations in the

Census counts, thereby influencing the dual system estimates.

So in the next part of the simulation study the estimators of the population were eval-

uated for their performance in the presence of some erroneous enumerations not only in

the (0,0,1)-cell, but also in the (1,0,0) and (1,0,1)-cells. Nevertheless, it still remained im-

portant to keep the assumption that there were no erroneous enumerations in the Survey.

In other words, there could be errors in the Census counts (as a result of its sheer opera-

tional size) and in the Administrative List (as a result of the complexities in assembling

a comprehensive population register). But because the Survey is relatively small (in the

2001 UK census 300,000 households were sampled) it is reasonable to expect that there

are stringent operational processes to prevent erroneous enumerations. It was of interest

to also look at the behaviour of the estimators when there is an increase in the number of

erroneous enumerations.

Therefore, in the following simulations it was assumed that there were now 50 erroneous

people out of the simulated population of 1000 people and these erroneous counts could

occur in any of the (0,0,1), (1,0,1) and (1,0,0)-cells. Figures 4.12 and 4.13 give the bias of
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the different estimators under two conditions - firstly when the Census and Survey achieve

50% coverage and the Administrative List achieves a coverage of 70% of the population,

and secondly when the Survey and Administrative List achieves 70% coverage and the

Census achieves 90% coverage.

Figure 4.13 shows that when there are erroneous enumerations in both the Census

and Administrative List but the coverage rates are moderately high then the dual system

estimator, although biased, is less biased than all the triple system estimators. The

implications of this result are that if there are erroneous enumerations on the Census and

the Third List, but the Census and Survey have high enough coverage then the dual system

estimator seems to provide a better estimate of the population than the triple system

estimators. However, it appears to confirm the assertion that the functionality of the

Third List in triple system estimation is impaired when there are erroneous enumerations

present. Hence, it seems that fitting the above dual and triple system estimators in

the presence of erroneous enumerations leads to wrong estimates of the population - there

needs to be an explicit adjustment of the population counts to take account of the erroneous

counts. The introduction of a latent variable is the more obvious approach of doing this,

where the latent variable here is the unobserved construct of a person’s enumeration status

(real or erroneous) that is imperfectly measured by the observed indicators of a person’s

enumeration by the Census, Survey or Third List.

Figure 4.12: Bias of the estimators in the presence of erroneous enumerations in both the Census and

Third List (for pcen=0.5 and psur=0.5, and padm=0.7).
pcen = 0.5   psurv=0.5   padm=0.7
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Figure 4.13: Bias of the estimators in the presence of erroneous enumerations in both the Census and

Third List (for pcen=0.9, psur=0.7 and padm=0.7).

pcen = 0.9  psur = 0.7  padm = 0.7
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4.4 Conclusion

It is true that independence, be it in dual system estimation or triple system estimation,

is unlikely to hold in an actual census environment. This is because there is definite

evidence of dependence between the Census and Survey (albeit there is less of a dependence

between these two and the Third List). Nonetheless, the independence model which

assumes no relationship between the different counts of the population does have some

benefits. The single most important reason for its choice is that of model parsimony

- the independence model is simplistic, and in most cases does approximate the true

cell probabilities well, especially when the coverage probabilities are high. The mean

squared error of the independence model is lower than that of the partial dependence

and ‘saturated’ models, for all the simulations considered. This is because, although the

independence model is the most biased, it also has the smallest variance as it is based on

estimating fewer parameters. In essence, the mean squared error is smaller because the

bias does not dominate the variance. In the same vein, although the ‘saturated’ model

gives unbiased estimates of the population, it has been shown to be inefficient when the

data has been simulated under the Census and Survey pairwise dependence model.

The motivation of the simulation work was the desire to have some idea as to what

constitutes ‘low’ and ‘high’ levels of coverage and consider if there is the need for triple

system estimation. The simulations considered permutations of four probabilities of 0.3,

0.5, 0.7 and 0.9 for the Census, Survey and Third List coverage. It was found that if the
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Census manages to enumerate roughly 90% of the population and the Survey achieves 70%

then the dual system estimate is fairly unbiased, and bringing in a Third List into frame

does not significantly improve upon the population estimates. However, it has been shown

that in the presence of dependence, and for a Census or Survey that only counts 50% of the

population, there are definite advantages of using data from an administrative source to

obtain population size estimates that have been adjusted for underenumeration. Further,

the simple triple system estimator that assumes independence between the Census, Survey

and Third List is found to be very efficient, even in the presence of some dependence.

In the investigation of the erroneous enumerations, the fairly reasonable assumption

was made that the computer and probability matching procedures are sufficiently advanced

to remove any duplicates in the Census or Survey. As such, it was presumed that any

erroneous enumerations will result only from the Third List being brought into the fray.

Though this assumption may be considered too simplistic, as it implies that the erroneous

enumerations only exist in the cell count corresponding to those missed by the Census

and Survey but counted by the Third List, it does have some justification. In the 2001

census, it was assumed that for individuals counted in the selected Census Coverage Survey

postcodes it was possible to ascertain whether they were counted in the Census only,

Survey only or both. If the Third List is matched to the Census and Survey (which

have no erroneous enumerations, by definition), then for the sampled postcodes it follows

that the only way erroneous enumerations can be introduced is via the (0,0,1)-cell. What

the simulations showed was that this leads to an over-estimation of the population, by

a factor proportional to the number of erroneous enumerations in the (0,0,1)-cell. In

actuality, however, there will be some erroneous enumerations added through the Census

process because of the scale of the operation, although it may still be reasonable to assume

that there are none introduced through the Survey process. So there was an investigation

into the effect of erroneous people in the (1,0,1), (1,0,0) and (0,0,1)-cells. When this

happens the simulations showed that the triple system estimators become more biased

and supposing the Census and Survey achieved moderately high levels of coverage of the

population it turned out that the dual system estimator fared better than the triple system

estimators.

The proposed way of dealing with erroneous enumerations is to use latent class anal-

ysis by assuming that the Census, Survey and Third List are imperfect indicators of an

individual’s true enumeration status - which cannot be directly observed and hence a la-

tent variable. In the basic latent class model the latent variable is deemed to be locally

independent of the observable variables, which substantively means that the associations

observed amongst the Census, Survey and Third List are only attributable to the each of

their relationships to the latent variable. When there is some additional variation that is

left unaccounted for by the latent variable, then a locally dependent model is needed to

be fitted to the data. In a triple system context this local dependent latent class model

is non-identified. To fit a locally dependent model that is identified when the method
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adopted in this thesis is to introduce a grouping covariate. There are, however, a number

of conditions under which such a model within a capture-recapture context with an unob-

served cell can be fitted. Firstly, the observed cells should be sufficient statistics for the

missing cell, so that the EM algorithm can be utilized to find a suitable estimate under a

postulated unsaturated model. Secondly, the grouping covariates should be associated to

the latent variable only, in other words the relationships between these grouping covariates

and the manifest variables - i.e. Census, Survey and Third List - are completely mediated

through the latent variable (as illustrated in Figures 4.14(a) and 4.14(b)). It will be shown

in the next chapters that even though this model is identified and as such the population

size estimate that makes adjustments for both underenumeration and overenumeration can

be obtained, in general the standard errors of these estimates can be difficult to derive.

Figure 4.14: Latent Class models with a covariate effect, G
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Chapter 5

An Application of Log-linear

Modelling to Census

Underenumeration

5.1 Introduction

Dual system estimation relies on the assumption of list independence. However, as the

previous chapters have shown, the initial census and follow-up survey have been widely

viewed as being related. With only two samples, it is not possible to investigate the extent

of this dependence, but when there is another list the log-linear modelling framework can

be used. The previous chapters also highlighted the problem of differential underenumer-

ation. Therefore, in response to the problem of differential underenumeration, especially

when the follow-up survey achieves poor coverage of the population, the US Census Bu-

reau carried out a triple system exercise during the Dress Rehearsal leading up to the

1990 Census. At the heart of the matter was that, after the 1980 US decennial census

there was the realisation that there was differential undercount of Blacks and other ethnic

minorities (see Ericksen et al. (1985) and Wolter (1990)).

Accordingly in the run-up to the 1990 US Census, the Census Bureau compiled an

administrative records list called the Administrative List Supplement (ALS) for their 1988

Census Dress Rehearsal. As aforementioned, the purpose of the ALS was to provide a check

on the 1990 post enumeration survey methodology. This ensured that as part of the Dress

Rehearsal data from the Census, the post-enumeration survey and the ALS was gathered

for some sampled blocks. This, therefore, made it possible for the US Census Bureau to

trial out the feasibility of the triple system methodology in a ‘real’ census environment.

Zaslavsky and Wolfgang (1990, 1993) were able to show that the third list can be used to

investigate list dependence, provide more precise estimates of the hard-to-count population

and improve the overall census coverage.
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The data set considered in this chapter is from a population subgroup from the 1988

Dress Rehearsal carried out in St Louis, Missouri. On the basis of the 1980 US Census,

it was found that the level of undercount was greatest for Black males. Actually, the

national undercount rate for Blacks has remained roughly 5% higher than for Non-blacks

in every census since 1940, and the group believed to be most seriously undercounted in

censuses are Black male renters (Darroch et al. (1993)). Also it was established that the

same factors that had an effect on whether or not a person was missed in the census had

an influence on the post-enumeration survey. This meant that the most undercovered

population group, i.e. Black male adults, also had the tendency to be underenumerated by

the survey (Wolfgang (1989); Zaslavsky and Wolfgang (1990)). To that end, the sampling

frame for the Dress Rehearsal was restricted to select participants on the basis of age,

sex and race to fall within four post-strata: Black Males aged 20-29 in Owned homes

(O2), Black Males aged 30-44 in Owned homes (O3), Black Males aged 20-29 in Rented

homes (R2) and Black Males aged 30-44 in Rented homes (R3). Furthermore, the ALS

was specifically designed and assembled from government rosters that targeted Black male

living in rented accommodation. It is clear from the design of the Dress Rehearsal that

the simplistic dual system estimator - or, for that matter, the triple system estimator -

that assumes list independence will be expected to yield biased results.

The Dress Rehearsal encountered some problems due to matching and classification

issues that were unresolved which meant that the resulting data were not identical to

the raw data obtained from the three systems used to capture the population. Unlike in

animal capture experiments where tags and marks are used to identify the animals across

captures, it was found to be very difficult to identify people who appeared in the different

sources. The method used in the Dress Rehearsal was to match across the three sources

based on some key demographic variables of age, name and sex. But it was difficult to

determine correct matches, which implied that a large number of cases were removed and

this meant that the final 2x2x2 matched data set had just over 1,000 observed people.

Nevertheless, it was possible to obtain data that classified the respondents into whether

or not they appeared on the Census, Post-enumeration Survey or the Administrative List

Supplement, post-stratified by age and tenure.

The data from the 1990 US Census seem dated, and it would have been ideal to use

data from the 2000 Census. But in 2000, following on from the 1999 US Supreme Court

judgement that ruled that sampling for non-response follow-up was not consistent with

the US Census Act for providing apportionment counts for legislative representation, the

focus unfortunately turned away the production of triple system counts in the format

of the 1990 Census Dress Rehearsal. The Administrative Records Experiment (AREX)

which was carried out in 2000 (in selected areas of the US - Baltimore City, Baltimore

County and three counties in Colorado) sought to investigate the feasibility of using an

administrative records census to replace the traditional census. It did, however, also

investigate how information from administrative records can augment the Master Address
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File (the US equivalent of the UK Postal Address File) in pre-Census operations, and to

use administrative information to directly substitute for any missingness post-Census (see

Cohen and King (2000)). Nevertheless, although there are some legalities involved that

prevent the implementation of triple system estimation (in the format proposed in this

thesis) in the US, there has been a great deal of theoretical research focused on the use

of administrative records in the census (Judson (2000), Biemer et al. (2001a), Stuart and

Zaslavsky (2002), for example).

5.2 Triple System Results for Data from the 1988 Dress

Rehearsal Census in St Louis

Table 5.1: Triple System Estimation data from 1988 Dress Rehearsal

Cell O2 R2 O3 R3

n000 - - - -

n001 59 43 35 43

n010 8 34 10 24

n011 19 11 10 13

n100 31 41 62 32

n101 19 12 13 7

n110 13 69 36 69

n111 79 58 91 72

n 228 268 257 260

The counts of respondents in the Dress Rehearsal for the four post-strata are given

in Table 5.1. One thing to notice is that the third list (i.e. the ALS) has reasonably

decent coverage of the population of interest. Apart from owners in the 30-44 age group

- stratum O3 - there are more people found in only the ALS (i.e. (0,0,1)-cell) than only

in the Census (i.e. (1,0,0)-cell). This does support the presumptions of the US Census

Bureau in carrying out the Dress Rehearsal that the census processes fail at obtaining

a good enough coverage of black male renters. It also does not come as a surprise that

the only post-stratum that the Census does better than the ALS is O3, the older house

owners. Furthermore in the rented categories, there are fewer people found by the Survey

alone, i.e. the (0,1,0)-cell. Although it must be said that for renters aged 20-29, R2, the

post-enumeration survey works well. This may be due to the fact that the survey processes

were specifically designed to capture rented households with young Black male residents.

Initially it is good to explore if there is some evidence to suggest whether dual system

estimation is appropriate here. The DSE in this case can be obtained by summing over

one of the three systems, for instance summing over the administrative list yields
n10+n01+

n11+n00+
= 1, and hence n̂000 =

n10+n01+

n11+
− n001.

Since there are three sources, there are three possible ways of calculating the DSE, and

these have all being considered. Table 5.2 gives the results of the estimates of the missing
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under the different DSEs. Albeit, realistically, the only one of interest is the first esti-

mate (DSE1) based on the Census and Survey, and summing over the administrative list

information.

Table 5.2: Estimates of the missing cell count n̂000 under dual system estimation

O2 R2 O3 R3

DSE 1 (Census and Survey) -44.33 -24.22 -23.19 -32.77

DSE 2 (Census and Admin List) 27.02 50.85 32.40 47.59

DSE 3 (Survey and Admin List) -14.22 41.10 -40.14 22.71

The dual system estimate calculated marginal over the administrative list gives a

negative estimate of the missing cell, n̂000, for all the post-strata. This means that the

dual system estimate n̂00+ is less than the observed individuals added by the administrative

list, i.e. persons in the (0,0,1)-cell.

There is therefore a substantial under-estimation of the population because coverage

in the Census and Survey is very low. It can be anticipated that the administrative list

coverage is also low, thus there will be additional people missed by all three sources.

Furthermore, it may be of interest to note that the missing cell estimate computed after

summing over the Survey (i.e. DSE2) is positive for all four post-strata. One reason could

be because the Survey coverage amongst the population of interest - i.e. Black males -

was very poor, but the ALS went some way at compensating for this (though, as will be

shown, not necessarily in an independent manner). This point is further illustrated by the

positive estimates of DSE3 for respondents living in rented households (R2 and R3) - in

effect, this time the ALS is compensating for the low coverage in the Census.

There was a preliminary investigation that focused on the odds ratios in the 2x2 subta-

bles. The results are indicative of the strength of departure from list independence. Figure

5.1 shows how the odds ratios were calculated. It was mentioned previously that the 2x2x2

contingency table can be partitioned into two 2x2 subtables, with a complete subtable and

an incomplete subtable. The partitioning can be done in three ways - controlling for being

observed in the Administrative List (Partition A), being observed in the Survey (Partition

B) or being observed in the Census (Partition C). The homogeneity assumption implies

that the mechanism that underlies a person being counted in the Census should be similar

to that of a person being missed in the Census. Thus the odds ratio in the complete

subtable, obtained when controlling for Census enumeration, can be indicative of the odds

ratio in the incomplete subtable, under this assumption. Similar assertions can be made

when controlling for Survey enumeration and Administrative List enumeration.

If there is independence of two of the systems given the third, then it is expected that

the odds ratios in Table 5.3 should be close to 1. Therefore, if these odds are substantially

different from 1 it becomes understandable to question the independence assumption.

This result supports the results presented in Table 5.2, which show that DSE2 (i.e. the

estimate found under Partition B) is the one that consistently gives positive estimates of
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the missing cell count, n̂000 - admittedly this is still an under-estimate. Zaslavsky and

Wolfgang (1993) used the jack-knife to calculate the standard errors of log-odds ratios.

They found that although the standard errors were large, the log-odds ratios were at least

three times the standard errors. They also observe that the odds ratios under Partition

B and C are closer to 1, than Partition A. This suggests that the Administrative List is

more nearly independent of the Census or Survey. Clearly the Census and Survey have

much more similar data collection methods than the ALS, so this result does make sense

on consideration.

Figure 5.1: Partitioning of the 2x2x2 contingency table.

Partition A 

Complete sub-table  Incomplete sub-table 

n111   n101  n011   n100 

n011   n001  n010   n000 

       

Partition B 

Complete sub-table  Incomplete sub-table 

n111   n110  n101   n100 

n011   n010  n001   n000 

       

Partition C 

Complete sub-table  Incomplete sub-table 

n111   n110  n011   n010 

n101   n100  n001   n000 
 

After the preliminary analysis of the odds ratios, some log-linear models are subse-

quently fitted to the data in order to estimate the missing cell. The estimates of the

standard errors will be obtained using the Supplemented EM (SEM) algorithm. The odds

ratios in Table 5.3 show that there is some degree of dependence between the sources, and

so a simple dual system estimate will under-estimate the size of the missing population.

Table 5.3: Odds ratios for the complete sub-tables

Odds Ratio

Partition A (ALS) Partition B (Survey) Partition C (Census)

O2 12.91 2.56 9.92

R2 18.89 2.60 2.87

O3 24.50 2.53 12.06

R3 34.02 1.93 4.77
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A program called EM.sim was written in SPLUS/R that fitted the different log-linear

models to the data. It uses the EM algorithm to find the missing cell estimate n̂000 that

keeps the posited relationship of the observed cells {n001, n010, n011, n100, n101, n110, n111}.
It relies on the glm function to fit the log-linear model in the M-step, and estimate n̂000

in the E-step. The program can be found in Appendix B.1.

The program first starts by assuming that the estimate of the missing cell is zero, i.e.

there are no individuals missed in all three lists. Based on the log-linear model fitted to

the seven observed counts, it checks whether a value of zero is a suitable estimate. If this is

not true, a new estimate of the missing cell is fitted, with the iterative process continuing

until the difference between iterative fitted estimates are close enough to a pre-determined

convergence criterion.

In all cases, there is evidence from the observed cells to discount the suggestion that

the combined coverage on the three lists is good enough to render the missing cell count

negligible. Therefore, a model (or some other method) needs to be fitted to estimate this

cell. Table 5.4 gives the estimate of the missing cell n̂000 and the goodness of fit statistic

for each of the models (see Table 3.6). In addition, the program computes two goodness

of fit measures that can be used to assess how well any of the eight models is consistent

with the observed cell counts {n001, n010, n011, n100, n101, n110, n111}. These are the log-

likelihood chi-squared statistic G2 and the Pearson chi-squared statistic X2. Another

program (given in Appendix B.2) was written to implement the SEM algorithm to produce

the asymptotic covariance matrix of the estimated log-linear parameters. The square roots

of the diagonal elements are the asymptotic standard errors. These SEM variances were

compared to those calculated using the parametric bootstrap (see SPLUS/R program in

Appendix B.5) and also those derived under the Delta method.

From Table 5.4, the three sources have some definite inter-relationships, and the size

of the likelihood statistics show that the model assuming complete independence poorly

fits the data. Table 5.5 gives the p-values for the different log-linear models using the

likelihood ratio statistic as this represents the deviance. Here the best model is the one

for which the deviance does not exceed the critical value for the appropriate number of

degrees of freedom.

