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Aspects of strongly-coupled field theory from gauge-gravity duality

Edward James Threlfall

The issue of calculating at strong coupling is a hard problem in physics. The discovery

of gauge-gravity duality at the end of the Twentieth Century provides a novel means

of calculating in a large-N gauge theory at strong coupling. In this thesis we apply

the method of gauge-gravity duality to a variety of questions. Firstly we review the

string theory background material and then introduce the gauge-gravity duality. We

discuss the procedure for adding fundamental representation matter to gravity duals.

We present a method for calculating the quasinormal frequencies associated to meson-

like excitations in non-zero temperature gravity duals and apply it to excitations of

bosonic and fermionic type. We study the thermal phase transition in a somewhat QCD-

like gravity dual deformed by the presence of a relevant operator and find a plausible

transition between a QCD-like confining phase and a high temperature phase which is

just the generic black hole geometry. Finally we examine the effect of chemical potential

on the behaviour of fundamental representation matter in a gravity dual and look for

superconductivity-like behaviour.

2



Contents

1 Introduction and overview 14

2 Gauge fields, strings and duality 21

2.1 QCD and large-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 String theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Stringy hadron physics . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Bosonic strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Supersymmetric strings and supergravity . . . . . . . . . . . . . . 37

2.3 D-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Toroidal compactification and T-duality . . . . . . . . . . . . . . . 40

2.3.2 D-brane action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 AdS-CFT Correspondence / gauge-gravity duality . . . . . . . . . . . . . 43

2.4.1 The D3 brane construction . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 Operator-field matching . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Non-zero temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3



Contents

3 Adding fundamental matter to gauge-gravity duals 53

3.1 Fundamental flavoured matter from D-branes . . . . . . . . . . . . . . . . 53

3.2 Field theory of the D3/D7 intersection . . . . . . . . . . . . . . . . . . . . 57

3.3 Meson spectra from the D7 brane . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Green’s functions on the brane: dressed quarks and radiation . . . . . . . 62

3.5 The meson spectrum with D7 brane backreaction . . . . . . . . . . . . . . 74

4 Quasinormal modes of gauge-gravity duals 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 The Sakai-Sugimoto model . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 The geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Regular horizon coordinates for quasinormal modes . . . . . . . . . . . . . 84

4.5 Quasinormal modes from flavour branes . . . . . . . . . . . . . . . . . . . 87

4.5.1 Scalar mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.2 Vector mesons - transverse . . . . . . . . . . . . . . . . . . . . . . 89

4.5.3 Vector mesons - longitudinal . . . . . . . . . . . . . . . . . . . . . 90

4.6 Finite spatial momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Fermionic excitations of the AdS-Schwarzschild background . . . . . . . . 95

4.8.1 The Dirac equation on curved spacetime . . . . . . . . . . . . . . . 95

4.8.2 Coordinate system and calculation . . . . . . . . . . . . . . . . . . 98

4.8.3 Finite momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4



Contents

5 The thermal phase transition in a QCD-like holographic model 104

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 A Hard wall - N = 4 SYM On Moduli Space . . . . . . . . . . . . . . . . 108

5.3 Dilaton Flow Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Five-dimensional action and equations of motion . . . . . . . . . . 111

5.3.2 Solution with no event horizon . . . . . . . . . . . . . . . . . . . . 113

5.3.3 Black hole geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 The Origin Of Supersymmetry Breaking . . . . . . . . . . . . . . . . . . . 115

5.5 Thermodynamic computation . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 Aspects of the Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6.1 Glueballs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6.2 Quarks and mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Chemical potential in the D3 −D5 intersection 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 The D3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Quenched Matter from a D5 Probe At T=0 . . . . . . . . . . . . . . . . . 136

6.4 R-Charge Chemical Potential/Spin . . . . . . . . . . . . . . . . . . . . . . 137

6.4.1 An Overly Naive Ansatz . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.2 A More Sophisticated Ansatz . . . . . . . . . . . . . . . . . . . . . 140

6.4.3 Thermal behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5



Contents

6.4.4 The D3-D7 System . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5 Baryon number chemical potential . . . . . . . . . . . . . . . . . . . . . . 146

6.5.1 Zero temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5.2 Finite temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6 Isospin chemical potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A A rotating string in flat spacetime 156

B Back-reaction in the hydrogenic atom 158

C Scalar quasinormal modes of a Schwarzschild black hole 161

D Dilaton flows in asymptotically-flat geometry 166

E Bottom-up models - cooking the dilaton 169

6



List of Figures

3.1 Plots of the function x′(t′) in (3.41) used to describe the motion of an

accelerating point source. The parameter a controls the final speed and

is set to a = 0.2 here. b controls the time scale of the acceleration and

the plots show b = 0.8 (top), b = 0.3 (middle) and b = 0.05 (bottom). . . . 69

3.2 The radiation of light mesons by a quark given an impulse in the positive

x-direction, shown in the z = 0 plane. The plot shows the density of the

emitted (radiative part of field) and bound (boosted static part) mesons.