Therefore, there is some evidence (as exhibited in Table 5.3) to suggest that the best

fitting model is the one that accounts for the pairwise interactions between the Census

and Survey and the Survey and Administrative List. In other words, the Census and

Administrative List are conditionally independent of each other, given the Survey. This is

an intuitively reasonable model considering that there are different enumeration processes

underlying the Census or the ALS. In fact the ALS was specifically designed to find people

who were hard-to-count in the Survey; also the Census and Survey were not operationally

independent as expected.
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Table 5.4: Estimate of the missing cell count and likelihood statistics (X2 and G2) under different

models

Model O2 R2 O3 R3 df

Independence n̂000 13.78 28.43 14.32 18.21 3

G2 72.59 54.83 90.19 76.20

X2 68.68 54.31 83.48 76.39

{L,CS} n̂000 24.02 25.96 24.35 17.30 2

G2 59.01 54.23 62.54 76.06

X2 56.71 52.58 65.05 75.04

{S,CL} n̂000 7.86 23.65 8.03 12.78 2

G2 68.55 52.80 84.54 70.73

X2 69.59 50.40 77.26 67.42

{C,SL} n̂000 26.22 76.43 33.16 58.42 2

G2 34.46 12.19 59.27 15.71

X2 34.87 11.87 55.71 14.68

{CS, CL} n̂000 19.07 20.20 17.20 11.13 1

G2 58.71 51.58 61.25 69.99

X2 55.69 48.23 61.29 64.84

{CS, SL} n̂000 96.22 146.78 166.77 196.23 1

G2 3.15 6.53 3.55 3.04

X2 3.45 6.23 3.77 2.98

{CL, SL} n̂000 24.84 132.79 34.99 79.34 1

G2 34.44 8.78 59.25 14.73

X2 34.71 8.34 55.70 13.60

‘Saturated’ n̂000 245.11 379.69 418.83 378.68 0

G2=X2 (0) (0) (0) (0)

The best fitting model can be represented by the log-linear model

logµijk = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(CS)
ij + λ

(SL)
jk . (5.1)

This model, given in equation (5.1), was fitted to the different post-stratified tables O2,

R2, O3 and R3. However, the advantage of the log-linear modelling framework is that it

can be extended to include the post-stratified variables as covariates in the model. The

post-stratified variables can be thought of as a grouping covariate G, such that equation

(5.1) becomes

logµijkg = λ+λ
(C)
i +λ

(S)
j +λ

(L)
k +λ(G)

g +λ
(CS)
ij +λ

(SL)
jk +λ

(CG)
ig +λ

(SG)
jg +λ

(LG)
kg +λ

(CSG)
ijg +λ

(SLG)
jkg .

(5.2)

It follows that G has four levels, namely Young Owners, Young Renters, Old Owners and

Old Renters. The program EM.sim has the capability to fit the log-linear model specified

by equation (5.2) to the data, the results of this are presented below. Before fitting the

model in SPLUS/R, the data needs to be re-formatted as the data frame in Table 5.6.
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Table 5.5: Goodness of fit of the models using the G2 statistic

Model O2 R2 O3 R3

Independence G2 72.59 54.83 90.19 76.20

p−value <0.0001 <0.0001 <0.0001 <0.0001

{CS} G2 59.01 54.23 62.54 76.06

p−value <0.0001 <0.0001 <0.0001 <0.0001

{CL} G2 68.55 52.80 84.54 70.73

p−value <0.0001 <0.0001 <0.0001 <0.0001

{SL} G2 34.87 11.87 55.71 14.68

p−value <0.0001 0.0026 0.0001 0.0006

{CS,CL} G2 58.71 51.58 61.25 69.99

p−value <0.0001 <0.0001 <0.0001 <0.0001

{CS,SL} G2 3.15 6.53 3.55 3.04

p−value 0.0759 0.0106 0.0595 0.0812

{CL,SL} G2 34.44 8.78 59.25 14.73

p−value <0.0001 0.003 <0.0001 0.0001

Table 5.6: SPLUS/R Data frame for the log-linear model with the post-strata included

Cell Count Cell Count

O2 O3

n0001 - n0003 -

n1001 31 n1003 62

n0101 8 n0103 10

n1101 13 n1103 36

n0011 59 n0013 35

n1011 19 n1013 13

n0111 19 n0113 10

n1111 79 n1113 91

R2 R3

n0002 - n0004 -

n1002 41 n1004 32

n0102 34 n0104 24

n1102 69 n1104 69

n0012 43 n0014 43

n1012 12 n1014 7

n0112 11 n0114 13

n1112 58 n1114 72

Table 5.7: Estimates of the missing population in each group

Young Owners Young Renters Old Owners Old Renters

Estimate 96.26 146.92 166.92 196.57

Table 5.7 gives the estimates of the missing cells under the model with covariate effects,

given in equation (5.2). The table shows that the estimates of the missing cell are the
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same under equations (5.1) and (5.2). The Pearson and likelihood ratio statistics for this

model are 16.43 and 16.27 respectively. Since the likelihood ratio statistic that tests the

null hypothesis that the model holds against the saturated model has the property of

being additive, it follows that the G2 statistic under model (5.2) is the sum of the four

G2 statistics for the model (5.1) fitted to O2, R2, O3 and R3, i.e. 16.27 = 3.15 + 6.53 +

3.55 + 3.04.

Note that there is an advantage of comparing the likelihood statistics this way under

models (5.1) and (5.2) in that it can highlight particular aspects of model failure. It can

be seen that the G2 statistic of 6.53 for R2 is almost 2 times the other group statistics.

In the model selection process other models were considered; for example, removing the

λ
(CSG)
ijg and λ

(SLG)
jkg terms made the model less complicated, but this proved to be at the

detriment of the model fit. However, this could be an advantage sometimes, in particular

when there are model identifiability issues.

There is an additional advantage of fitting the log-linear model with covariates in that

it converges relatively quicker. EM.sim takes 75 steps to fit the first model to the O2

table, 126 steps to fit the R2 table, 133 for the O3 table, and 222 iterations for the R3

table. However, to find all the four estimates, EM.sim converges in 171 steps.

There is further point to make, which happens to be perfectly highlighted by the US

Census data. It may be noticed that the estimate of the missing cell under the ‘selected’

parsimonious model and the ‘saturated’ homogeneous association model are seemingly

different. The four estimates of the missing in the groups are 96.22, 146.78, 166.77 and

196.23, under the best model, while the estimates using the ‘saturated model’ are 245.11,

379.69, 418.83 and 378.68, respectively. It is cause for concern that these two models give

such different estimates, and both are seemingly correct; the only way to choose between

them will be to know the truth, which is unfortunately not possible.

There is another explanation that could explain why these seemingly different esti-

mates result from similar models. Consider the confidence intervals of the estimates of

the selected models (given in Table 5.8, overleaf). For post-strata R2, O2 and R3 the

confidence intervals for the best selected model are respectively (72.34, 298.39), (84.33,

330.41) and (82.52, 468.28). These confidence intervals all contain the estimates under

the ‘saturated’ model, which implies estimates of 379.69, 418.83 and 378.68 are perfectly

feasible under the parsimonious model. However, for post-stratum O2 the estimate under

the saturated model of 245.11 lies outside the confidence interval of (51.51, 179.89), which

could be indicative of model failure here. An alternative interpretation will be presented

in Chapter 6.
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5.3 Variance Estimation

Table 5.8: Estimates of standard errors of model parameters with appropriate confidence intervals

(using the SEM algorithm)

    beta se(beta) 000n̂  

95% 
Lower 
limit 

95% 
Upper 
Limit 

       
Independence 2.6238 0.1959 13.79 9.39 20.24 
Census:Survey 3.1788 0.2300 24.02 15.30 37.70 
Census:Admin 2.0613 0.3784 7.86 3.74 16.49 
Survey:Admin 3.2666 0.2115 26.22 17.32 39.69 
Census:Survey, Census:Admin 2.9485 0.4839 19.08 7.39 49.25 
Census:Survey, Survey:Admin 4.5671 0.3190 96.26 51.51 179.89 
Census:Admin, Survey:Admin 3.2125 0.4411 24.84 10.47 58.97 

O2 

No three-way 5.5066 0.6029 246.31 75.56 802.92 
       

Independence 3.3474 0.1682 28.43 20.44 39.53 
Census:Survey 3.2564 0.2072 25.96 17.29 38.96 
Census:Admin 3.1635 0.2170 23.65 15.46 36.19 
Survey:Admin 4.3366 0.2063 76.44 51.02 114.53 
Census:Survey, Census:Admin 3.0058 0.2613 20.20 12.11 33.72 
Census:Survey, Survey:Admin 4.9899 0.3615 146.92 72.34 298.39 
Census:Admin, Survey:Admin 4.8897 0.3785 132.91 63.29 279.09 

R2 

No three-way 5.9447 0.5236 381.71 136.79 1065.16 
       

Independence 2.6616 0.1868 14.32 9.93 20.65 
Census:Survey 3.1928 0.2036 24.36 16.34 36.30 
Census:Admin 2.0831 0.3412 8.03 4.11 15.67 
Survey:Admin 3.5013 0.2159 33.16 21.72 50.62 
Census:Survey, Census:Admin 2.8462 0.3793 17.22 8.19 36.22 
Census:Survey, Survey:Admin 5.1175 0.3484 166.92 84.33 330.41 
Census:Admin, Survey:Admin 3.5553 0.4780 35.00 13.72 89.32 

O3 

No three-way 6.0449 0.5913 421.94 132.41 1344.57 
       

Independence 2.9019 0.1770 18.21 12.87 25.76 
Census:Survey 2.8506 0.2247 17.30 11.13 26.87 
Census:Admin 2.5478 0.2457 12.78 7.90 20.68 
Survey:Admin 4.0677 0.2052 58.42 39.07 87.36 
Census:Survey, Census:Admin 2.4097 0.2956 11.13 6.24 19.87 
Census:Survey, Survey:Admin 5.2810 0.4429 196.57 82.52 468.28 
Census:Admin, Survey:Admin 4.3743 0.3765 79.38 37.96 166.03 

R3 

No three-way 5.9367 0.5772 378.68 122.17 1173.76 
 

Table 5.9: Estimates of standard errors using the grouped data (using the SEM algorithm)

beta SE(beta) n̂000 95% Lower Limit 95% Upper Limit

O2 4.5671 0.3191 96.26 51.50 179.93

R2 4.9899 0.3619 146.92 72.28 298.62

O3 5.1175 0.3496 166.92 84.12 330.21

R3 5.2810 0.4429 196.57 82.51 468.29

Having managed to obtain the estimates of the missing cell under different models, it

now remains to provide some estimates of the precision by computing the standard errors,

and the respective confidence intervals. Now, the EM algorithm used to obtain the above

estimates of the missing cell does so by maximizing the incomplete likelihood. However,
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the information matrix in the observed data for the model under the EM algorithm is

complicated as it requires differentiating and inverting this complicated likelihood, which

can be computationally unstable ((Little and Rubin, 2002, page 191). As such, the supple-

mented EM (SEM) algorithm has been proposed to get around this problem of instability

of the information matrix by using the expected complete data information and a ma-

trix defined by the rate of convergence of the EM algorithm. Accordingly, since the EM

algorithm has been used to find estimates of the missing, the SEM algorithm is used to

determine the variances of the model estimates. Obviously one of the recurring arguments

in capture-recapture methods is on whether the assumption of normality is necessarily

valid, so the Delta method asymptotic variances and confidence intervals were compared

to those found under the SEM algorithm and the Bootstrap.

The SEM was implemented for the US Census data, the results of which appear in

Tables 5.8 and 5.9. Table 5.8 gives the standard errors and confidence intervals for each

of the eight hierarchical models. For Table 5.9, the SEM algorithm was implemented to

the data with covariate information (as shown in Table 5.6). Both yield pretty similar

results, and the differences can be attributed to rounding errors at different stages of

the computation. Also it can be observed that the 95% confidence intervals are skewed,

with the missing cell maximum likelihood estimate being nearer to the lower end of the

confidence interval.

It may be noted that both the Delta method and SEM algorithm produce asymptotic

variances. The Delta method produces confidence intervals for N and assumes that N̂ is

asymptotically normal such that the confidence interval is centred around N̂ . Unfortu-

nately, the distribution of N̂ is skewed in practice and so the above confidence interval can

give misleading results (Coull and Agresti (1999)). However, under the SEM algorithm

because the estimation is carried out on a different scale, the confidence intervals produced

are skewed. Furthermore, it is common for N̂ to be nearer to the lower end of the inter-

val (Van Deusen (2002)). Thus it follows that the SEM variances might be expected to

produce more realistic confidence intervals than the Delta method. The bootstrap, in con-

trast, may be more robust to data that exhibits skew, since though it is computationally

intensive the basic ideas of the bootstrap do not rely on any distributional assumptions.

The results of the bootstrap standard errors are given in Table 5.10 and it can be seen

that they are similar to the SEM standard errors in Tables 5.8 and 5.9.

Table 5.10: Estimates of the empirical standard errors of the model parameters with appropriate

confidence intervals (using the Bootstrap)

beta SE(beta) n̂000 95% Lower Limit 95% Upper Limit

O2 4.5675 0.3252 96.31 51.91 182.16

R2 4.9909 0.3448 147.07 74.82 289.08

O3 5.1156 0.3747 166.60 79.93 347.24

R3 5.2835 0.4343 197.06 84.12 461.61
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These SEM and Bootstrap confidence intervals are different to those derived under

the Delta method. It may be recalled that in Section 3.7 the results of the asymptotic

variance of the population total N̂ using the Delta method are provided for different log-

linear models. The formula for the selected best fitting model, with pairwise relationships

between the Census and Survey and Survey and Administrative List, is given by

V̂
(
N̂
)

= (n̂000)2
[

1
n101

+
1

n001
+

1
n100

+
n101

n001n100

]
. (5.3)

For the US Census data, the above formula, equation (5.3), was used to calculate the Delta

method asymptotic variance and the confidence intervals of the population estimate, the

results of which are displayed in Table 5.11.

Table 5.11: Estimates of the asymptotic standard errors of N̂

N̂ Asymptotic SE 95% Lower Limit 95% Upper Limit

O2 324.26 32.25 261.05 387.47

R2 414.92 54.29 308.51 521.33

O3 423.92 59.63 307.05 504.79

R3 456.57 88.45 283.21 629.93

The 95% confidence intervals for the estimated population totals using the SEM

method are (279.50, 407.92) for O2, (340.28, 566.62) for R2, (341.12, 587.21) for O3

and finally for R3 (342.51, 728.29). The corresponding bootstrap confidence intervals

of the estimated population totals are (279.91, 410.16) for O2, (342.82, 557.08) for R2,

(336.93, 604.24) for O3 and (344.12, 721.61) for R3. It can be recognized that these SEM

and bootstrap intervals are wider and more skewed in comparison with the Delta method

intervals.

5.4 Conclusion

It can be said with fair confidence that there is some value of an administrative list within

census enumeration methodology. The above exercise using data - which admittedly was

not of the best quality - has shown how possible it is to demonstrate the usefulness of

administrative lists in investigating the previously untestable assumption of independence

between the Census and Survey. So even though the Third List brings with it additional

complications in that it was related to the Survey, the log-linear modelling framework is

able to provide models that can account for sources of dependence in the estimation of the

population size. One thing that is important is that the methodology used to assemble

the Third list plays a vital role in ascertaining the dependence structure needed in the

estimation of the missing cell, and ought to be factored into the estimation process.

However, the US Census application has highlighted problems with the no three-way

interaction assumption. Under this assumption, which is needed in order to be able to

estimate the missing cells, the implication is that although every variable may interact
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with each other variable, there is no interaction between the three variables (here, the

Census, Survey and Third List interaction term is zero). However, provided there is no

unaccounted heterogeneity, the model that includes the three-way interaction suggests that

apparently all other models fail to represent the data in a suitable manner, which under

model parsimony may be hard to believe. The belief is that the no three-way interaction

model is the closest to the saturated model and furthermore even this model is anticipated

to over-fit the observed data. Thus it is now possible to posit other models with fewer

interaction terms that could better fit the observed data. Nonetheless, when there is some

doubt regarding this assumption understandably the population size estimates obtained

may be incorrect. In the next chapter, it will be shown that by extending the log-linear

model to include a latent variable there is an improvement.
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Chapter 6

Estimation of Population Totals

from Imperfect Data

6.1 Introduction

This chapter aims to expand on the methodology developed thus far in order to estimate

the population size to cater for when the population captures are not perfect, in that as

well as there being some dependence there might be some capture error. The definition

of perfect captures here is that firstly, any erroneous enumerations have been previously

identified and resolved. Secondly, any resulting dependence is only attributable to list

dependence; in other words, suitable post-strata have been chosen such that within strata

capture probabilities are homogeneous. The approach for the estimation of population

totals when there is imperfect data relies on latent class modelling. This lies within the

general conceptual framework of latent variable models. Here it is believed that each

individual’s behaviour is conceived as being governed by their inherent (and therefore

unobserved) traits.

In fact, the belief is that the observed systematic patterns in the population are better

explained by some unobserved characteristics. By considering these unobservable charac-

teristics into the modelling process, more often than not the inter-relationships become

more clearer, and can therefore lead to better inference. The latent variable techniques

- e.g. factor analysis, principal component analysis and discriminant analysis - effectively

seek to reduce dimensionality so that by looking at the inter-relationships at the lower

dimension patterns are more easy to detect and distinguish and the ability of the data

analyst to see the structure of data is enhanced. However, although this basic idea is

the same one underlying latent class analysis, the main difference is that these traits are

discrete and distinct classes, and when further thought of as cells of a multi-dimensional

contingency table nicely leads to the latent class model to be specified as a log-linear

model.
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In the previous chapters, the log-linear estimation models used assume that the cell

counts had been removed of any erroneous enumerations. However, when there are erro-

neous enumerations, the modelling framework has to be amended, and this is accomplished

through the inclusion of a latent variable that represents the enumeration status of each

person. In brief, this chapter shows that the specification of the capture-recapture sub-

stantive problem as a log-linear model readily lends itself to easily cope with dependence

and erroneous enumerations. Furthermore it will also be shown that if there is some ad-

ditional association between the Census, Survey or Third List that is not fully accounted

for by the latent variable then these residual direct effects can easily be incorporated into

the log-linear model.

It has been previously demonstrated that the EM algorithm can be used to find es-

timates of the missingness, specifically when there is no measurement error. The EM

algorithm is the general approach to finding maximum likelihood estimates in incomplete

data problems, and has been the advocated method used during the thesis, though pages

237-242 of Bishop, Fienberg and Holland (1975) showed that closed form estimates exist

for all of the log-linear models when there are perfect captures (i.e. there are no erroneous

captures). The idea of using the EM algorithm means that it can be extended without

much difficulty to the case when there is imperfect data from the three captures (and this

imperfection could result either from a failure to correctly post-stratify or through the

failure to remove erroneous enumerations). However, it must be noted that when there

is imperfect data the complete likelihood includes an unobservable variable, and the EM

algorithm has to be suitably modified. Nonetheless, the E and M steps are still performing

the same functions of taking the expectation of the complete data likelihood conditional

on the observed data augmented for some starting values of the missing data, and then

computing new estimates of the missing data that maximize the likelihood. There is an

added advantage of the EM algorithm in that the related result that there is a simple

relationship between the complete, observed and missing data can be used. So here the

complete data information is the sum of the observed data information and the missing

data information (or put differently, the increase in variance due to missing data). This, in

theory, allows the asymptotic variance-covariance matrix to be computed using the SEM

algorithm, without the need of matrix inversions which as well as being complicated can

lead to intractability.

In this chapter, an identifiable latent model that copes with both dependence and

capture error is first presented, following on from the discussion at the end of Chapter

3. It will be shown that the latent model makes it possible to examine the validity of

the no-three-way interaction assumption. The estimation of this model by way of the EM

algorithm is also discussed. Section 6.5 presents the results of a feasibility study carried

out that investigated the viability of fitting a latent model to some data with simulated

capture error and dependence. Section 6.6 presents an alternative interpretation to the

US Census data considered in Chapter 5 by fitting a latent class model. Sections 6.7
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and 6.8 detail techniques available for providing precision estimates. In the estimation

of the standard errors, Section 6.7 extends the SEM algorithm to the case when there is

latentness. However as will be discussed, there are some problems with this extension of

the SEM algorithm, due mostly to the identifiability of the latent model.

According to Goodman (1974) the best method of determining whether a model is

identifiable or not relies on the Hessian matrix. The Hessian is the matrix of the second

partial derivative of all free independent estimated parameters in the log-likelihood. It

can be noted that the inverse of the Hessian matrix approximates the variance-covariance

matrix of the parameter estimates. If the Hessian matrix has less than full rank, then

the model is not identified. Notably it will be established here that albeit the models

are indeed identified, there is not enough information to estimate some of the model

parameters, and as such the SEM algorithm runs into difficulty when trying to estimate the

asymptotic variance-covariance matrix. The bootstrap, on the other hand, does not suffer

from these computational difficulties to the same degree, and results of the bootstrap-

computed measures of precision for the Feasibility Study and US Census application data

are duly presented in Section 6.8. Finally, the last part of the chapter briefly describes

how population estimates are produced for non-sampled areas, since the second list is in

fact a sample.

6.2 Using Latent Models to Cope with both Dependence

and Capture Error

So far it has been shown that in triple system estimation the only assumption needed

is that there is no second order interaction. This means that for the ‘saturated model’,

all pairs of sources may exhibit dependence but the amount of dependence is assumed

to have no bearing when conditioned on the third remaining source. This assumption

can be thought of as analogous to the assumption of independence made in dual system

estimation, in that it is untestable in isolation. In dual system estimation the only way of

testing the assumption of independence relies on bringing in additional information, and

similarly so in triple system estimation.

In the triple system models being considered during the Simulation Study in Chapter 4,

there was rarely the need to question the assumption of no second order interaction, as the

‘saturated’ model with all three interaction effects overfitted the simulated data. However,

one problem encountered in both the dual system and triple system estimators is that

there is the need for the further assumption of error-free measurement of the population.

This can be too heroic an assumption, especially when there are issues surrounding data

collection, matching and biased response. As explained in Chapter 3, latent class modelling

is being proposed to account for erroneous enumerations in the population measures.

It was also mentioned in Chapter 3 that the standard latent class model assumes that
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the population is composed of mutually exclusive latent classes such that within these

classes the observed variables are unrelated; this is what was defined as local indepen-

dence. This assumption is violated when there is reason to believe that, notwithstanding

the relationships between the latent variable and observed variables, there are some rela-

tionships between the observed variables. This is particularly true for the type of latent

class model under consideration when there is some additional correlation between the

Census and Survey that will not be fully accounted for by the latent class model that

pre-supposes local independence. Even so if the latent model is formulated as a log-linear

model, it becomes possible to include the interaction between the Census and Survey

logµijkt = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ

(CX)
it + λ

(SX)
jt + λ

(LX)
kt + λ

(CS)
ij . (6.1)

This model, is however not identified since it has too many parameters. To circumvent

these issues of identifiability the proposal (detailed earlier in Section 3.11 and Section 4.4)

is to use additional covariates. So for example the case with just one covariate G is given

by the following equation:

logµijktg = λ+λ(C)
i +λ(S)

j +λ(L)
k +λ(X)

t +λ(G)
g +λ(CX)

it +λ(SX)
jt +λ(LX)

kt +λ(CS)
ij +λ(CG)

ig +λ(SG)
jg +λ(LG)

kg +λ(GX)
gt .

(6.2)

If the covariate G is a dichotomous variable then it can be seen that (6.2) is exactly

identified. Under the Goodman parameterization the local dependence model has the

three-way interaction term CSX, which is clearly not identified, and it is not possible

to write the log-linear model (6.2) in the Goodman parameterization without additional

equality constraints. In fact the log-linear model (6.2) may actually be over-fitting the

data, and a more parsimonious model, pictorially represented in Figures 6.1(a) and 6.1(b),

might suffice for a carefully chosen covariate G. In effect the covariate G is only related

to the latent variable, and this will prove to be very important when it comes to model

identifiability.

Figure 6.1: Latent Class models with a covariate effect, G

 

X 

C 
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L 

G 

(a) Local Independence

 

X 
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S 

L 

G 

(b) Local Dependence

The interpretation of Figure 6.1(b) is that in order to fit the identifiable local depen-

dence model the only requirement is that the CSX interaction term is zero. This preferred
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model can be clearly represented as the hierarchical log-linear model {CX,SX,LX,GX,CS}.
Furthermore, this model is much simpler because it does not have the interaction terms

between between the covariate G and the manifest variables. It is, however, a non-trivial

matter to find such a grouping covariate, G. This is because G has to be chosen such that

it is only related to the latent variable, X, but not the manifest variables, C, S and L.

Nevertheless, assuming such a covariate exists, then it is possible to fit the model to

the contingency table of counts using the E- and M- steps. A further advantage of this

additional covariate is that there are now enough degrees of freedom available to cope

with the missing cell(s). So for a grouping covariate G with two levels, there are now 14

observed cells, and the latent local independence model to be fitted to the data is

logµijktg = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ(G)

g + λ
(CX)
it + λ

(SX)
jt + λ

(LX)
kt + λ

(GX)
gt ,

and the corresponding local dependence latent model is

logµijktg = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ(G)

g + λ
(CX)
it + λ

(SX)
jt + λ

(LX)
kt + λ

(GX)
gt + λ

(CS)
ij .

6.3 Fitting the Log-linear Latent Class Model to Triple System

Data

It now remains to demonstrate if it is possible to fit a log-linear model to simulated data

with the purpose of recovering

(a) the missing counts, and

(b) the latent classes.

The simulated data is obtained by generating expected cell counts for the 25 contingency

table under local independence,

logµijktg = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ(G)

g + λ
(CX)
it + λ

(SX)
jt + λ

(LX)
kt + λ

(GX)
gt ,

and local dependence,

logµijktg = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ(G)

g + λ
(CX)
it + λ

(SX)
jt + λ

(LX)
kt + λ

(GX)
gt + λ

(CS)
ij .

The expected cell counts are then collapsed over the latent variable, X, to produce a

24 contingency table. Finally, the cells corresponding to being missed on all three lists,

(0, 0, 0, g), are removed. For a correctly specified latent model, the belief is that it is

possible to find both the missing and latent information given the 24−2 observed cells. It

must be mentioned that in the following Feasibility Study the data have been generated

in such a way that they fit the latent model perfectly.

In the implementation of the EM algorithm described in Chapter 3, the original idea

to cope with both dependence and erroneous enumerations was to conduct a two-stage

process. So, given an observed contingency table, the first stage finds estimates of the

missing cell counts, (n000g). After this, the second stage finds estimates of the latent
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classes. However, this way of proceeding is proved to be incorrect. The reason why this

leads to incorrect inference will be laid out shortly, but it is mainly due to how the E

and M steps are being performed. To that end, in the next section the EM algorithm is

modified to take account of both latentness and missingness. This is accomplished through

the program EM.latent (see Appendix B.3), written in SPLUS/R, which fits different

log-linear models to the observed data and then iteratively finds the maximum likelihood

estimates.

In order to explore why the two-stage procedure fails, a Feasibility Study was carried

out by slightly modifying the Simulation Study undertaken in Chapter 4 by placing er-

roneous enumerations in some specific cells. The aim is to then see if EM.latent was

effective in correctly identifying these erroneous enumerations. As a simple example, sup-

pose that the Census, Survey and Third List are mutually independent and all manage to

achieve a 70% coverage rate of a population of size 1000. Also suppose there are 50 erro-

neous enumerations in total confined to the three cells (0,0,1), (1,0,0) and (1,0,1). Then

the expected counts in the contingency table cells are (n000, 76, 63, 147, 88, 159, 147, 343).

The data has been generated under independence, so it is expected that the local indepen-

dence model will suffice, which is identifiable and therefore there is no need for a grouping

covariate G.

When the independence model is fitted to these data then the estimate of the missing

cell count, n̂000 equals 34. This estimate is not entirely correct since some of the observed

counts are erroneous and this duly has an influence on the missing cell (in that the missing

cell is overestimated). Consequently, it remains to see if EM.latent can correctly split this

observed 2x2x2 table contingency table of counts into Erroneous and Real enumerations,

the results of which appear in Table 6.1. It can be seen from Table 6.1 that the observed

erroneous and real enumerations are different from the fitted values.

Table 6.1: Results of the fitted latent class model to the simulated data
Cell Observed Real Fitted Real Observed Erroneous Fitted Erroneous

n000 27 29.17 7 4.83

n100 63 76.00 12 0.00

n010 63 60.81 0 2.19

n110 147 147.00 0 0.00

n001 63 65.66 25 22.34

n101 147 159.00 13 0.00

n011 147 136.90 0 10.10

n111 343 343.00 0 0.00

An explanation of why they are so discrepant will be given shortly. But first consider

another example. This time assume that a simulated population is generated with real

and erroneous enumerations, such that 10% of the people are known to be erroneous.

Also suppose that given that a person is real, then the probability that they will be

counted in the Census, Survey or Third List is respectively 0.80, 0.90 and 0.60. On the
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other hand the probability that an erroneous person is counted in the Census is 0.15,

and the corresponding probabilities in the Survey and Third List are 0.05 and 0.20. After

marginalising over the latent variable the 2x2x2 (including the (0,0,0)-cell) counts expected

are found to be (71.80, 40.20, 68.20, 259.80, 26.95, 46.05, 98.05, 388.95). Table 6.2, below,

gives the results, and shows that the fitted values under the latent model correspond to

the observed values.

Table 6.2: Results of the fitted latent class model to the simulated data
Cell Observed Real Fitted Real Observed Erroneous Fitted Erroneous

n000 7.20 7.1999 64.60 64.6001

n100 28.80 28.7998 11.40 11.4002

n010 64.80 64.7990 3.40 3.4001

n110 259.20 259.1998 0.60 0.6002

n001 10.80 10.7999 16.15 16.1501

n101 43.20 43.1999 2.85 2.8501

n011 97.20 97.1997 0.85 0.8503

n111 388.80 388.8000 0.15 0.1500

The reason why the latent model is able to find the correct number of real and erro-

neous enumerations under the second scenario but not in the first, relies on understanding

that under latent class analysis the fundamental assumption is that after conditioning

on the latent variable the relationship between the Census, Survey and Third List is the

same in each of the latent classes. In other words, the relationships observed among the

manifest variables (Census, Survey and Third List) is found to be the same, within the

categories of the latent variable (correct enumeration status). This is the definition of

local independence of the manifest variables on the latent variable, which underlies latent

class modelling. For the data given in the first scenario since the erroneous enumerations

can only occur in certain cells, it is not possible to accurately identify the real and erro-

neous enumerations by simply multiplying the conditional response probabilities and so

the proposed latent class model does not fit the data, whereas this is possible in the sec-

ond scenario. Incidentally, the n000 cell count in the second scenario of 71.80 cannot be

reproduced by any log-linear model, apart from the fully saturated model for the complete

data

logµijk = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(CS)
ij + λ

(CL)
ik + λ

(SL)
jk + λ

(CSL)
ijk . (6.3)

This means that the assumption of no three-way interaction that is pivotal to being able

to fit the latent class model in the presence of the missing n000 cell does not hold here.

In other words, it is not possible to use only the structure in the seven cell counts -

{n001, n010, n011, n100, n101, n110, n111} - to estimate the n000 cell count. This is because

under model (6.3) the seven ‘observable’ cells are not sufficient for the estimation of the

missing cell. Therefore, the relationship between the ‘observable’ cells is not sufficient to

find an unbiased estimate of the population size. Put simply, the (0,0,0)-cell provides some

additional information, not contained in the other cells.
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The proof of this result appears in Chapter 5 of Salgueiro (2002), but relies on the

premise that the observed contingency table is not fully represented by the observed vari-

ables. Basically this implies that there exists a latent variable such that the observed

variables are conditionally independent given that variable, and this latent model is the

most sensible. (Salgueiro, 2002, page 187-189) showed that marginalising over this latent

variable induces the saturated model, and no other model. Thus, the most adequate way

of representing the associations and interactions between the observed variables is only

through the model that includes all the terms, i.e. model (6.3).

This is the conundrum faced in capture-recapture methods; the over-riding assump-

tion is that the information provided by the observed cells should provide more than an

adequate insight into what is happening in the unobserved cell, but it is untestable, so

when it does not hold, any solution arrived at could potentially be wrong. Additionally,

since the no three-way interaction is deemed not to be the most parsimonious model, the

expectation is that there exists a simpler, less complicated, model that explains much of

the variation in the observed cells. Admittedly, this is not too unreasonable an assump-

tion to make under the circumstances when there is no overenumeration. However the

above has demonstrated that when there is, the no-three-way interaction assumption is

invalidated. This means that a two-step process of using the observed data (2r − 1 cells)

to estimate the missing cell, and then fitting a latent class model to the 2r cells with an

estimate of the missing cell included does not work. The favoured approach will be to

fit the latent class model directly to the observed cells, and then to iteratively find the

missing cell estimate. The intent is that at convergence each observed cell divides into

‘real’ and ‘erroneous’ counts, and subsequently the cell corresponding to ‘real’ missed and

‘erroneous’ missed people can be derived.

6.4 An Identifiable Latent Log-linear Model

The preceding section has shown that there are just enough degrees of freedom available

to fit the latent log-linear model

logµijkt = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ

(CX)
it + λ

(SX)
jt + λ

(LX)
kt .

However, in reality the (0,0,0)-cell is never observed and so the latent log-linear model

becomes un-identified. During the course of the thesis, it was suggested that a two-stage

process could be undertaken. Thus, starting with the seven observable cells, a suitable

model was proposed and an estimate of the missing cell found. Next, a latent log-linear

model was then fitted these eight-cells (the seven observed plus the estimated missing

cell) so that it split the data into real and erroneous enumerations. Nonetheless, for data

generated with a latent variable, which was subsequently marginalised over to obtain a

2x2x2 contingency table it was demonstrated in the previous section that no model apart

from the one with the CSL interaction effect managed to reproduce the correct estimate
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of the (0,0,0)-cell; this model is unfortunately not identified. The proposed solution to this

problem is to come up with a covariate G, whose relationship to the manifest variables is

only through the latent variable. So supposing, such a grouping covariate could be found

it was suggested that the EM algorithm can be implemented directly to the incomplete

contingency table to find missing cell, even when the lists are imperfect.

As such, the EM algorithm starts by some initial values µ(0)
ijkgt and then the M-step

fits the log-linear model

log µ̂ijkgt = λ̂+ λ̂
(C)
i + λ̂

(S)
j + λ̂

(L)
k + λ̂(G)

g + λ̂
(X)
t + λ̂

(CX)
it + λ̂

(SX)
jt + λ̂

(LX)
kt + λ̂

(GX)
gt . (M)

Now, given the data nijkg, with n000g unobserved, the E-step consists of two sub-steps.

Firstly an estimate of the missing cells is obtained for each group g,

n̂000g =
∑
t

µ̂000gt, (E1)

i.e. resulting in a ‘full’ observed contingency table. Then, secondly the latent cells are

estimated by

n̂ijktg =
nijkg
µ̂ijkg

µ̂ijkgt. (E2).

This process of computing the expectation of the complete data likelihood conditional on

the observed data, when repeated will converge to a solution that maximizes the expected

likelihood. It was found that the convergence of this algorithm was quite similar to the

case when the n000g cells are assumed to be observed.
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6.5 Feasibility Study into the Use of Latent Class Models

in Population Size Estimation from Imperfect Data

As a simple demonstration of how this log-linear latent model works, data were generated,

initially under local independence and then under local dependence. Note that the local

independence model using the 2x2x2 contingency table was previously found to be un-

identified when the cell count, n000, was missing. The EM algorithm described in Section

6.4 can be used to fit a latent log-linear model in the presence of missingness, with the

help of an additional covariate that is not directly correlated with the manifest variables.

Thus it is surmised that the observed variables do not influence each other directly, but

their inter-relationships are entirely derived from the correlation of the joint variable CS

and the variable L with the latent variable X.

So here first the simulation finds the latent probabilities given the conditional proba-

bilities πC|Xit , πS|Xjt and π
L|X
kt for the case with local independence, and π

CS|X
ijt and π

L|X
kt

when there is local dependence. Then, the grouping variable probabilities πGg and π
G|X
gt

are supplied. Subsequently, the probabilities that a randomly selected case will be located

in cell (i, j, k, g, t) is given by,

under local independence,

πCSLXijkgt = πGg π
G|X
gt π

C|X
it π

S|X
jt π

L|X
kt ,

and under local dependence,

πCSLXijkgt = πGg π
G|X
gt π

CS|X
ijt π

L|X
kt .

The first scenario considered is the simple case of local independence. As usual, a

simulated population of 1000 is considered, and in this population assume that there is

a latent variable that denotes whether or not a person is real or erroneous. Again, given

that a person is real the probability of being counted in the Census, Survey and Third

List are 0.80, 0.90 and 0.60 respectively. Similarly, given that a person is erroneous then

the probability counted in the Census, Survey and Third List are 0.15, 0.05 and 0.20.

The only difference with the previous simulations is that the population has been sub-

divided into two groups of which a third are in Group 1 and the remaining two-thirds are

in Group 2. To further demonstrate the flexibility of the EM algorithm, it is assumed

that the proportion of erroneous enumerations in the two groups are different; with there

being 10% in Group 1, and 20% in Group 2 (so the erroneous enumerations make up

16.7% of the population). Now when the latent variable is marginalised over, the 2x2x2x2

contingency table results with expected cell counts (23.91, 13.39, 22.71, 86.51, 8.97, 15.33,

32.65, 129.52, 90.45, 32.28, 42.95, 154.48, 27.95, 29.41, 58.76, 230.72). The missing cells

(in bold) are then removed from the contingency table. Evidently since the n000g cells

cannot be observed, the aim is two-fold, to see if it is possible reproduce the missing cells,

and also split the data into the latent contingency table. From the Table 6.3, it can be
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seen that the EM algorithm is effective in correctly identifying the latent classes as well

as managing to find the missing.

Table 6.3: Results of the identifiable latent class model to the simulated data - local independence

Cell Observed Real Fitted Real Observed Erroneous Fitted Erroneous

n̂000g1 2.40 2.3975 21.51 21.5084

n100g1 9.59 9.5902 3.80 3.7964

n010g1 21.58 21.5783 1.13 1.1323

n110g1 86.31 86.3135 0.20 0.1999

n001g1 3.60 3.5963 5.38 5.3781

n101g1 14.39 14.3854 0.95 0.9493

n011g1 32.37 32.3675 0.28 0.2831

n111g1 129.47 129.4704 0.05 0.0500

n̂000g2 4.27 4.2687 86.18 86.1613

n100g2 17.08 17.0748 15.21 15.2080

n010g2 38.42 38.4190 4.54 4.5358

n110g2 153.68 153.6766 0.80 0.8006

n001g2 6.40 6.4030 21.54 21.5443

n101g2 25.61 25.6120 3.80 3.8027

n011g2 57.63 57.6285 1.13 1.1342

n111g2 230.52 230.5151 0.20 0.2002

In the second scenario where there is local dependence, the assumption is that the

Census and Survey are independent of the Third List (so although the effect of the Census

varies across different levels of the Survey, the effect of the Third List remains unchanged).

Consequently, the Census and Survey can be thought of as a single (joint) variable with

four levels {00, 01, 10, 11}. Thus, given a person was erroneous the probability that they

were found by both the Census and Survey, found by the Census and missed by the

Survey, missed by the Census and found by the Survey was respectively 0.3, 0.2 and 0.1.

Since the probabilities must sum to 1, it follows that the conditional probability that an

erroneous person was missed by both the Census and Survey was 0.4. Similarly, given

that a person was real the four probabilities were 0.3, 0.2, 0.4 and 0.1. The Third List

conditional probabilities are kept the same as for the local independence case; i.e. 0.6

for real enumerations and 0.2 for erroneous enumerations. Also keeping the grouping

subdivisions (i.e. 1
3 in Group 1 and 2

3 in Group 2) and the proportion of erroneous in the

groups the same as above, the resulting 2x2x2x2 contingency table of expected counts is

(31.97, 31.97, 47.95, 47.95, 21.31, 34.63, 65.27, 51.95, 45.36, 58.70, 101.38, 88.04, 41.35,

74.70, 145.41, 112.06).

Specifically when there is local dependence, the only part of the EM algorithm that

changes is the M step, with the model fitted at the new M step given by

log µ̂ijkgt = λ̂+λ̂(C)
i +λ̂(S)

j +λ̂(L)
k +λ̂(G)

g +λ̂(X)
t +λ̂(CS)

ij +λ̂(CX)
it +λ̂(SX)

jt +λ̂(LX)
kt +λ̂(GX)

gt +λ̂(CSX)
ijt . (M)

The observed and fitted results are given in Table 6.4 and show broad agreement, and most

of the differences between them could be attributed to rounding and tolerance, which is to
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be expected given that the EM algorithm is fitting the correct model under the simulated

data.

Table 6.4: Results of the identifiable local dependence latent model - simulated data with different

CSX table odd ratios
Cell Observed Real Fitted Real Observed Erroneous Fitted Erroneous

n̂000g1 10.66 10.6219 21.31 21.2844

n100g1 21.31 21.3052 10.66 10.6838

n010g1 42.64 42.6318 5.33 5.3382

n110g1 31.97 31.9578 15.98 15.9942

n001g1 15.98 15.9798 5.33 5.3322

n101g1 31.97 31.9608 2.66 2.6712

n011g1 63.94 63.9360 1.33 1.3374

n111g1 47.95 47.9412 4.00 4.0068

n̂000g2 24.01 24.0068 21.34 21.3265

n100g2 48.02 48.0122 10.67 10.6838

n010g2 96.05 96.0531 5.34 5.3489

n110g2 72.04 72.0274 16.01 16.0257

n001g2 36.02 36.0113 5.34 5.3427

n101g2 72.04 72.0183 2.67 2.6766

n011g2 144.07 144.0660 1.33 1.3400

n111g2 108.05 108.0412 4.00 4.0148

Haberman (1979) intimated that the latent class model was very sensitive to the correct

model specification, and this is proved when a different maximization step was used, this

time removing the CSX interaction. It was hoped that the {CX,SX,LX,CS} model

was a parsimonious representation of the {LX,CSX} model. Hence, the new M step for

this simpler model is

log µ̂ijkgt = λ̂+λ̂(C)
i +λ̂(S)

j +λ̂(L)
k +λ̂(G)

g +λ̂(X)
t +λ̂(CS)

ij +λ̂(CX)
it +λ̂(SX)

jt +λ̂(LX)
kt +λ̂(GX)

gt . (M)

The {CX,SX,LX,CS} model was however found to be a fairly poor fit to the data.

An explanation for why this could be is found on examining the odds ratios of the CSX

marginal probabilities, as shown in Table 6.5. The two-way interaction between the Census

and Survey, CS, varies across levels of the latent variable, X. For X = 1, i.e. erroneous

enumerations, the odds ratio is 6, while the corresponding odds ratio when X = 2 is 3
8 .

It follows that since the odds ratios are different, it is to be expected that the CSX

interaction has a significant effect on the model fit.

Therefore, another simulation was carried out, this time the CSX marginal probabilities

were chosen such that odds ratios for X = 1 and X = 2 were the same (see Table

6.6). The resulting nijkg table of counts was (26.62, 42.62, 53.28, 37.30, 19.98, 37.30,

66.60, 49.28, 40.02, 69.37, 106.72, 77.37,40.02, 77.37, 146.74, 109.39) with the missing

cell counts in bold. Again the objective here is to obtain estimates of these missing cells

with an adjustment for the unobserved latent variable. However, this time there were

20% erroneous enumerations in Group 1 and 10% in Group 2 (so overall there are 13.3%
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Table 6.5: Census, Survey, Latent (CSX) Marginal Table I

Erroneous , X=1 Real, X=2

Survey Survey

Yes No Yes No

Census Yes 0.3 0.2 Yes 0.1 0.4

No 0.1 0.4 No 0.2 0.3

Odds Ratio=6 Odds Ratio=3
8

Table 6.6: Census, Survey, Latent (CSX) Marginal Table II

Erroneous , X=1 Real, X=2

Survey Survey

Yes No Yes No

Census Yes 0.1 0.4 Yes 0.3 0.2

No 0.2 0.3 No 0.4 0.1

Odds Ratio=6 Odds Ratio=6

erroneous enumerations in the population), but every other simulation parameter was kept

the same as before.

The EM algorithm to fit the model to the data simulated with the same marginal

CSX probabilities now uses the M-step maximizing the expected likelihood under the

model {CX,SX,LX,GX,CS}. Table 6.7 shows the fitted and observed counts - and as

anticipated there is broad agreement. Moreover in the analysis, it was found that fitting

either the {CX,SX,LX,GX,CS} or {GX,LX,CSX} model produced the same results.

Furthermore, the good thing about bringing the covariate into the latent class model

is that the choice can be made between the {CX,SX,LX,GX,CS} and {GX,LX,CSX}
models - both models are identifiable. If the two models give different results then, it

is better to choose the more complicated model (but it must be noted that this model

can take a little while longer to converge). The simulations have shown that the latent

EM algorithm works only when the correct M-step is used for the data at hand, but how

can it be possible, given a 2x2x2x2 contingency table with missing n000g cells, to fit the

correct model? This is because when there is missingness it is not possible to look at the

odds ratios in order to decide between fitting a model with local independence and local

dependence. The simplest and most effective way to detect local dependence, as suggested

by McCutcheon (1987) and Hagenaars (1993), is to look at the goodness of fit statistics

X2 =
∑
i

∑
j

∑
k

∑
g

(nijkg − µ̂ijkg)2

µ̂ijkg
or G2 = 2

∑
i

∑
j

∑
k

∑
g

nijkg log
(
nijkg
µ̂ijkg

)
,

for (ijkg) 6= (000g).

If there is no difference between the model fitted under the local independence or local

dependence assumption, then as well as having the same parameter estimates, the model
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Table 6.7: Results of the identifiable local dependence latent model - simulated data with the same

CSX table odd ratios
Cell Observed Real Fitted Real Observed Erroneous Fitted Erroneous

n̂000g1 10.66 10.6560 15.99 15.9840

n100g1 21.31 21.3119 21.31 21.3441

n010g1 42.62 42.6239 10.66 10.6561

n110g1 31.97 31.9679 5.33 5.3281

n001g1 15.98 15.9840 3.40 3.3960

n101g1 31.97 31.9679 5.33 5.3361

n011g1 63.94 63.9359 2.66 2.6681

n111g1 47.95 47.9520 1.33 1.3340

n̂000g2 24.01 24.0119 16.01 16.0080

n100g2 48.02 48.0240 21.34 21.3441

n010g2 96.05 96.0478 10.67 10.6721

n110g2 72.04 72.0359 5.34 5.3361

n001g2 36.02 36.0180 4.00 4.0020

n101g2 72.04 72.0359 5.34 5.3361

n011g2 144.07 144.0720 2.67 2.6681

n111g2 108.05 108.0540 1.33 1.3340

Table 6.8: Results of the different class latent models fitted to the simulated data

Model 1 Model 2 Model 3

Observed Estimated Estimated Estimated

n0001 NA 166.12 26.62 25.63

n1001 42.62 41.36 42.62 42.56

n0101 53.28 55.28 53.28 53.34

n1101 37.30 37.20 37.30 37.36

n0011 19.98 27.60 19.98 19.98

n1011 37.30 27.46 37.30 37.41

n0111 66.60 58.88 66.60 66.51

n1111 49.28 58.58 49.28 49.19

n0002 NA 249.63 40.01 39.28

n1002 69.37 70.82 69.37 69.45

n0102 106.72 107.00 106.72 106.65

n1102 77.37 77.97 77.37 77.23

n0012 40.02 59.85 40.02 40.02

n1012 77.37 59.55 77.37 77.23

n0112 146.74 127.71 146.74 146.84

n1112 109.39 127.06 109.39 109.49

X2 25.465 0 0.002

G2 19.841 0 0.007

df 4 3 2

p-value 0.0006 1 1
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fit statistics will be practically the same. Table 6.8 illustrates how well the different models

fit the simulated data. Model 1 is the local independence model {CX,LX, SX,GX}, while

Models 2 and 3 are the local dependence models {CX,LX, SX,GX,CS} and {GX,LX,CSX}
respectively. The goodness of fit statistics have been calculated excluding the n000g cells.

Nonetheless, it can be seen that the n000g-cell estimates vary widely under local indepen-

dence and local dependence, with there being a massive over-estimation of the these cells

under local independence. In this scenario, it is known that the data have been simulated

under local dependence so the model assuming local independence is rejected. At least a

look at the goodness of fit statistics X2 and G2 confirms this, since the local independence

model provides a poor fit to the simulated data.

6.6 Fitting Latent Class Models to the US 1990 Census

Dress Rehearsal Data - a different interpretation?

The discussion that came out of the analysis of the US Census data in the previous chapter

was about the seeming difference in the estimates of the missing counts between what was

deemed to be the best-fitting model, {CS, SL} and the ‘saturated model’, {CS,CL, SL}.
In the analysis in Chapter 5, there was found to be a very large difference between these

two models, and for some post-strata the estimate under the {CS,CL, SL} model was

almost three times the size of that under model {CS, SL}. Now for capture-recapture log-

linear modelling, it can be remembered that, the over-riding assumption is that the most

complicated model that can be fitted to the data is the homogeneous association model,

meaning that the conditional odds ratios between any two variables are identical for each

category of the third variable. Further, it is expected that there is a less complicated model

that fits the data equally well. Under these conditions, the ‘saturated’ and best-fitting

models are anticipated to yield the same estimates of the missing counts. The difference

was of concern, although using the SEM-calculated variances, the 95% confidence intervals

showed that for most of the post-strata either estimates from the two competing models

were plausible.

It was also suggested in Chapter 5 that the reason for the ambiguity in the conclusions

- i.e. two different models seem to fit the model well - could be due to a latent variable,

which was exhibited by the failure of the no-three-way interaction assumption. Also due

to the way in which the data were collected, it would make substantive sense to include

interaction effects between the Census and Survey and the Survey and Administrative List.

In other words, the latent variable does not fully account for all the dependence between

the Census, Survey and List. In fact there is still some residual dependence, and as such

the local dependence model is required. Obviously, this model is not identifiable, since

the model is over-parameterised. The suggested solution of bringing a grouping covariate

into the frame, such that the effect of each the manifest variables is mediated through the

latent variable, pictorially represented in Figure 6.2, brings about identifiability.
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Figure 6.2: Path diagram of the local dependence model with two direct effects.
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This latent class model is given by

logµijktg = λ+λ(C)
i +λ(S)

j +λ(L)
k +λ(X)

t ++λ(G)
g +λ(CX)

it +λ(SX)
jt +λ(LX)

kt +λ(CS)
ij +λ(SL)

jk +λ(GX)
gt .

and is identified, since G has four levels - O2, R2, O3 and R3 - there are 28 observations

and 12 estimable parameters in the proposed model. It will also be remembered that the

‘best fitting’ model in Section 5.2

logµijkg = λ+λ(C)
i +λ(S)

j +λ(L)
k +λ(G)

g +λ(CS)
ij +λ(SL)

jk +λ(CG)
ig +λ(SG)

jg +λ(LG)
kg +λ(CSG)

ijg +λ(SLG)
jkg

has the three variable interaction terms, λCSGijg and λSLGjkg .

Even so it is possible to include these addtional interaction terms to the model leading to

the latent model

logµijktg = λ+ λ
(C)
i + λ

(S)
j + λ

(L)
k + λ

(X)
t + λ(G)

g + λ
(CX)
it + λ

(SX)
jt + λ

(LX)
kt + λ

(CS)
ij + λ

(SL)
jk

+λ(GX)
gt + λ

(CG)
ig + λ

(SG)
jg + λ

(CSG)
ijg + λ

(SLG)
jkg

which is still identifiable.

A subsequent investigation was carried out to determine if fitting latent class models to

the data could possibly illuminate this and try to validate the results presented in Chapter

5. Using the US Census Dress Rehearsal results presented in a 2x2x2x4 contingency table

(see Table 5.6), with four missing cells (n000O2 , n000O3 , n000R2 and n000R3), different latent

models were fitted to the data and the results were found to be very interesting. The

results from the analysis are found to yield more appealing interpretations than those of

the log-linear modelling in Chapter 5. Table 6.9 gives the estimates of the two latent

classes under different model specifications. The {LX,GX,CSG, SLG} model produced

results not too dissimilar to the {CS, SL,CX, SX,LX,GX} model. The first thing of

note is that the estimate of the missing cell in the second latent class is always zero, and

this is so whichever way the model is specified, be it under local independence or the

various specifications of local dependence.
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Table 6.9: Latent Class Analysis of the US Census Data

n000 n100 n010 n110 n001 n101 n011 n111

Local Independence

Latent Class 1

O2 153.90 31.00 5.86 1.22 59.00 19.00 6.31 1.46

R2 159.05 41.00 23.04 5.08 43.00 12.00 3.05 0.83

O3 153.59 62.00 6.81 2.68 35.00 13.00 2.80 1.32

R3 129.07 32.00 14.52 3.77 43.00 7.00 2.83 0.75

Latent Class 2

O2 0.00 0.00 2.14 11.78 0.00 0.00 12.69 77.54

R2 0.00 0.00 10.96 63.92 0.00 0.00 7.95 57.17

O3 0.00 0.00 3.19 33.32 0.00 0.00 7.20 89.67

R3 0.00 0.00 9.48 65.23 0.00 0.00 10.17 71.25

Local Dependence (with CS interaction)

Latent Class 1

O2 153.55 31.00 5.84 0.00 59.00 19.00 6.57 0.00

R2 153.84 41.00 22.58 0.00 43.00 12.00 3.06 0.00

O3 151.28 62.00 6.74 0.00 35.00 13.00 2.88 0.00

R3 125.41 32.00 14.27 0.00 43.00 7.00 2.89 0.00

Latent Class 2

O2 0.00 0.00 2.16 13.00 0.00 0.00 12.43 79.00

R2 0.00 0.00 11.42 69.00 0.00 0.00 7.94 58.00

O3 0.00 0.00 3.26 36.00 0.00 0.00 7.12 91.00

R3 0.00 0.00 9.73 69.00 0.00 0.00 10.11 72.00

Local Dependence (with SL interaction)

Latent Class 1

O2 153.68 31.00 7.22 1.63 59.00 19.00 14.52 3.76

R2 161.05 41.00 29.82 6.84 43.00 12.00 7.85 2.14

O3 149.20 62.00 8.69 3.34 35.00 13.00 6.98 3.13

R3 132.68 32.00 20.11 5.10 43.00 7.00 8.36 1.95

Latent Class 2

O2 0.00 0.00 0.78 11.37 0.00 0.00 4.48 75.24

R2 0.00 0.00 4.18 62.16 0.00 0.00 3.15 55.86

O3 0.00 0.00 1.31 32.66 0.00 0.00 3.02 87.87

R3 0.00 0.00 3.89 63.90 0.00 0.00 4.64 70.05

Local Dependence (with CS and SL interactions)

Latent Class 1

O2 153.34 31.00 6.56 0.00 59.00 19.00 10.84 0.00

R2 155.34 41.00 26.14 0.00 43.00 12.00 5.42 0.00

O3 149.35 62.00 7.70 0.00 35.00 13.00 4.94 0.00

R3 127.26 32.00 17.06 0.00 43.00 7.00 5.43 0.00

Latent Class 2

O2 0.00 0.00 1.44 13.00 0.00 0.00 8.16 79.00

R2 0.00 0.00 7.86 69.00 0.00 0.00 5.58 58.00

O3 0.00 0.00 2.30 36.00 0.00 0.00 5.06 91.00

R3 0.00 0.00 6.94 69.00 0.00 0.00 7.57 72.00
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During the introduction of latent class analysis mention was made of the fact that

the latent variable is brought in to account for unobserved heterogeneity. However, there

could be two different interpretations of the latent classes (precisely, enumeration error

and enumeration difficulty), which depending on the interpretation chosen will lead to a

different population estimate; and as a result it was expressed that there could be two,

conflicting, population estimates. The first interpretation is the one that the majority of

thesis has focused on, while the second interpretation is based on catchability. Individuals

are presumed to cluster into latent classes such that individuals within the same class have

the same catchability. The basis of post-stratification is to ensure that subgroups of the

population are chosen so that within each subgroup the individuals roughly exhibit the

same capture behaviour, and the failure to correctly post-stratify leads to heterogeneity

bias in the population estimates. It was stated at the beginning of the thesis that provided

the population has been suitably post-stratified then fitting a latent model to the cross-

classified table of counts leads to classes that represent enumeration error. For the US

Census Dress Rehearsal data, however, the examination of the latent classes suggests

that the unobserved heterogeneity could be attributable to enumeration difficulty and not

enumeration error.

Moreover, the estimates of the missing (roughly 155 persons in O2, 155 in R2, 150 in

O3 and 125 in R3) when compared to the results in Chapter 5 are somewhat closer to the

best-fitting model (the one with the CS, SL interactions) whose corresponding estimates

of missing were 96 people in O2, 147 in R2, 167 in O3 and 197 in R3, than the ‘saturated’

model. In Section 6.3 it was shown that when the untestable no-three-way interaction

assumption cannot be justified - mainly due to the data being marginalised over a latent

variable - there may be issues surrounding the correct estimation of the population size.

It emerges that every person who appears in the n001, n100 and n101 cells, as well as

those estimated to be missing (n000), is placed in the first latent class, for all the models.

On the other hand, every person who is counted in both the Census and Survey, i.e. n110

and n111 cells, is placed in the second latent class. It is also apparent the remaining cells,

n010, n011, represent those people who were counted and it appears that for these cells the

latent model distributes the observed people to the two classes by some mechanism. The

interpretation of what the two latent classes actually represent is difficult, but a crude

one that may be offered is that the latent classes denote whether or not a person was

found on the Survey. In essence the observed contingency table data from the US 1990

Census Dress Rehearsal in St Louis shows a mixture of two latent subgroups - one group

of people can be described as being easy to count by the Survey, and the other subgroup

are hard to count by the Survey. Nevertheless, what this basically shows is that the data

as they appears in Table 5.6 suffers from a failure of the post-stratification scheme, and as

such there is some residual heterogeneity not fully accounted for by the age, race, tenure

post-strata.
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6.7 Problems with the Supplemented EM Algorithm for

Standard Error Computation in Latent Class Analysis

Since the EM algorithm has been applied to compute the maximum likelihood estimates

of the latent model parameters, it was anticipated that the asymptotic covariances and

variances of the model parameters could be obtained using the SEM algorithm without a

great deal of effort. However, the implementation of the SEM for latent class models did

encounter some problems which will be discussed in this section. The idea of the SEM is a

simple one and for the case when there is a single parameter to be maximized, the general

formulation of the SEM algorithm, as detailed in Meng and Rubin (1991) is comprised of

these steps:

1. Obtain an initial estimate θ(0) that satisfies the log-linear model.

2. Run the EM algorithm to convergence to find the MLE, θ∗.

3. Define θ(t) to be the EM estimate of θ at the tth iteration.

4. The rate of convergence, r, is given by

r =
θ(t+1) − θ∗

θ(t) − θ∗

5. Run the EM and calculate r until convergence is reached such that

r =
θ(t+1) − θ(t)

θ(t) − θ(t−1)
.

6. The observed variance can now be obtained from the known complete data variance,

Vcom, and the rate of convergence, r to be

Vobs = Vcom + ∆V = Vcom +
r

1− r
Vcom.

So similarly, for the case when the EM algorithm is maximizing over a multiple param-

eter space (a case in point is when there is unobserved latentness) then the above SEM

algorithm can be suitably amended to

• find the correct matrix version of r, (rij) referred to as DM ,

• find the correct matrix version of ∆V and

• find the correct matrix version of Vobs = Vcom + ∆V .

As usual, the SEM algorithm works by first obtaining the (multi-parameter) ML estimate

θ∗ given some initial estimates θ(0). Define rij to be the (i, j)th element of the DM

matrix.

1. At the tth iteration let the EM estimate be θ(t).

2. Define θ(t)(i) =
(
θ∗1, θ

∗
2, . . . , θ

∗
i−1, θ

(t)
i , θ∗i+1, . . . , θ

∗
d

)
, which is effectively all the com-

ponents fixed at their MLEs, except the ith component, θ(t)
i .
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3. Now run a single iterate of the EM algorithm, and find the (i, j)th element of the

DM

rij =
θ
(t+1)
j (i)− θ∗j
θ
(t)
i − θ∗i

for j = 1, . . . , d.

Alternatively since DM is the Jacobian, rij is the (i, j)th term of the Jacobian

rij =
∂Mj(θ∗)
∂θi

= lim
θt→θ∗

Mj

(
θ∗1, θ

∗
2, . . . , θ

∗
i−1, θ

(t)
i , θ∗i+1, . . . , θ

∗
d

)
−Mj(θ∗)

θi − θ∗i

= lim
t→∞

Mj

(
θt(i)

)
− θ∗j

θi − θ∗i
.

The procedure of running the EM steps and calculating the components of the DM

is iteratively run until all of the rij are stable.

4. The complete data variance, Vcom is simply the covariance-variance matrix of the

parameters when the missing cells are directly substituted by the converged EM

algorithm parameter estimates.

5. With DM and Vcom evaluated, the observed covariance-variance can be computed

as Vobs = Vcom + ∆V = Vcom + VcomDM (1−DM)−1.

6. The asymptotic variances of the parameters are given by the diagonal terms of the

matrix, Vobs, and the confidence intervals can now be derived as exp (β ± 1.96σ),

where β is the multi-parameter MLE, and σ is vector of the square root of the

asymptotic variances.

In Chapter 5, it was shown that the SEM algorithm can be used to find the asymptotic

covariance matrix of the model parameters obtained by the EM algorithm. Key to the

derivation of the asymptotic covariance matrix is the DM matrix - even though the EM

mapping θ(t+1) →M
(
θ(t)
)

does not have an explicit form, the derivative of the mapping

DM can, in theory, be estimated through numerical methods. For the SEM implemented

in Chapter 5, the DM is fairly straightforward to compute. However, for the case when

there is a latent variable, the derivation of the DM can be difficult, possibly due to the

complexity introduced by the latent information. Bearing in mind that the computation

of the DM matrix involves essentially obtaining the Jacobian through numerical differen-

tiation because of the inability to directly evaluate it, when the numerical differentiation

is not close to the actual Jacobian there are inaccuracies in the SEM-derived covariances.

This is often shown by the asymmetry in the resulting variance-covariance matrix at con-

vergence. Another problem encountered in using the SEM when there is a latent variable is

what is referred to as weak identifiability (see Garrett and Zeger (2000), Formann (2003)).

During the SEM implementation, an indication of weak identifiability in a model was
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found to be exhibited by the Vcom terms corresponding to the latent parameters being

very large1.

The best way to demonstrate weak identifiability is to consider an example where the

observed contingency table is given by (170, 15, 0, 0, 6, 0, 0, 0, 4, 17, 0, 83, 1, 4, 0,

128). Clearly, it can be seen that the majority of people appear in the n000g1 and n111g2

cells. Without removing the n000g1 and n000g2 cells from the analysis, and fitting a local

independence two-class latent model to the data the parameter estimates are shown in

the second column of Table 6.10. As a consequence the complete data covariance matrix,

Vcom is easily computed by substituting the parameter estimates at convergence of the EM

algorithm, and the diagonal elements give the variance of the parameters under complete

information. The standard errors are the square roots of the variances, and are shown in

the third column of Table 6.10. From here it can be noticed that some of the parameter

standard error estimates are comparatively large, in particular the ones corresponding to

the latent terms λXt , λCXit , λSXjt , λLXkt and λGXgt , even when there is complete information.

It can be seen that in comparison with the parameter estimates the standard errors are

remarkably large and this is indicative of the flat likelihood of the parameters.

Table 6.10: Complete Data Variance of Parameter Estimates

Parameter Estimate SE (under complete data)

λ 5.1321 0.07660

λCi -3.4848 0.4195

λSj -3.2994 0.3847

λLk -23.0906 4467.0538

λXt -2.4349 0.2619

λGg -49.9015 7260.6983

λCXit 27.0331 5217.0566

λSXjt 3.5856 0.4070

λLXkt 25.4396 4467.0538

λGXgt 25.8126 5049.7584

In summary, here the EM algorithm manages to fit the latent model, but due to the

scarcity of information available for the estimation of these parameters, the variance of

the estimates are very large. In other words, the latent model is identified, but there is not

enough information available to estimate some of the parameters. The same is observed

when trying to obtain the asymptotic variance by using the SEM algorithm for the US

Census Dress Rehearsal data. It transpired that the additional dependence term (λCSij )

and the terms involving the latent variable - λXt , λCXit , λSXjt - are weakly identified in the

model. After fitting the latent class model {CS, SL,CX, SX,LX,GX} the complete data

standard error estimates are given in Table 6.11.

It is unfortunate that weak identifiability is a problem that affects analysis of data

with latent variables. Evidently identifiability is a property of not just the model, but
1An interesting theoretical result is that if the information matrix (which is the inverse of the variance

matrix) of the log-likelihood function has eigenvalues smaller than zero then the model is unidentifiable.

141



also of the data. Formann (2003) states that there are primarily two ways in which a

model could be weakly identified; trivially the number of classes could be too many and

thus the model is over-parameterized. However, more crucially, the number of classes

could be correct but there is not enough data to identify the classes. Garrett and Zeger

(2000) showed that simply fitting a Bayesian latent model in the hope of overcoming weak

identifiability does not necessarily solve this matter. In actuality, from Gelfand and Sahu

(1999) it would seem that Bayesian models can better cope with model non-identifiability

than weak identifiability. For a non-identified model it is known a priori that there is no

data so the prior fully influences the posterior but for a weakly identified model it is not so

straightforward to know how much influence the choice of prior has had on the posterior.

Table 6.11: Complete Data Variance of Parameter Estimates for US Census Example

Parameter Estimate SE (under complete data)

λ 5.0365 0.0707

λCi -1.2611 0.0782

λSj -2.3217 0.1197

λLk -1.1802 0.0794

λXt -37.6689 421.5322

λGR2
0.0091 0.0872

λGO3
-0.3031 0.0911

λGR3
-01903 0.0917

λCXit 19.1799 299.9527

λSXjt 36.1513 421.5321

λLXkt 1.2306 0.2136

λGXR2t
0.3147 0.1676

λGXO3t
0.3099 0.1705

λGXR3t
0.6160 0.1674

λCSij -15.5341 299.9526

λSLjk 0.4119 0.2080

When there is weak identifiability, the prior will dominate the likelihood and this will

inevitably end up with a posterior that is fairly similar to the prior. Garrett and Zeger

(2000) also showed that even when the sample size is large the likelihood may still be unable

to overcome the prior in the presence of weakly identified parameters. Their solution is

to calculate an additional parameter, τj that gives the percentage overlap between the

prior and posterior distributions for each parameter, j. When τj is close to 1, then it

means that the parameter is weakly identified. Incidentally, Formann (2003), using a

result in Goodman (1974) suggested looking at the rank of the Jacobian matrix, and if

the Jacobian has full rank then it follows that all the parameters are locally identifiable,

which in turn implies that the model is identifiable. Moreover, it is still possible that a

specific model could be ‘empirically non-identified’, meaning that although the model may

be theoretically identifiable the observed data does not allow the effectual estimation of

all the parameters. In these circumstances, much more advanced Bayesian models that

apply MCMC techniques have been suggested by Gimenez et al. (2008).
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6.8 Estimation of the Standard Errors Using the Bootstrap

With the advances in computationally intensive methods, bootstrapping is increasingly

being used for the estimation of precision in capture-recapture studies. It was mentioned in

Chapter 3 that for data collected by capture-recapture a parametric bootstrap is preferred

to a non-parametric bootstrap (Buckland and Garthwaite (1991)). The advantage of the

bootstrap in this setting is that although computer intensive it avoids the potential pitfalls

of the SEM algorithm, particularly in terms of the calculation of the Jacobian - precisely,

the DM matrix. Nonetheless the issue of weak identifiability that makes it difficult to

find the variance using the SEM algorithm when there is latentness is still an issue here.

The implementation of the bootstrap carried out here is slightly different from the

previous bootstrap in Chapter 5, although the ideas are essentially the same. The objective

is to resample the data so as to obtain the bootstrap distribution which in turn gives

information about the unknown sampling distribution of interest. The bootstrap makes it

possible to draw inferences about the true, but unknown, population based on sample. It

was mentioned in Section 3.7.4 that there are two ways of Bootstrapping, the parametric

or non-parametric version. The difference between a non-parametric bootstrap and a

parametric one is that the resamples are done under a probability model. In essence, a

parametric bootstrap requires the choice of an underlying distributional model (in this

case a multinomial), while the non-parametric does not.

In the bootstrapping carried out in this chapter, the original data are in the form

of a 2x2x2xg contingency table of counts, where g represents the levels of the grouping

covariate, G. As such the observed table has cell counts {nijkg}, with {n000g} being

missing. Under the bootstrap, B ‘new’ contingency tables
{
n∗bijkg

}
are generated from

the original table, where b = 1, 2, · · · , B. These new contingency tables are the bootstrap

resamples. Subsequently, the EM algorithm (detailed above in Section 6.4) is used to

fit the model to each of the resamples. This obtains parameter and fitted estimates

for each resample. The sample average of the bootstrap resamples when compared to the

maximum likelihood estimate, derived under the original observed contingency table, gives

an indication of the bias of the maximum likelihood estimate. The bootstrap estimate of

the standard error is the standard deviation of the B bootstrap resamples, and this can be

taken to be the estimate of the standard error of the maximum likelihood estimate (Efron

and Tibshirani, 1993, page 13).

In the bootstrap resampling another issue - which was not encountered previously -

that had to be considered was that of label switching. Due to the arbitrary nature of the

labelling of the latent classes, the results of the EM algorithm fitted to the resampled data

is often invariant to the permutations in the labelling of latent classes2. Essentially, the

likelihood function of the latent model is invariant under both permutations of the latent
2The latent variable has two classes but there is no way of knowing in advance how the algorithm splits

the data: it could place real enumerations in class 1 and erroneous enumerations in class 2, or vice versa.
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classes, i.e. changing the ordering of the latent classes does not change the likelihood value.

So to properly draw inferences about the bootstrapped resamples label switching needs to

be explicitly addressed, or else there could be a distortion of the statistics of interest.

Appendix B.6 shows the program that was written in SPLUS/R to perform the boot-

strapping and has a part that examines the output at convergence of the EM algorithm in

order to take account of label switching. As such the estimates are unaffected by changes

to the specification of the latent classes. Noticeably, label switching is well known in

Markov Chain Monte Carlo (MCMC) methods and there are a number of techniques to

deal with them in Bayesian analysis, for example by placing restrictions on the parameters

or graphical displays (Garrett and Zeger (2000)).

One more issue involves whether or not the sample truly is representative of the pop-

ulation. In bootstrapping the resamples are assumed to approximate the distribution of

the estimator, using the observed sample. In general the bootstrap resamples will approx-

imate the distribution of the unknown estimator, but the bootstrap resamples will exhibit

some bias. Ideally, the bias of the mean of the bootstrap resamples, E
(
θ̂∗
)
− θ̂, should

be similar to the bias of the maximum likelihood estimate, E
(
θ̂
)
− θ. Owing to flat ob-

served data likelihood the EM algorithm when applied to the bootstrap resamples will fail

to converge to the ‘correct’ solution in some cases. As such, the bootstrap implemented

here will try to solve this by multiplying the observed data by an adjustment factor, fb.

This has the effect of increasing the sample size and producing more precise estimates of

variance.

This does suggest that the same idea of inflating the sample size could be extended to

the SEM algorithm so as to obtain estimates of the asymptotic variance. Nonetheless, even

after multiplying the observed data by 1000, the SEM algorithm was found to still have

difficulties in estimating the variance-covariance matrix. It was mentioned previously that

there are two ways in which a model may be weakly identified; either due to the actual

model or due to the data. The second case, referred to as empirical weak identifiability

by Garrett and Zeger (2000) can be corrected for by simply increasing the sample size.

The fact that the SEM algorithm fails to converge to the asymptotic covariance-variance

matrix, even after the sample size increase, suggests that the weak identifiability is due

the difficulties in the latent model and not the data.

6.8.1 Derivation of Bootstrap Variances for the Feasibility Study Data

Bootstrapping was implemented to find measures of precision for the Feasibility Study

data using the procedure described above. In order to demonstrate the efficacy of the

adjustment factor on the bootstrap estimated standard errors, three different values of

fb = {1, 100, 1000} were considered. The case when fb = 1 denotes the resamples without

any adjustment. It was found during the bootstrapping exercise that the observed pop-

ulation, with sample size n = 933, has a data likelihood that is difficult to find precise
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estimates of the standard error. Changing the stopping criterion3 to be smaller than the

current tolerance (of 10−6) did not seem to make much of a difference, apart from increas-

ing the time to convergence. Therefore, the simpler approach was to multiply the observed

population by the adjustment factor, then use these adjusted data as the bootstrap repli-

cates. The EM algorithm was then used to obtain the maximum likelihood estimates for

each resample. The estimate of the variance of the maximum likelihood estimate is the

sample variance of the bootstrap resamples inflated to take account of the adjustment

factor. As will be demonstrated in the following results, the parameter values - apart from

the intercept parameter4 - remain unchanged. This approach was found to be far more

computationally efficient and speeds about the processing time; it took roughly a third of

the time in comparison to the first approach.

Table 6.12: Feasibility Study - Bootstrap Means and Standard Errors of Parameter Estimates
Parameter Estimate Bootstrap Mean Bootstrap SE Bootstrap Mean Bootstrap SE Bootstrap Mean Bootstrap SE

1000 resamples 100 resamples 1000 resamples

fb=1, n× fb = 993 fb=1000, n× fb = 933000 fb=100, n× fb = 93300

λ 2.7731 2.3045 3.5833 9.6916 1.4833 7.4538 1.9781

λCi 0.2633 0.2877 4.1310 0.2604 1.5791 0.1538 2.1957

λSj -0.4057 -1.5877 5.2473 -0.4797 2.1967 -0.6707 2.8726

λLk -1.3863 -1.3656 4.1179 -1.4638 2.4563 -1.6767 3.1667

λXt -0.4070 -4.8981 9.8961 -0.3988 1.6029 -0.4272 1.9719

λGg -0.0015 0.5110 1.6885 -0.0148 0.7730 -0.0701 0.7731

λCXit 0.4055 2.5964 8.8070 0.4307 1.7146 0.5406 2.3242

λSXjt 1.7918 6.6092 9.3679 1.8592 2.2303 2.0455 2.8924

λLXkt 1.7918 2.4070 5.1817 1.8631 2.4272 2.0623 3.1220

λGXgt 0.8139 0.6554 2.9550 0.8232 0.7458 0.8709 0.7750

λCSij -0.9808 -2.9343 6.2491 -0.9793 0.1801 -0.9841 0.2399

Table 6.12 gives the estimated standard error of the parameters, and demonstrates

the consistency of the bootstrap for the different values of fb. The bootstrap standard

errors presented are the standard deviations based on the resamples multiplied by square

root of the adjustment factor. There are two main points that come out of these results.

Firstly, the standard errors for fb = 100 and fb = 1000 are roughly similar. Secondly, the

estimated standard errors for the non-adjusted bootstrap resamples are rather large when

compared to the adjusted resamples. It can also be concluded that the results show that the

resampling estimates for fb = 100 are almost equivalent to those for fb = 1000. Therefore,

by increasing the sample size to 93300, and then implementing the bootstrap precise

estimates of the standard error around the maximum likelihood estimate can be found.

However, increasing the sample size to 933000 does not greatly improve the precision. Since

it is expected that the variance of an estimator, will decrease proportional to the inverse

of the sample size, it would seem that the variance estimates stabilise after fb = 100.

This shows that the choice of the number bootstrapping resamples, B, and adjustment

factor, fb, is based on the considerations of computational cost and not on numerical

accuracy. Thus, though the observed data likelihood is flat, multiplying the data by a
3The stopping criterion is the point at which it is believed that the parameter estimates are stable and

no further improvements can be made to the log-likelihood.
4There is a simple relationship between the bootstrap resamples mean and the MLE intercept

i.e. λboot − log(fb) = λMLE .
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factor has the effect of ‘increasing’ the sample size, and as such there is more information

available so that the estimators are more precise. By making the likelihood more curved,

the curvature can more accurately be estimated, specifically when the observed likelihood

is particularly flat.

Table 6.13: Feasibility Study - Bootstrap Means and Standard Errors of Fitted Cell Counts

Cell Observed Real Fitted Real Fitted Real Observed Erroneous Fitted Erroneous Fitted Erroneous

fb=1 fb=100 fb=1 fb=100

n× fb = 933 n× fb = 93300 n× fb = 933 n× fb = 93300

n̂000g1 10.66 4.6540 10.8605 15.99 27.4076 16.1984

(3.8236) (5.5855) (32.6499) (24.1540)

n100g1 21.31 13.9450 21.6804 21.31 27.6302 21.0014

(9.5796) (10.8963) (11.4339) (11.3708)

n010g1 42.62 32.5560 43.1272 10.66 20.8661 10.0282

(13.3804) (15.4287) (16.0532) (18.3749)

n110g1 31.97 26.4039 32.3438 5.33 11.1818 4.8970

(10.9945) (11.1750) (12.1839) (12.3517)

n001g1 15.98 7.9204 16.1849 3.40 12.0348 2.3304

(6.2217) (6.5990) (7.6091) (8.5609)

n101g1 31.97 21.3093 32.3064 5.33 16.4374 4.8745

(11.7121) (11.7858) (12.7878) (13.3094)

n011g1 63.94 53.8428 64.3486 2.66 12.8907 2.3304

(17.7570) (12.2660) (15.2382) (7.3384)

n111g1 47.95 42.9090 48.1892 1.33 6.4710 11.3845

(13.2386) (10.0086) (9.8830) (4.6572)

n̂000g2 24.01 10.9750 24.3738 16.01 43.3443 15.9637

(8.7127) (10.7757) (54.2051) (25.8579)

n100g2 48.02 29.9752 48.6340 21.34 40.2900 20.6970

(17.1230) (20.4004) (19.8142) (23.8706)

n010g2 96.05 75.0469 96.8591 10.67 32.5349 9.8973

(27.8117) (25.2081) (27.5222) (23.5129)

n110g2 72.04 60.4069 72.5614 5.33 16.1604 4.8291

(20.7153) (17.6044) (19.7195) (14.2923)

n001g2 36.02 19.4019 36.3386 4.00 20.6654 3.7036

(14.6770) (12.9724) (14.7091) (10.2364)

n101g2 72.04 50.3110 72.5272 5.34 26.4805 4.8124

(24.9572) (21.3194) (23.0648) (15.6562)

n011g2 144.07 124.4133 144.2838 2.67 21.9917 2.2984

(31.8458) (14.2936) (29.1784) (8.4268)

n111g2 108.05 98.7714 108.2244 1.33 10.1521 1.1251

(19.7711) (11.0000) (17.0357) (5.1429)

Table 6.13 gives the resample mean of the fitted cell counts for the different bootstraps

with an adjustment factor of fb = 100, and without an adjustment, i.e. fb = 1. Their

respective standard errors are also presented and shown in brackets. Again these standard

errors are the sample standard deviations of the bootstrap replicates multiplied by the

square root of the adjustment factor. The fitted estimates presented are the average of

fitted cell counts of the bootstrap resamples divided by the adjustment factor. In addition,

since the data has been simulated the actual cell counts are known so have been presented.

Following on from the results in Table 6.12 for the parameter estimates, it can be

observed in Table 6.13 that the bootstrap resample means with the adjustment are closer
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to the actual values, which can be indicative of the non-adjusted bootstrap resample mean

being a biased estimator of the population. There is therefore some evidence to suggest

that the estimation of the variance may be imprecise at small sample sizes, and it may

be appropriate to increase the sample size by an adjustment factor, fb, and then inflating

the sample variance by the adjustment factor to obtain the estimated variance of the

parameter estimator.

Furthermore, the standard errors of those that appear in the Third List seem to be

larger than those that do not appear in the Third List. A possible reason for this could

be simply due to the way in which the Feasibility Study was designed. The probability of

being correctly enumerated on the Third List is lower than the Census or Survey, but in

contrast the probability of being erroneously enumerated on the Third List is higher than

on the Census or Survey. As with any simulation study, the exact nature of the results

depends, to a certain extent, on the way in which the data has been simulated. In the

next section, when the bootstrap is implemented for the US Census Dress Rehearsal data,

these standard errors are much smaller. Thus, it would appear that in this case there may

not be sufficient information contained in the observed data to estimate both the latent

variable effects and the missing cell counts to a decent degree of accuracy.

6.8.2 Derivation of Bootstrap Variances in Application to the US Census

1990 Dress Rehearsal Data

Measures of accuracy are now presented for the estimates derived under the latent class

model fitted to the US Census Dress Rehearsal data discussed in Section 6.6. A similar

bootstrapping procedure to the one carried out for the Feasibility Study, in the previous

section, was applied here. For this case, the observed sample size, n, is 1013 and the

grouping covariate, G, has four levels. However, as previously, B new contingency tables

are generated from the original table (shown in Table 5.6). The EM algorithm is next used

to fit the latent model so as to obtain maximum likelihood parameter estimates for each of

the B resamples. An adjustment factor fb = 100 is also multiplied by the observed sample

size to investigate the effect of increasing the observed sample on the variance estimation.

The bootstrap estimates of the standard errors presented have been inflated to take this

adjustment into account.

Table 6.14 gives the standard errors of the parameter estimates, and Table 6.15 gives

the standard errors for the fitted cell counts, for the bootstrap resamples. It can be

remembered that when fb = 100 the intercept parameter for the bootstrap resamples has

to be adjusted to get the same intercept estimate for the maximum likelihood estimate;

here it can be seen that 9.6406 − log(100) is roughly equivalent to the MLE intercept of

5.0365. The first thing to be noticed when comparing the parameter estimates in Table

6.14 to those of the previous application, in Table 6.12, is that the standard errors are

much smaller (in magnitude) for this application. Furthermore, the standard errors are
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also considerably larger for some of the parameters when fb = 1 in comparison with when

fb = 100.

Table 6.14: US Census Dress Rehearsal - Bootstrap Means and Standard Errors of Parameter Estimates
Parameter Estimate Bootstrap Mean Bootstrap SE Bootstrap Mean Bootstrap SE

fb=1 fb=100

n× fb = 1013 n× fb = 101300

λ 5.0365 5.1260 0.4928 9.6406 0.1851

λCi -1.2611 -1.6853 1.6534 -1.2619 0.1568

λSj -2.3217 -3.3157 3.6768 -2.2413 0.6161

λLk -1.1802 -1.5843 0.9048 -1.1814 0.1522

λXt -37.6689 -35.8061 17.8150 -37.8421 8.5775

λGR2
0.0091 0.1799 0.5099 0.0171 0.1379

λGO3
-0.3031 0.0511 0.3223 -0.0402 0.1311

λGR3
-0.1903 0.02917 0.5126 -0.1774 0.1667

λCXit 19.1799 19.6351 14.1880 19.5759 9.4517

λSXjt 36.1513 25.9096 14.7077 35.8299 3.9551

λLXkt 1.2306 2.7809 11.6891 1.1045 0.8908

λGXR2t
0.3147 0.4325 2.6925 0.3072 0.2010

λGXO3t
0.3099 0.5916 2.2528 0.3384 0.2543

λGXR3t
0.6160 0.6880 2.6139 0.6073 0.2175

λCSij -15.5341 -9.1988 9.1076 -15.5229 0.9906

λSLjk 0.4119 1.0099 5.4369 0.5436 0.9190

In Table 6.15 the bootstrap resamples without any adjustment (i.e. fb = 1) appear

to be more variable, especially the missing cells, {n000gt}. For the bootstraps with the

adjustment, it can be seen that, discounting the missing cells, the standard errors for the

n011gt and n010gt cells are comparatively larger than the other cells. Consequently it may

be concluded that for those that appear in the Survey but not in the Census, there is

insufficient information available from the observed counts to estimate the latent counts

to a high degree of precision, even for the increased sample size.

For fb = 1, the mean of the bootstrap resamples are mostly different to those expected

under the original sample. In particular for the cells with zero expected counts namely,

{n110g1, n111g1, n000g2, n100g2, n001g2, n101g2}, the bootstrap resample means are non-zero.

This does cause some difficulties when it comes to trying to use the results from fb = 1

to find interpretations for the two latent classes. The interpretation, given in Section 6.6,

was that there were two classes with everyone who appears in the n000, n001, n100 and

n101 cells belonging in the first latent class. These four cells represent those that were

missed by the Survey. Contrastingly, everyone counted by both the Census and Survey

- n110 and n111 - belongs to the second class. The remainder, n010, n011, referring to

those missed by the Census but counted by the Survey were shared out amongst the two

classes by some mechanism. A much more substantive interpretation was that the two

groups denoted whether or not the people were hard or easy to enumerate by the Survey,

even after taking into account the post-strata age, race and tenure. Clearly, using the

non-adjusted bootstrap results does not make it obvious to find formative descriptions of

the two classes.
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Table 6.15: US Census Dress Rehearsal - Bootstrap Means and Standard Errors of Fitted Cell Counts
Estimate Bootstrap Mean Bootstrap SE Bootstrap Mean Bootstrap SE

fb = 1 fb = 100

O2 Latent Class 1

n000 155.34 211.10 296.1111 153.78 28.5247

n100 31.00 29.56 8.8524 31.02 5.6083

n010 6.56 7.37 3.3703 7.01 3.7126

n110 0.00 3.32 5.8780 0.00 0.0000

n001 59.00 49.82 20.0759 58.97 7.4725

n101 19.00 15.90 8.6348 18.98 4.1340

n011 10.84 15.98 7.7551 13.20 17.9172

n111 0.00 10.25 24.3602 0.00 0.0000

R2 Latent Class 1

n000 155.34 329.28 699.3176 156.44 28.7476

n100 41.00 38.47 9.5737 41.14 6.3668

n010 26.14 29.51 11.9965 28.40 16.9839

n110 0.00 14.34 27.2032 0.00 0.0000

n001 43.00 40.01 8.9281 43.03 6.2047

n101 12.00 10.22 4.4880 12.01 3.5317

n011 5.42 8.54 4.1432 6.85 11.0005

n111 0.00 8.89 17.2917 0.00 0.0000

O3 Latent Class 1

n000 149.34 296.4244 223.41 147.73 31.9806

n100 62.00 15.5214 57.22 61.82 7.3581

n010 7.70 4.2891 9.13 8.25 4.9622

n110 0.00 13.5495 7.50 0.00 0.0000

n001 35.00 11.1144 30.63 34.88 5.4532

n101 13.00 5.3468 10.17 12.97 3.5778

n011 4.94 3.8768 7.58 6.16 9.5936

n111 0.00 26.5601 11.54 0.00 0.0000

R3 Latent Class 1

n000 127.26 304.96 712.8302 128.79 25.2065

n100 32.00 30.06 6.8402 32.12 5.7929

n010 17.06 19.88 8.64409 18.82 13.7603

n110 0.00 14.53 27.3955 0.00 0.0000

n001 43.00 40.11 9.8910 43.15 6.3419

n101 7.00 5.70 3.1619 7.02 2.7783

n011 5.44 9.11 4.4112 7.11 13.3538

n111 0.00 10.91 21.4719 0.00 0.0000

O2 Latent Class 2

n000 0.00 4.86 15.6938 0.00 0.0000

n100 0.00 2.12 7.0831 0.00 0.0000

n010 1.44 0.78 1.8274 1.05 2.9390

n110 13.00 9.66 5.7134 12.95 3.5289

n001 0.00 7.84 16.0781 0.00 0.0000

n101 0.00 3.43 7.0041 0.00 0.0000

n011 8.16 3.93 6.3933 5.89 16.2691

n111 79.00 68.19 26.4283 78.85 8.6280

R2 Latent Class 2

n000 0.00 9.37 28.4133 0.00 0.0000

n100 0.00 2.60 6.9878 0.00 0.0000

n010 7.86 4.82 9.9007 5.74 15.6002

n110 69.00 53.91 27.8741 68.82 8.0935

n001 0.00 3.64 7.7682 0.00 0.0000

n101 0.00 1.91 3.9849 0.00 0.0000

n011 5.58 2.14 3.0020 4.13 10.9850

n111 58.00 47.36 18.5258 57.86 7.5132

O3 Latent Class 2

n000 0.00 7.91 21.9656 0.00 0.0000

n100 0.00 4.56 13.7982 0.00 0.0000

n010 2.30 1.27 2.5190 1.71 4.4890

n110 36.00 28.48 14.1238 36.10 5.6662

n001 0.00 4.47 9.1707 0.00 0.0000

n101 0.00 2.50 5.1016 0.00 0.0000

n011 5.06 2.30 3.4363 3.82 9.8328

n111 91.00 80.08 29.6119 91.40 8.7271

R3 Latent Class 2

n000 0.00 8.22 24.5310 0.00 0.0000

n100 0.00 1.94 5.2517 0.00 0.0000

n010 6.94 3.70 7.1250 5.13 13.7224

n110 69.00 55.18 28.4577 68.96 8.3082

n001 0.00 4.22 9.2250 0.00 0.0000

n101 0.00 1.11 2.3702 0.00 0.0000

n011 7.56 2.82 3.7691 5.73 14.6253

n111 72.00 61.79 24.6635 71.97 8.5193
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6.9 The Production of Estimates of the Population for Non-

Sampled Areas under Triple System Estimation

There is an additional, fairly important, step in the estimation of population totals that

has not been mentioned much during this thesis. In an ecological capture-mark-recapture

experiment there are two counts of the population (effectually two ‘censuses’) and therefore

the final population estimate is simply the one derived under dual system estimation.

However, in a human census, aside from the financial and time constraints of undertaking

two independent censuses, it is not very efficient. Consequently, what often happens is that

dual system estimation is applied to the sampled areas in the post-enumeration survey,

and it remains to produce population estimates for the non-sampled areas. This is not

an easy undertaking, particularly when it is considered that in the 2001 UK Census, the

coverage survey sampled roughly 320,000 households and there are in excess of 25 million

households in the UK. Visibly, this sample needs to be properly chosen in such a way that

it is adequately representative of the entire UK population and this was achieved by use

of the Hard-to-Count Index (see Brown et al. (1999) and Chapter 3 of Brown (2000)).

In the 1981 and 1991 censuses, the post-enumeration surveys that were used selected

enumeration districts according their expected difficulty to count, and subsequently areas

that were considered to be hard to count were over-sampled. The Webber classification

(Webber (1977)) was used as the basis of the definition of ‘hard-to-count’ here and this

was arrived at by considering a number of geographical, socio-economic and demographic

variables to classify wards and parishes. In 2001 owing to the difficulties in 1981 and 1991,

a different hard-to-count classification was derived with the objective of designing a survey

such that the selected sample of postcodes could yield an accurate age-sex distribution for

each estimation area5.

It was noted in Chapter 2 that the main shortcoming of the Webber classification was

that it classifies small areas based on deprivation. However, the level of underenumer-

ation of an area is not just a factor of its deprivation but also the level of transience.

Evidently, people who are highly mobile, attached to multiple households or recent mi-

grants can be expected to be transient and therefore difficult to enumerate. Accordingly,

the Hard-to-Count Index was formulated to represent enumeration difficulty based on se-

lected characteristics considered to be importantly related to census underenumeration.

The index was constructed from a score calculated using the chosen characteristics for all

the enumeration districts in the 1991 Census. These characteristics were
• percentage of heads of households who experienced language difficulty;

• percentage of young people who migrated into the enumeration district in the last

year;

• percentage of imputed residents for the enumeration district;
5These estimation areas were made of contiguous groups of local authorities with roughly equal popula-

tion sizes. In 2011 due to the heterogeneity of contiguous local authorities, a more efficient non-contiguous

way of grouping similar local authorities is being implemented.
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• percentage of households in multiply-occupied buildings; and

• percentage of households which were privately rented.

The Hard-to-Count Index first used the above characteristics to rank the enumeration dis-

tricts, then assigned normal scores based on these ranks and finally summed these scores

to obtain an overall score each individual enumeration district. Next, the enumeration

districts were split into quintiles to create a five level index. All postcodes within enumer-

ation districts were assigned the same hard-to-count index as the enumeration district.

The distribution of enumeration districts in each Hard-to-Count stratum was found to

be as follows6: 7.7% in stratum 1, 19.5% in stratum 2, 27.0% in stratum 3, 28.7% in

stratum 4 and 17.2% in stratum 5 (Brown et al. (1999)). Now since every postcode in the

country is assigned a hard-to-count score, the Hard-to-Count Index can now be used as

the stratification factor in the design of the Census Coverage Survey to select a sample of

postcodes.

In the hypothetical case where the Census Coverage Survey is assumed to be perfect

such that within the sampled areas a complete coverage is achieved implying there is

no underenumeration, then there are a number of standard estimation techniques from

survey sampling theory that can be applied to obtain the population totals from the

sample. However, in the real census environment, the Census Coverage Survey does miss

people and so Chapter 4 of Brown (2000) describes how population totals can be obtained

from non-perfect Census Coverage Survey counts. In theory, if a ‘complete’ population

estimate for the sampled areas can be arrived at then it follows that the same standard

estimation techniques can still be applied to derive non-sampled area population estimates.

The procedure in the 2001 UK Census was to use dual system estimation to adjust the

initial Census and subsequent Census Coverage Survey counts for underenumeration. This

then yields the corrected population counts for the sampled areas, and ratio estimation

was then used to find the population counts for the non-sampled areas.

Ratio estimation is a survey sampling technique used to find the population total from

a sample, and the ratio estimator can be derived as follows. Suppose the (unknown)

population total is N , and the objective is to find this total through a sample. Define the

(known) sample total to be Ns and the (unknown) non-sampled total to be Nr. It follows

that the population total can be decomposed as N = Ns +Nr.

Now supposing that there is a proportional relationship between two variables Z and

Y (i.e. there is a strong correlation between the (Zi, Yi) pairs), then Royall (1970) showed

that it is justifiable to use the stratification on the known population as an efficient esti-

mator for the unknown population.

So in the 2001 Census, census counts were available for all sampled and non-sampled

postcodes, and it is reasonable to assume that the ‘true’ unknown counts are proportional
6This precludes the 28 enumeration districts with a significantly high proportion of 20-34 year old males

that were automatically selected into the Census Coverage Survey sample.
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to the census counts. Using the same notation, let Z represent the census counts and

Y be the ‘true’ counts. Since there is a linear relationship between Z and Y , and an

additional assumption is made that the conditional variance of Yi is proportional to Zi.

Then a plausible way of explaining Yi given Zi is via a linear regression model of the form

E [Yi|Zi] = βZi,

V [Yi|Zi] = σ2Zi, (6.4)

Cov [Yi, Yj |Zi, Zj ] = 0 for all i 6= j.

β and σ2 are unknown model parameters and need to be estimated using the available

data. If there is a reasonably strong relationship between Z and Y , implying that the

correlation is close to 1, and if an estimator β̂ can be found, then it becomes possible to

predict Yi given Zi by β̂Zi. This translates into an estimator of the population total,

N̂ = Ns + β̂
∑
i/∈s

Zi. (6.5)

Royall (1970) using ordinary least squares techniques showed that the best linear unbiased

estimator for β is

β̂ =
∑

i∈s Yi∑
i∈s Zi

, (6.6)

and the corresponding ratio estimator is given by

N̂ =
(∑

i∈s Yi∑
i∈s Zi

)∑
i∈U

Zi. (6.7)

Obviously in the 2001 Census one important feature of the dual system estimation process

was the choice of post-strata to ensure homogeneity. Therefore, the version of (6.7) used

in the One Number Census as described in Chapter 4 of Brown (2000) was

N̂RAT =
5∑

h=1

β̂h

Dh∑
e=1

Me∑
m=1

Zmeh (6.8)

where NRAT is the true population total to be estimated using the ratio model, Zmeh is the

census count for postcode m from enumeration district e of Hard-to-Count stratum h and

Dh is the total number of enumeration districts in Hard-to-Count stratum h, Me is the

total number of postcodes in enumeration district e and β̂h is the least squares estimate

of the population ratio of true counts to the census counts, given by

β̂h =
∑dh

e=1

∑5
m=1 Ymeh∑dh

e=1

∑5
m=1 Zmeh

, (6.9)

where dh is the number of enumeration districts sampled in Hard-to-Count stratum h and

there are five postcodes sampled from enumeration district e. There are some conditions

under which (6.9) is a best linear unbiased estimator of βh, and these are

E [Ymeh|Zmeh] = βhZmeh,

V [Ymeh|Zmeh] = σ2
hZmeh, (6.10)

Cov [Ymeh, Yqpg|Zmeh, Zqpg] = 0 for all m 6= q.
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It must be noted that the assumption of zero covariance between postcode counts does

not necessarily hold true as a result of the clustered nature of the Census Coverage Survey

design - i.e. the postcodes are clustered within enumeration districts. However, in page

72, Brown (2000) using a result from Scott and Holt (1982), showed that this violation

does not seriously cause a problem for the unbiased estimation of the total population.

In practice the ‘true’ counts Ymeh are unknown but this is the main reason why dual

system estimation is employed. Consequently, the unknown Ymeh are replaced by the DSE

counts for postcode m, enumeration district e and Hard-to-Count stratum h, Ŷmeh, which

have been shown to be unbiased estimators of the true counts, and the population total

becomes

N̂RAT =
5∑

h=1

∑dh
e=1

∑5
m=1 Ŷmeh∑dh

e=1

∑5
m=1 Zmeh

Zh (6.11)

where Zh is the census count across all postcodes in Hard-to-Count stratum h.

When there are now counts from three sources (the Census, Survey and Third List)

the proposed methodology is not too different from that detailed above. Since the Survey

will still only be occurring in a sub-sample of the population, the same ratio estimation

employed in 2001 can be applied to obtain estimates of the population for those non-

sampled areas. The only difference is that now Ŷmeh, the dual system estimate of the

population in postcode m, enumeration district e and hard-to-count stratum h is replaced

by the triple system estimate, say ˜̂
Ymeh, and the population total is

˜̂
NRAT =

5∑
h=1

∑dh
e=1

∑5
m=1

˜̂
Ymeh∑dh

e=1

∑5
m=1 Zmeh

Zh. (6.12)

6.10 Conclusion

The ideas of latent class analysis have been applied in sociological circles for the past half-

century or so. However, the basic ideas relied on local independence, which meant that it

was assumed that the relationships between the observed manifest variables only existed

due to the latent variable, and it becomes possible to divide the population into exhaustive

and mutually exclusive latent classes. With the development of log-linear models the local

independence assumption can be eased. A further development in the form of the EM

algorithm allows locally dependent latent class models to be used in the estimation of the

population when there is imperfect capture-recapture data.

Another idea that is heavily relied upon in population estimation, particularly in dual

system estimation (and to a lesser extent in triple system estimation), is that of indepen-

dence. It has been shown that a failure of independence could be firstly due to captures in

one list influencing capture in other lists. The dependence that results is what was termed

list dependence. The second failure could be a result of the post-stratification mecha-

nism’s inability to find properly homogeneous sub-groups, i.e. the stratifying variables fail

to prevent the assignment of different types of individuals into the same subgroup; the
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dependence that results here is what was termed apparent dependence. Clearly, it is easier

to have specific measures in place to correct for the second type of dependence than the

first. However, for the case when the post-stratification mechanism fails, latent modelling

can highlight this failure. The latent class modelling of the US 1990 Census Dress Re-

hearsal data showed that when the results of log-linear modelling of the capture-recapture

contingency table leads to inconclusive estimates of the missing - specifically if there is

a difference between the ‘saturated’ and best-fitting model (as shown in Chapter 5) -

the latent model can be beneficial in demonstrating where the post-stratification has not

been very adequate. Conversely, when there has been proper post-stratification but there

are some erroneous enumerations present in the observed counts, the Feasibility Study

showed that latent class analysis is useful in identifying these erroneous counts. Key to

the specification of the latent model is the issue of weak identifiability, which occurs when

the theoretical conditions for identifiability are met, but the empirical data provides little

information about particular parameters.

For weakly identified models variance estimation can be difficult, as they do not have

analytic forms particularly for the problem being considered. It was mentioned in Chap-

ter 3 that for capture-recapture methods the information matrix is frequently not easy

to invert, and this is the advantage of numerical techniques such as the SEM algorithm.

Nonetheless, the presence of a latent variable, combined with the fact that the latent

model is, more often than not, weakly identified leads to difficulties in the use of the

SEM algorithm. In contrast, bootstrapping techniques produce estimates of precision for

any model which parameter estimates can be calculated, and bootstrapping leads to ro-

bust confidence interval estimates for capture-recapture models (Buckland and Garthwaite

(1991)). In the bootstraps implemented here to obtain estimates of precision around the

parameters, it was discovered that owing to the small frequencies in some of cells a large

number of bootstrap replicates were needed. In Chapter 6 of their book on bootstrapping,

Efron and Tibshirani suggest that a choice of bootstrap resamples in the range of 50 to

200 usually produces reliable standard error estimates. For the bootstraps implemented

in Chapter 5, the number of bootstrap resamples needed were 250. However, more re-

samples were required for the bootstraps undertaken in the presence of a latent variable.

In fact it was found that 500 resamples were needed for the US Census application data

in order to obtain fairly smooth and stable estimates of the parameters. In contrast, the

Feasibility Study data required 1000 bootstrap resamples for stability. This is more in

line with the number of replications suggested by Buckland and Garthwaite (1991) who

stated that in quantifying precision of estimates in a capture-recapture application 1000

bootstrap resamples should often suffice.

The conclusion is therefore that for imperfect data from an initial Census, a post-

enumeration Survey and an Administrative List the latent class formulation of the prob-

lem does allow the estimation of the population size. It was shown in Chapter 3 that

the log-linear framework of the latent class model can be used to estimate the population
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size, taking into account of both dependence and capture error. The assumption is that

the unobserved heterogeneity is due to the capture error, where this capture error can

either be a result of overenumeration or a failure of the post-stratification design. In the

2011 UK Census, the expectation will be that the post-stratification by age-sex group and

Hard-to-Count strata does correct for any capture heterogeneity. As such, the application

of the triple system estimation described in this thesis will be able to provide an estimate

of the population of the UK, adjusted for both underenumeration and overenumeration.

The main issue, however, to content with in latent class modelling has been model iden-

tifiability, and with it the associated problems of the variance estimation. Therefore, the

results of the bootstrapping show that some further thought will be required with regards

to whether or not the observed cell counts, after post-stratification, contain enough infor-

mation (in other words, the data likelihood has some curvature) for the estimation of the

variance, in addition to obtaining precise estimates of population sizes.
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Chapter 7

Conclusion

7.1 Summary of Main Conclusions

It can be extraordinarily difficult to conduct a census because of a number of reasons.

Firstly, the population address frame used to identify households to be given census forms

may be incomplete. Secondly, people may be hard to count due to them not being at

home when the enumerator visits their household as a consequence of the complexities

in modern lifestyle patterns or simply because they do not want to participate in the

census, either on malicious grounds or just pure apathy. For this purpose, the census

adjustment methodology attempts to address each of these problems and ensure that the

final population estimate is as close to the actual population as possible. But admittedly,

this is not a straightforward task. The main objective of this thesis, therefore, is to add

to existing census adjustment methodology, looking at the areas where there has been

perceived failure and come up with a feasible solution. Further, at this period in the

run-up to the 2010 round of censuses, the timing of the thesis could not be any more apt.

It has been the aim of the thesis to demonstrate how triple system estimation can

be used to obtain population totals, particularly when the data from the three sources is

subject to underenumeration and overenumeration. The main motivation of the work lies

in the evident inability of dual system estimation to produce unbiased population estimates

when there is dependence between the two sources. The (somewhat restrictive) assumption

of independence that underpins dual system estimation can now be relaxed under triple

system estimation. The three sources that have been considered during this thesis are the

initial census enumeration, the post-enumeration survey and an administrative records

list. Administrative lists have been widely used in population estimation, and currently

several Western European countries, for example the Netherlands, Norway, Finland and

Sweden will be relying on them as their main source of population estimates. Further

within the UK context administrative data from council tax records, pupil registries,

Higher Education student enrolment statistics, National Health patient records etc. have

historically been used to quality assure the census figures derived.
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Under the proposed methodology, it is assumed that individuals can be cross-classified

into a contingency table according to their presence or absence in the initial census count,

the post-enumeration survey and the administrative list. During the thesis it has been

suggested that health records are the most feasible choice of third list due to the fact

that they are (currently) the most encompassing of the whole population unlike other ad-

ministrative registers, for instance the National Insurance records cover only those above

working age. Anyway for such cross-classified data, the log-linear model can be used to

model the patterns and associations exhibited by the individuals appearing in the contin-

gency table. It has been shown that a greater range of models that look at the different

association structures can be considered, and the best fitting model chosen. Moreover,

by treating the correct enumeration status of an individual counted as an unobservable

construct the log-linear formulation of latent class analysis can now be employed. The

belief is that while the correct enumeration status cannot be directly measured, whether

or not an individual appears on the Census, Survey or Third List can be assumed to be

imperfect indicators of this. In fact it could be said that the observed capture patterns of

individuals are caused by the unobserved, latent, variable that identifies an individual’s

correct enumeration status. Therefore, it is possible to look at the patterns of interrela-

tionships among the Census, Survey and Third List enumeration histories of individuals

to characterize the underlying latent variable of an individual’s true enumeration status.

The EM algorithm provides a convenient method for estimation in incomplete data

problems, such as the problem encountered here. It has been widely used since Dempster,

Laird and Rubin developed it in 1977, and it continues to find uses in a rapidly increasing

number of fields, possibly aided by the continued development of different versions and

extensions of the algorithm. However, in terms of capture-recapture estimation the use of

the EM algorithm has been scarce. This is probably because owing to the work of Cormack,

Darroch, Fienberg, amongst others, in log-linear models for incomplete data closed form

solutions exist for practically all patterns of associations, and for those that there are no

closed form solutions there are simple iterative techniques available. Nonetheless, when

the assumptions underlying the capture-recapture estimation models are violated (e.g.

there is unobserved heterogeneity), the closed form solutions cannot be used and this is

where the EM algorithm comes into its own.

Here the EM algorithm allows the maximisation of the conditional expectation of the

complete data log-likelihood since it is easier than trying to maximise the observed data

log-likelihood. Precisely, the E and M steps facilitate the computation of the MLEs for

incomplete data problems by adapting the techniques used to fit complete data. One

unfortunate thing is that while the EM algorithm does provide a simple method for calcu-

lating the MLEs it does not automatically give any quantities needed to draw inferences on

the calculated MLE parameters, such as the test statistics, and in particular the standard

errors. An extension of the EM algorithm, the Supplemented EM (SEM) algorithm, how-

ever, does use numerical methods to compute the inverse information matrix, which is the
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usual estimator of the variance-covariance matrix of the MLEs. Additionally, the common

approach for constructing confidence intervals is based on the assumption of asymptotic

normality. However, it is well known that in capture-recapture models the small sample

distribution of the estimators of the population size are asymmetric and therefore devi-

ate from normality. It follows that normal-based (asymptotic) procedures may frequently

produce unreasonable confidence intervals, for instance having lower limits that extend

below the number of individuals known to exist or at times being negative. In contrast,

the bootstrap and profile likelihood confidence intervals do not have this problem, but are

computationally intensive.

Both the SEM algorithm and the Delta method derived confidence intervals are normal-

based methods and make use of Taylor Series expansion to linearize the parameter(s) of

interest. The Delta method takes the cell probabilities as the parameter(s) of interest and

then takes the Taylor’s expansion, using the asymptotic normality of the multinomial dis-

tribution to estimate the covariance-variance matrix. The parameters are cell probabilities

are therefore constrained to lie between [0, 1]. In the SEM algorithm, use is made of the

logarithm of the cell counts which are linear functions of the parameters of interest, and

lie between [0,∞]. The Delta method applies the linearization directly to the parameter,

while the SEM applies the linearization to the logged parameter. It is clear that a pa-

rameter will converge less slowly to normality than the logarithm of that parameter, and

this is reason why the SEM produces more ‘realistic’ confidence intervals than the Delta

Method.

It was also revealed over the course of the thesis that in the capture-recapture models

the lack of independence between systems could be due to two things. Firstly, the systems

are associated (i.e. there is list dependence) which when there are more than two systems

can be easily incorporated into the estimation process. Secondly, across all individuals

the inclusion probabilities are not the same (i.e. there is heterogeneity). The second

scenario is usually corrected by choosing post-strata that ensure that similar individuals

are placed within the same subgroup. In the original log-linear models introduced to

estimate population totals from capture-recapture data the assumption was required that

there was capture homogeneity and as such the only source of dependence is attributable

to list dependence. When there is both list dependence and heterogeneity, the modelling

approach has to take this into account or else the estimates of the population will be

biased.

Now by characterizing the unobserved heterogeneity as a categorical latent variable,

the latent class framework of the log-linear model has shown great promise. Obviously,

there are some assumptions, the main one being that the dependence observed among the

observed variables is simply due to each of the observed variables’ relationship to the latent

variable. In essence the latent variable ‘explains’ the relationships between the observed

variables, and is in fact the ‘true’ source of the dependence observed originally. For some

cases, there is some residual dependence not fully explained by the introduction of the
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latent variable. However, again within a log-linear model these additional dependence

terms can be included in the analysis. These log-linear models with a latent variable are

not straightforward to fit using iterative methods. Although, the iterative proportional

fitting algorithm can be used to fit the simple local dependence latent class model, when

there is residual dependence, i.e. the local dependence model, it is much more difficult. So

the EM algorithm can be used in order to obtain the MLEs.

In latent class models, a common problem is that of model identifiability. It is suffice

to say that a model is identified if there is only one unique solution, on the other hand

a non-identified model has more than one solution. When there are three lists, the local

independence model is just identified, but only on the proviso that there are no missing

cells. Evidently, within a capture-recapture context this raises some potential difficulties

with regards to identifiability. However, it has been demonstrated that by the inclusion of

a covariate term the ensuing model becomes identifiable. Again there are some conditions

for this, in that the covariate needs to be chosen such that the effect of this covariate on

the observed variables is only through the latent variable. For triple capture-recapture

data both the local independence and local dependence models are now identified, and

the model parameters can be estimated. Nonetheless, these models tended to be weakly

identified, effectually meaning that the observed data provides little or no information for

some of the parameters.

It is apparent that the methods discussed in this thesis are applicable not just to

censuses. Wang and Thandrayen (2009) use a similar approach to estimate the number

of homeless people in the Australian city of Adelaide’s central business district. The

authors had data from three agencies that provided services to the homeless. As there is

observed and unobserved heterogeneity a mixture model for capture-recapture data (see

Böhning et al. (2005)) is fitted to the observed data. Essentially in a mixture model the

latent variable is assumed to have a distribution, and when this distribution is discrete

then a latent class model results. The latent variable, which accounts for the unobserved

heterogeneity can be thought of as being indicative of type of homelessness, for instance

long-term or short-term homeless, with the long-term homeless being expected to be easier

to count than the short-term.

In their discussion, Wang and Thandrayen found that the log-linear model with a la-

tent variable included to account for unobserved heterogeneity was non-identified, unless

some restrictions were placed - they placed equality constraints on some of the conditional

probabilities. Furthermore, it was not possible to even fit the local dependence model.

However, in an another application, this time using data on the incidence of diabetes in

the northern Italian town of Casale Monteferrato (see Bruno et al. (1994)), identifiable

latent models can be fitted without recourse to constraints. The main reason for this can

be attributed to there now being four lists: diabetic clinic and family physician records

(A), hospital admission records (B), computerised insulin prescription records (C) and re-

imbursement records (D). Here, using the latent variable X to account for the unobserved
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heterogeneity, it was determined that the best fitting model was the locally dependent

model {AX,BX,CX,DX,AB,AC,BC,CD}, with the first latent class representing pa-

tients listed in lists A, B and C only, while the second represented those listed in list

D.

It goes to show that the capture-recapture approach holds continuing promise in its

applicability to a whole spectrum of fields such as biology, physics, epidemiology and

demography. To that end, this thesis has contributed to this area so as to demonstrably

aid researchers make informed decisions about the estimation of the population sizes, and

the reliability of such derived estimates, in the case when there are data collected from

three systems with both observed and unobserved heterogeneity.

7.2 Future Work

The obvious extension of the work undertaken here is to consider using the Bayesian

paradigm (such as expanding the models considered in Dellaportas and Forster (1999)),

which is ideally suited to missing, and more importantly inadequate, data problems like

the capture-recapture problem discussed in this thesis. This is because a Bayesian model

will allow the direct combination of prior information with the observed empirical data to

provide inferences. In terms of identifiability, and specifically weak identifiability, there

is currently work being done using Markov Chain Monte Carlo (MCMC) techniques (for

example, Gimenez et al. (2008)) in capture-recapture models. It well known that in

Bayesian analysis, non-identifiable models can provide suitable inferences through the

examination of the behaviour of the identifiable parameters and the a priori information

supplied. However, there are two hurdles that need to be negotiated when the model is

weakly identified.

The first hurdle is a theoretical one. Due to the data likelihood being flat, the posterior

is dominated by the choice of prior which in turn means that the prior has to reflect the

prior belief, judgement and uncertainty with a reasonable amount of confidence. When the

prior is mis-specified (i.e. placing the wrong prior) the resulting posterior will inevitably be

wrong. On the other hand, too informative a prior can lead to a posterior wholly influenced

by the prior. This shows the delicate balance needed in the implementation of Bayesian

models to capture-recapture data that has latentness. The second - and computational

hurdle - is that weak identifiability can result in strong correlations between parameters

in the posterior distribution which, subsequently can lead to poor mixing in the MCMC

samples and very slow convergence (Gimenez et al. (2008)).

Another extension is in the use of continuous covariates (suggested by Zwane and

van der Heijden (2005); Bartolucci and Forcina (2006); Thandrayen and Wang (2009))

to result in a logit-type model. This has the effect of solving the identifiability issues

detailed above. The continuous covariates introduced perform the same task as the (dis-
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crete) categorical covariates in that they allow for the relaxation of the local independence

assumption. However, as in the categorical case, the continuous covariates chosen need

to satisfy the assumption that the effect of the manifest variables on this covariate is en-

tirely mediated through the latent variable. Considering that in most properly designed

capture-recapture studies care is taken to post-stratify by all covariates known to influ-

ence the manifest variables, it is sometimes conceptually difficult to think of a categorical

variable not directly included in the post-stratification mechanism but which has an effect

on the latent variable. Therefore, in the case when the unobservable heterogeneity is at-

tributable to failure in post-stratification, continuous covariates can be thought of having

a limited advantage. On the other hand, continuous covariates become useful when it is

known in advance that the post-stratification is fairly accurate such that the unobserved

heterogeneity is attributable to erroneous enumerations present in the observed counts.

Again, this logit-type model can be formulated in the Bayesian paradigm to make use of

prior information.

Finally, for the bootstrap resampling carried out in the thesis, the bootstrap standard

errors were used to provide estimates of precision and to give some indication as to the

variability of the estimator. Rather than estimating the standard errors, an extension is to

use various measures suggested by Efron, for example the confidence intervals. These gen-

erally require an increased number of bootstrap resamples. However, confidence intervals

can better give the distribution of the parameter than the standard error, in particular

for cases where the unknown parameter distribution does not exhibit asymptotic normal-

ity. In addition, the bootstrap resampling could be improved further by applying a bias

correction as suggested by Efron (1983).
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Appendix A

Variances of the Dual and Triple

System Estimators (under

independence)

A.1 Derivation of the Dual System Estimator Variance un-

der the Delta Method

Recall that the DSE is

N̂ = n11 + n10 + n01 +
n01n10

n11
=
n1+n+1

n11
. (A.1)

The Delta method states that the variance of a function f(x) is

V (f (x)) '

[(
∂f

∂x

)2
]

E

V (x) (A.2)

where [ ]E is the substitution of the expected values of x appearing inside the brackets after differ-

entiation.

Given that a person is observed, then define the probability of being counted in the census to

be pcen and the probability of being counted in the survey to be psur. Also, suppose that the

population total is known, and is N . Further assuming that observed marginal counts are known -

i.e. n1+ and n+1 are fixed - then the number of people counted by both the census and survey, n11

can be treated as binomially distributed, with expressions for the mean and variance respectively

given by

E (n11) = Npcenpsur =
n1+n+1

N
and

V (n11) = Npcen (1− pcen) psur (1− psur) =
(n1+n+1

N

)(
1− n1+

N

)(
1− n+1

N

)
since pcen = n1+

N and psur = n+1
N .

Consequently, the variance of the population estimate by the dual system estimator is

V
(
N̂
)

= V

(
n1+n+1

n11

)
= (n1+)2 (n+1)2 V

(
1
n11

)
.
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The Delta method can now be used, such that

V

(
1
n11

)
'

[(
∂

∂n11

1
n11

)2
]

E

× V (n11)

=

(
− 1

[E (n11)]2

)2

×
(n1+n+1

N

)
×
(

1− n1+

N

)
×
(

1− n+1

N

)
.

Hence it follows that

V

(
1
n11

)
' N4

(n+1n1+)4
× n1+n+1n0+n+0

N3
.

So

V̂
(
N̂
)
' N̂n+0n0+

n1+n+1
.

Finally substituting n00 = n01n10
n11

and N̂ = n1+n+1
n11

and using the fact that

n1+n+1 = n01n10 + n01n11 + n10n11 + (n11)2, the asymptotic variance calculated under the Delta

method is given by

V̂
(
N̂
)
' n1+n+1n01n10

(n11)3
.

A.2 Derivation of the Näıve Triple System Estimator Variance

under the Delta Method

For data collected from three independent samples of the population, then the probability of being

found in the (i, j, k)th cell is

πijk = πi++π+j+π++k. (A.3)

Supposing that the population size is N, then equation (A.3) can be re-written

n̂ijk

N̂
=
n̂i++

N̂

n̂+j+

N̂

n̂++k

N̂
,

and so, the triple system estimate of the population size (under independence) is

N̂ =

√
n̂i++n̂+j+n̂++k

n̂ijk
. (A.4)

N̂ is the maximum likelihood estimate, but does not have a closed form solution when n000 is

unobserved.

There is another estimator, ¯̂
N (referred to as the ‘näıve’ estimator),

¯̂
N =

√
n1++n+1+n++1

n111
(A.5)

which however has a closed form solution, for fixed and known n1++, n+1+, n++1.

The Delta method can accordingly be used to find the asymptotic variance of this estimator.

Now, if there is independence between the census, survey and third list, then the cell counts in the

corresponding 2x2x2 contingency table are multinomially distributed. So defining pcen, psur and

padm as the probabilities of being observed in the census, survey and list, such that pcen = n1++
N ,
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psur = n+1+
N and padm = n++1

N . Assuming that N , n1++, n+1+ and n++1 are fixed, then the mean

and variance of n111 are

E [n111] = Npcenpsurpadm =
n1++n+1+n++1

N2

V [n111] = Npcen (1− pcen) psur (1− psur) padm (1− padm)

= N
n1++

N

(
1− n1++

N

) n+1+

N

(
1− n+1+

N

) n++1

N

(
1− n++1

N

)
=

n+1+n1++n++1

N2

(
1− n1++

N

)(
1− n+1+

N

)(
1− n++1

N

)
.

Thus the variance of the estimator ¯̂
N is

V
( ¯̂
N
)

= V

[(
n1++n+1+n++1

n111

) 1
2
]

= n1++n+1+n++1V

[(
1

n111

) 1
2
]
.

Under the Delta method

V

(
1

√
n111

)
'

[(
∂

∂n111

1
√
n111

)2
]

E

V [n111]

= {−1
2

(E [n111])−
3
2 }2 × n1++n+1+n++1

N2

(
N − n1++

N

)(
N − n+1+

N

)(
N − n++1

N

)
.

Substituting the expression for the expectation of n111, then

V

(
1

√
n111

)
' 1

4
n1++n+1+n++1

N5
× (N − n1++) (N − n+1+) (N − n++1)×

[n1++n+1+n++1

N2

]−3

=
1
4

N

(n1++n+1+n++1)2
× (N − n1++) (N − n+1+) (N − n++1) .

Therefore,

V̂
( ¯̂
N
)
' 1

4

¯̂
N
( ¯̂
N − n1++

)( ¯̂
N − n+1+

)( ¯̂
N − n++1

)
n1++n+1+n++1

.

Since ¯̂
N =

√
n1++n+1+n++1

n111
, the asymptotic variance of the ‘näıve’ independence triple system

estimator is given by

V̂
( ¯̂
N
)
'

(√
n1++n+1+n++1

n111
− n1++

)(√
n1++n+1+n++1

n111
− n+1+

)(√
n1++n+1+n++1

n111
− n++1

)
4
√
n111 (n1++n+1+n++1)

.
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Appendix B

SPLUS/R Programs

B.1 EM algorithm - no erroneous enumerations

EM.sim <-function(tol, data, eqn)

{

r <- length(levels(data[, 1]))

data$em.data <- data$count

data$em.data[c(1:length(data[, 1]))[is.na(data[, 4])]] <- 0

model <- glm(eqn, data = data, family = poisson)

est <- 1

est <- cbind(est,model$coef)

fit <- model$fitted

data$em.data[c(1:length(data[, 1]))[is.na(data[, 4])]]

<- c(fit)[c(1:length(data[, 1]))[is.na(data[, 4])]]

i <- 2

while(any(c(abs(est[, i] - est[, i - 1])) > tol,na.rm=T))

{

model <- glm(eqn, data = data, family = poisson)

est <- cbind(est,model$coef)

fit <- model$fitted

data$em.data[c(1:length(data[, 1]))[is.na(data[, 4])]]

<- c(fit)[c(1:length(data[, 1]))[is.na(data[, 4])]]

i <- i + 1

}

est<<-est

fit<<-fit

cat("Converged in", i ,"steps", fill=T)

round(array(data$em.data, c(r, r, r)), 2)

lik<<-sum(((data$count[-c(1)]-fit[-c(1)])^2)/fit[-c(1)])

loglik<<- 2*(sum((data$count[-c(1)]) * (log((data$count[-c(1)])/(fit[-c(1)])))))

resid <<- data$count[-c(1)] - fit[-c(1)]

adj.resid <<- resid / stdev(resid)
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cat("missing =", round(fit[1], 3), fill=T)

cat("X^2 likelihood statistic =", round(lik, 3), fill=T)

cat("G^2 likelihood statistic =", round(loglik, 4), fill=T)

}

B.2 SEM algorithm

# Program adapted from

# Robert Gray’s Advanced Statistical Computing Course Notes

# University of Wisconsin - Madison, Dept of Statistics

# http://www.stat.wisc.edu/~mchung/teaching/stat471/stat_computing.pdf

# Special Thanks to Guy Abel, Division of Social Statistics,

# University of Southampton

# save the original data and replace NA’s

data$y<-data$count

data$y[is.na(data$y)] <- 0

# run a basic model to get model.matrix

options(contrasts = c("contr.treatment", "contr.poly"))

model1<-glm(y~census+survey+admin+group,poisson, data = data)

# EM function to compute one iteration,

# given model, data and some intial beta estimate

em<-function(beta0, model, data)

{

#E step

fit<-exp(model.matrix(model)%*%beta0)

data$y[is.na(data$count)] <- c(fit)[is.na(data$count)]

#M step

m<-glm.fit(model.matrix(model),data$y, family=poisson())

beta<-m$coef

list(beta=beta,fit=data$y)

}

# some intial beta’s and intial error

beta <-rep(1,length(model1$coef))

err <- 10

i <- 0

# run the EM function until convergence

while(err > 1e-010)

{

i <- i + 1

u <- em(beta, model1, data)

err <- max(abs(u$beta - beta))

beta<-u$beta

fit<-u$fit
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print(c(i, err, beta))

}

## this shows that the ’new’ EM algorithm works

## converged mle (this is important)

beta

cbind(data,EM.fit=fit)

## the next part is to do the jacobian matrix

## remember that the jacobian is the matrix of

# all first order partial derivatives

## the jacobian is used to find the score function

## (i.e. the second order derivatives)

# function to compute one iteration of jacobian matrix

## i.e. function computes the jacobian of the EM algorithm mapping

jac <- function(b, beta, model, data)

{

#store mle of b for DM

us <- em(b,model,data)

#intialize

u <- em(beta,model,data)

beta <- u$beta

dm <- matrix(0, length(beta), length(beta))

for(i in 1:length(beta)) {

#sequentially replace each mle beta with starting beta

bb <- b

bb[i] <- beta[i]

#run one iteration of EM with altered betas

u <- em(bb,model,data)

#fill in the relevent DM row with rate of change

dm[i, ] <- c(u$beta - us$beta)/(bb[i] - b[i])

}

print(dm)

list(dm = dm, beta = beta)

}

# intial values used in EM

bb<-list(beta=rep(1,length(model1$coef)))

# run dm to see rate of change from first iterate to second

dm<-jac(beta,bb$beta,model1,data)$dm

# do this iteratively until DM looks stable

err <- 10

i <- 0

while(err > 1e-005)

{

i <- i + 1

bb <- em(bb$beta,model1,data)

w <- jac(beta,bb$beta,model1,data)

err <- max(abs(c(w$dm-dm)))

dm<-w$dm
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print(i)

}

# compute conditional expectation of complete data information

# refit model to get (asymptotic) covariance matrix

# using the fitted instead of observed data

data<-cbind(data,EM.fit=fit)

model1.f<-glm(EM.fit~census+survey+admin+group,poisson, data)

## this gets out the estimates of the complete data covariance matrix

cov.com <- summary(model1.f)$cov.unscaled

## compute DM, derivative of mapping (i.e. missing information)

dm2 <- -w$dm

## remember want (1-DM), so

diag(dm2) <- diag(dm2)+1

## using Orchard and Woodbury principle

## observed information = complete information - missing information

## also Dempster, Laird and Rubin showed that

## observed-data variance = complete data variance + increase in

## in variance due to missing data

## and so dV = DM ((1-DM)^-1) ((Vcom)^-1)

delta.v <- cov.com %*% w$dm %*% solve(dm2)

## the variance is given by the diagonal elements, with the observed

## covariance added

est.var <- diag(cov.com+delta.v)

## print out the parameter estimates and the variance

beta

est.var

B.3 EM algorithm - with erroneous enumerations

EM.latent.miss <- function(tol=1e-10, n.ijkg)

{

## set the initial starting values for the missing cells

n.ijkg[is.na(n.ijkg)] <- 1

## Haberman starting values

## These are needed to ensure that the convergence is at the ‘right’ solution

init <- array(c(82.074, 11.107, 11.107, 1.503, 11.107, 1.503, 1.503, 0.203,

82.074, 11.107, 11.107, 1.503, 11.107, 1.503, 1.503, 0.203,

0.196, 1.440, 1.478, 10.885, 1.477, 10.885, 11.166, 82.262,

0.196, 1.440, 1.478, 10.885, 1.477, 10.885, 11.166, 82.262),

dim=c(2,2,2,2,2))

data.lat <- init

dimnames(data.lat) <- list(c("No", "Yes"), c("No", "Yes"), c("No", "Yes"),

c("Group A", "Group B"), c("Erroneous", "Real"))

data.lat <- data.frame(expand.grid(census = dimnames(data.lat)[[1]],
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survey = dimnames(data.lat)[[2]], admin = dimnames(data.lat)[[3]],

group=dimnames(data.lat)[[4]], latent = dimnames(data.lat)[[5]]),

count.lat = c(data.lat))

r <- length(levels(data.lat[, 1]))

data.lat$em <- data.lat$count.lat

## model - with the XG interaction

eqn <- data.lat$em ~ census + survey + admin + group + latent + census:latent

+ survey:latent + admin:latent + group:latent

n.est <- 1

n.data <- 1

j <- 1

repeat {

model <- glm(eqn, data = data.lat, family = poisson)

mu.ijkgt <- array(c(model$fitted), dim = c(2, 2, 2, 2, 2))

mu.ijkg <- apply(mu.ijkgt, c(1, 2, 3, 4), sum)

#estimate the missing cells

n.ijkg[1] <- mu.ijkgt[1] + mu.ijkgt[17]

n.ijkg[9] <- mu.ijkgt[9] + mu.ijkgt[25]

n.ijkg <- n.ijkg

weight <- array(n.ijkg/mu.ijkg, dim = c(2, 2, 2, 2, 2))

n.ijkgt <- weight * mu.ijkgt

data.lat$em <- c(n.ijkgt)

n.est <- cbind(n.est, model$coef)

n.data <- cbind(n.data, c(n.ijkgt))

if ((all(abs(n.data[,j+1] - n.data[,j]) < tol, na.rm=T))

&& (all(abs(n.est[,j+1] - n.est[,j]) < tol, na.rm=T)))

break

j <- j + 1

}

n.data <<- n.data

cat("Converged in", j, "steps", fill = T)

cat ("estimate of latent classes", fill=T)

print(c(round(array(data.lat$em, c(r, r, r, r, r)), 2)))

#check that the observed cells are unchanged, at end of iterations

cat ("estimate of observed cells", fill=T)

print(c(round(apply(array(c(data.lat$em), dim=c(2,2,2,2,2)), c(1,2,3,4), sum),2)))

}
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B.4 US 1990 Census Data - fitting a latent class model

############################################################################

# Using the US Census Rehearsal Data to investigate the possibility of #

## some unobserved heterogeneity (latentness) in the data structure #

############################################################################

US.EM.latent.miss <- function(tol=1e-5)

{

## grouped dataframe

n.ijkg <- array(c(NA,31,8,13,59,19,19,79,

NA,41,34,69,43,12,11,58,

NA,62,10,36,35,13,10,91,

NA,32,24,69,43,7,13,72), dim=c(2,2,2,4))

n.ijkg[is.na(n.ijkg)] <- 1

## Haberman starting values

init <- array(c(82.074, 11.107, 11.107, 1.503, 11.107, 1.503, 1.503, 0.203,

82.074, 11.107, 11.107, 1.503, 11.107, 1.503, 1.503, 0.203,

82.074, 11.107, 11.107, 1.503, 11.107, 1.503, 1.503, 0.203,

82.074, 11.107, 11.107, 1.503, 11.107, 1.503, 1.503, 0.203,

0.196, 1.440, 1.478, 10.885, 1.477, 10.885, 11.166, 82.262,

0.196, 1.440, 1.478, 10.885, 1.477, 10.885, 11.166, 82.262,

0.196, 1.440, 1.478, 10.885, 1.477, 10.885, 11.166, 82.262,

0.196, 1.440, 1.478, 10.885, 1.477, 10.885, 11.166, 82.262),

dim=c(2,2,2,4,2))

data.lat <- init

dimnames(data.lat) <- list(c("No", "Yes"), c("No", "Yes"), c("No", "Yes"),

c("Group A", "Group B","Group C", "Group D"), c("Erroneous", "Real"))

data.lat <- data.frame(expand.grid(census = dimnames(data.lat)[[1]],

survey = dimnames(data.lat)[[2]], admin = dimnames(data.lat)[[3]],

group=dimnames(data.lat)[[4]], latent = dimnames(data.lat)[[5]]),

count.lat = c(data.lat))

r <- length(levels(data.lat[, 1]))

## M - Step : Specify the model

data.lat$em <- data.lat$count.lat

## model 1 - local independence

#eqn <- data.lat$em ~ census + survey + admin + group + latent + census:latent +

survey:latent + admin:latent + group:latent

# model 2 - local dependence - CS interaction

#eqn <- data.lat$em ~ census + survey + admin + group + latent + census:latent +

survey:latent + admin:latent + group:latent + census:survey

#model 3 - local dependence - SL interaction

#eqn <- data.lat$em ~ census + survey + admin + group + latent + census:latent +

survey:latent + admin:latent + group:latent + survey:admin

## model 4 - local dependence - CS, SL interactions

# eqn <- data.lat$em ~ census + survey + admin + group + latent + census:latent +
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survey:latent + admin:latent + group:latent + census:survey + survey:admin

# model 5 - local dependence with CSG interaction

# eqn <- data.lat$em ~ census + survey + admin + group + latent + census:latent +

survey:latent + admin:latent + group:latent + census:survey + census:survey:group

## model 6 - local dependence with SLG interaction

#eqn <- data.lat$em ~ census + survey + admin + group + latent + census:latent +

survey:latent + admin:latent + group:latent + survey:admin + survey:admin:group

## model 7 - local dependence with CSG, SLG interaction

eqn <- data.lat$em ~ census + survey + admin + group + latent + census:latent +

survey:latent + admin:latent + group:latent + survey:admin + survey:admin:group

n.est <- 1

n.data <- 1

j <- 1

repeat {

model <- glm(eqn, data = data.lat, family = poisson)

mu.ijkgt <- array(c(model$fitted), dim = c(2, 2, 2, 4, 2))

mu.ijkg <- apply(mu.ijkgt, c(1, 2, 3, 4), sum)

# E - step: Estimate missing cells

n.ijkg[1] <- mu.ijkgt[1] + mu.ijkgt[33]

n.ijkg[9] <- mu.ijkgt[9] + mu.ijkgt[41]

n.ijkg[17] <- mu.ijkgt[17] + mu.ijkgt[49]

n.ijkg[25] <- mu.ijkgt[25] + mu.ijkgt[57]

weight <- array(n.ijkg/mu.ijkg, dim = c(2, 2, 2, 4, 2))

n.ijkgt <- weight * mu.ijkgt

data.lat$em <- c(n.ijkgt)

n.est <- cbind(n.est, model$coef)

n.data <- cbind(n.data, c(n.ijkgt))

if ((all(abs(n.data[,j+1] - n.data[,j]) < tol, na.rm=T)) &&

(all(abs(n.est[,j+1] - n.est[,j]) < tol, na.rm=T)))

break

j <- j + 1

}

n.data <<- n.data

cat("Converged in", j, "steps", fill = T)

cat ("estimate of latent classes", fill=T)

print(c(round(array(data.lat$em, c(r, r, r, 4, r)), 4)))

cat ("estimate of observed cells", fill=T)

print(c(round(apply(array(c(data.lat$em), dim=c(2,2,2,4,2)), c(1,2,3,4),sum),2)))

}
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B.5 Parametric Bootstrap - no erroneous enumerations

#################################################

# Bootstrapping of US Application Data #

## Without the latent variable #

#################################################

n.O2 <- c(31 , 8 , 13 , 59 , 19 , 19 , 79)

n.R2 <- c(41 , 34 , 69 , 43 , 12 , 11 , 58)

n.O3 <- c(62 , 10 , 36 , 35 , 13 , 10 , 91)

n.R3 <- c(32 , 24 , 69 ,43 , 7 , 13 , 72)

## Step 1 - Resampling

## where pi.ijk is the sampling probability based on n.O2, n.O3, n.R2 or n.R3

boot.EM <- function(b,n,pi.ijk)

{

data.boot <- matrix(sample(1:8, n*b, prob=pi.ijk, replace=T),byrow=F, nrow=b)

X.tab <- apply(data.boot, 1, nbins=8, tabulate)

return(X.tab)

}

data.nijk.US <- boot.EM()

# Step 2

### Next need to make sure that the n000 cell is missing

em.dat.na <- function(data)

{

data[c(1)] <- NA

data

}

## Step 3

### Final Data set with missing cells replaced with NAs

data.n.ijk <- apply(data.nijk.US, 2, em.dat.na)

## Step 4: Implementation of the EM algorithm

## Part 1

em<-function(beta, model, data)

{

#E step

fit<-exp(model.matrix(model)%*%beta)

data$y[is.na(data$count)] <- c(fit)[is.na(data$count)]

#M step

m<-glm.fit(model.matrix(model),data$y, family=poisson())

beta<-m$coef

list(beta=beta,fit=data$y)
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}

## Part 2

em.full<-function(beta,model,data,tol)

{

beta.init <-rep(1,length(model$coef))

beta <- beta.init

i<-0

err<-tol*2

storebeta<-beta

while(err > tol) {

i <- i + 1

u <- em(beta, model, data)

err <- max(abs(u$beta - beta))

beta<-u$beta

fit <- u$fit

storebeta<-cbind(storebeta,beta)

}

return(list(i=i, beta=u$beta, fit=u$fit, storebeta=storebeta))

}

## Part 3

EM.US.boot <- function(dat)

{

dat <- array(c(dat), dim=c(2,2,2))

dimnames(dat)<-list(c("no","yes"),c("no","yes"),c("no","yes"))

data<-data.frame(expand.grid(admin=dimnames(dat)[[1]], survey=dimnames(dat)[[2]],

census=dimnames(dat)[[3]]), count=c(dat))

data$y<-data$count

data$y[is.na(data$y)] <- 0

model.EM<-glm(y~census+survey+admin+census:survey+survey:admin,poisson, data = data)

options(contrasts = c("contr.treatment", "contr.poly"))

EM.imp<-em.full(model=model.EM,data=data,tol=1e-5)

return(list(beta=EM.imp$beta,fit=EM.imp$fit))

}

# Step 5: The bootstrap procedure

### The best fitting model here is the one with six terms

store.EM.beta <-matrix(NA,b,6)

store.EM.fit <-matrix(NA,b,8)

for(i in 1:b){

temp<-EM.US.boot(data.n.ijk[,i])

store.EM.fit[i,] <- temp$fit; store.EM.beta[i,] <- temp$beta}

store.EM.beta

store.EM.fit
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## means

apply(store.EM.beta, 2, mean)

apply(store.EM.fit, 2, mean)

## standard errors

sqrt(apply(store.EM.beta, 2, var))

sqrt(apply(store.EM.fit, 2, var))

B.6 Parametric Bootstrap - with erroneous enumerations

# Step 1

## Produce b bootstrap samples from the 32 cells (n.ijkgt)

## n = total observed and b = bootstrap resamples, pi = cell probabilities

boot.EM <- function(b,n,pi)

{

data.boot <- matrix(sample(1:32, n*b, prob=pi, replace=T),byrow=F, nrow=b)

X.tab <- apply(data.boot, 1, nbins=32, tabulate)

return(X.tab)

}

data.EM <- boot.EM()

## Step 2

## Create the 16 cells (n.ijkg)

em.dat.fn <- function(data)

{

apply(array(c(data), dim=c(2,2,2,2,2)), c(1,2,3,4), sum)

}

## Step 3

## this produces the 16xb cells

data.n.full <- apply(data.EM, 2, em.dat.fn)

## Step 4

### Next need to remove the 1st and 9th cells

em.dat.na <- function(data)

{

data[c(1,9)] <- NA

data

}

## Step 5

### Final data set with missing cells replaced with NAs

data.n.ijkg <- apply(data.n.full, 2, em.dat.na)
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## Step 6a - Implement the bootstrap

## for b bootstrap resamples and dim(beta) is the number of model parameters

### The bootstrapped data is split into two groups to prevent mixing

### EM.latent.boot is the function that performs the EM algorithm on the observed counts

### So the following function takes the resampled data and applies the EM algorithm

### Each resample outputs beta and fitted estimates which are stored

## Step 6a: this is the EM algorithm for one iteration

em <- function(beta0, model=model.latent, data.lat, n.ijkg)

{

n.ijkg[is.na(n.ijkg)] <- 1

#E steps

## # E1 step

fit <- exp(model.matrix(model)%*%beta0)

mu.ijkgt <- array(c(fit), dim=c(2,2,2,2,2))

## # E2 step

n.ijkg[1] <- mu.ijkgt[1] + mu.ijkgt[17]

n.ijkg[9] <- mu.ijkgt[9] + mu.ijkgt[25]

mu.ijkg <- apply(mu.ijkgt, c(1,2,3,4), sum)

weight <- array(n.ijkg/mu.ijkg, c(2,2,2,2,2))

n.ijkgt <- weight * mu.ijkgt

data.lat$y <- c(n.ijkgt)

#M step

m <- glm.fit(model.matrix(model), data.lat$y, family=poisson())

beta <- m$coef

list(beta=beta, fit=data.lat$y)

}

## Step 6b: this runs until convergence

em.full<-function(beta,model=model.latent,data,n.ijkg,tol)

{

n.ijkg[is.na(n.ijkg)] <- 1

i<-0

err<-tol*2

storebeta<-beta

while(err > tol) {

i <- i + 1

u <- em(beta, model.latent,data.lat, n.ijkg)

err <- max(abs(u$beta - beta))

beta<-u$beta

fit <- u$fit

storebeta<-cbind(storebeta,beta)

}

return(list(i=i, err=err, beta=u$beta, fit=u$fit, lik=u$lik, storebeta=storebeta))

}
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## Step 6c - Finally bring it all together

### The following function runs the EM algorithm to produce parameter

### and cell estimates given a 2x2x2x2 observed table

#### Has an inbuilt procedure to estimate missing n000g1 and n000g2 cells

EM.latent.boot <- function(data)

{

n.ijkg <- data

init <- array(c(82.074, 11.107, 11.107, 1.503, 11.107, 1.503, 1.503, 0.203,

82.074, 11.107, 11.107, 1.503, 11.107, 1.503, 1.503, 0.203,

0.196, 1.440, 1.478, 10.885, 1.477, 10.885, 11.166, 82.262,

0.196, 1.440, 1.478, 10.885, 1.477, 10.885, 11.166, 82.262), dim=c(2,2,2,2,2))

data.lat <- init

dimnames(data.lat) <- list(c("No", "Yes"), c("No", "Yes"), c("No", "Yes"),

c("Group A", "Group B"), c("Real", "Erroneous"))

data.lat <- data.frame(expand.grid(census = dimnames(data.lat)[[1]],

survey = dimnames(data.lat)[[2]], admin = dimnames(data.lat)[[3]],

group=dimnames(data.lat)[[4]], latent = dimnames(data.lat)[[5]]),

count.lat = c(data.lat))

data.lat$y <- data.lat$count.lat

#run a basic model to get model.matrix

## Local Dependence Model with CS interaction

model.latent<-glm(y~census+survey+admin+latent+group+census:latent+survey:latent

+admin:latent+latent:group + census:survey, poisson, data = data.lat)

# Need suitable choice initial beta values

## under local dependence

model.init<-glm(count.lat~census+survey+admin+latent+group+census:latent

+survey:latent+admin:latent+latent:group + census:survey, poisson, data = data.lat)

beta <- model.init$coef

fit <- exp(model.matrix(model.init)%*%beta)

EM.imp<-em.full(model.init$coef,model=model.latent,data.lat,n.ijkg,1e-05)

## maybe change the convergence criterion to 1e-3??

return(list(beta=EM.imp$beta,fit=EM.imp$fit))

}

# Final Step: The bootstrap procedure

store.EM.beta.1 <-matrix(NA,b,dim(beta))

store.EM.beta.2 <-matrix(NA,b,dim(beta))

store.EM.fit.1 <-matrix(NA,b,32)

store.EM.fit.2 <-matrix(NA,b,32)
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## note that the data switching looks at the observed real counts

## and b.switch is chosen based on the a posteriori classification probabilities

for(i in 1:b)

{

temp<-EM.latent.boot(data.n.ijkg[,i])

if(sum(temp$fit[c(2:8,10:16)]) > b.switch)

{

store.EM.fit.1[i,] <- temp$fit; store.EM.beta.1[i,] <- temp$beta

}

if(sum(temp$fit[c(2:8,10:16)]) <= b.switch)

{

store.EM.fit.2[i,] <- temp$fit; store.EM.beta.2[i,] <- temp$beta

}

}

#### To take care of label switching, need to run this part

EM.switch <- function(data)

{

data[!is.na(data)]

}

### To get the beta parameters and the fitted values

apply(store.EM.beta.1, 2, EM.switch)

apply(store.EM.beta.2, 2, EM.switch)

apply(store.EM.fit.1, 2, EM.switch)

apply(store.EM.fit.2, 2, EM.switch)
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