The top plot is for a terminal velocity of 0.2c and below is 0.6c (in both

plots the parameter b = 0.2). . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 The radiation of massive mesons by a quark given an impulse in the pos-

itive x-direction, plotted along the x-axis. The plot shows the density

of the emitted mesons. The meson masses increase through the plots as

0,10−2, 10−1, 1
3 , 1. Note the background static field peak becomes nar-

rower as the mass is increased. . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Emission of massive vector mesons (m = 1
2). The parameters a = b = 0.2. 73

7



List of Figures

4.1 Plot illustrating which phase has lower action. For ∆S > 0 the ‘flat’ D8

embedding is favoured (corresponding to the higher temperature phase).

For ∆S < 0 the curved D8 embedding is favoured and the flavour branes

do not intersect the black hole horizon. . . . . . . . . . . . . . . . . . . . . 83

4.2 The lowest five k = 0 Klein-Gordon scalar quasinormal frequencies in the

complex ω plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 The lowest five k = 0 sigma meson quasinormal frequencies in the complex

ω plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 The lowest five static vector meson quasinormal frequencies in the com-

plex ω plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Lowest quasinormal frequencies at finite real spatial momentum k in the

complex ω plane for the scalar q̄q bound state. The momentum k ranges

from 0 to 5.0 in steps of 0.5 (in the same units as ω) as one moves to the

right in the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Above we show the lowest vector q̄q bound state quasinormal frequencies

at finite real spatial momentum k in the complex ω plane (top). The

momentum ranges from 0 to 2.0 in steps of 0.2 as one moves to the

right (the lowest mode in the longitudinal spectrum, corresponding to

the diffusion pole in the hydrodynamic limit, is excluded). For each mode

the flatter trajectory corresponds to the transverse species and the steeper

to the longitudinal. Below this we show the momentum dependence of

the lowest quasinormal mode (‘diffusion pole’) for the longitudinal vector

meson. The equation of the line is y = log 2
3 + 2x showing the validity of

the relation ω = −iDk2 for small k, with D = 2
3 . . . . . . . . . . . . . . . 93

8



List of Figures

4.7 What you get in the complex ω-plane for the asymptotic value of ln |v| if

you fail to include the Dirac mass term from the sphere (ie. m = 0 in the

equations in the text). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Plot showing the quasinormal modes of excitations of a probe D7 at k = 0.

The blue points are the scalar modes found in [51]. The first four ‘particle’

fermionic excitations (m = +5
2) are shown on the right and the first eight

‘antiparticle’ excitations (m = −1
2) on the left. . . . . . . . . . . . . . . . 103

5.1 Embedding with zero current algebra quark mass. Note the singularity is

shown as a quarter-circle here (the singularity is located on the circular

locus ρ2 + w2
6 = 1) - this is an artifact of the isotropic coordinates as it

actually has zero metric surface area. . . . . . . . . . . . . . . . . . . . . . 123

5.2 Schrödinger potentials for the pion in Ghoroku geometry for different

quark masses. The presence of the deformation stops the box becoming

infinitely wide as the hard quark mass is dialled to zero since an additional

energy scale is introduced (the ‘QCD bag’). It also makes the potential

dip down below zero, which is what gives the zero-mass ground state. . . 125

5.3 Here we show that the Schrödinger potential in the Ghoroku geometry

(the non-symmetric curve) tends back to the undeformed box-like (sym-

metric) case as the quark mass becomes large relative to the deformation

scale (unity for our numerics). The left hand plot shows the potentials

for mq = 2 and the right hand plot for mq = 4. . . . . . . . . . . . . . . . 126

5.4 Pion (lowest mass state for given quark mass), sigma (highest) and vector

(intermediate) masses as a function of quark mass - all in units of u0. The

line shows the large-mq limit. . . . . . . . . . . . . . . . . . . . . . . . . . 127

9



List of Figures

5.5 D7 brane embeddings in the AdS-Schwarzschild geometry in isotropic

coordinates. They may either terminate on the horizon (shown as the

quarter-circle at ρ2 + w2
6 = 1

2 ) or wrap a contractible cycle that closes

outside the horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 Embeddings of D5 branes impacting on the ergosurface and some of the

Karch-Katz type embeddings (note these actually exist down to the top

of the ergosurface) (top). At the bottom is a plot of c vs m for embed-

dings impacting on the ergosurface (circles) and Karch-Katz embeddings

(squares). The solutions oscillate around the value for the lowest Karch-

Katz solution as the D5 approaches the very top of the ergosurface. . . . . 139

6.2 A selection of solution curves for D5 embeddings. The grey region is the

interior of the ergosurface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 A particular solution curve in the three dimensional (w, θ, φ) subspace.

The torus represents the ergosurface. Note the D5 rotates at speed µ in

the φ direction (around the symmetry axis). . . . . . . . . . . . . . . . . . 142

6.4 A plot of c vsm for embeddings smoothly penetrating the ergosurface (cir-

cles) and Karch-Katz embeddings (squares). The solutions again oscillate

around the value for the lowest Karch-Katz solution as the D5 approaches

the very top of the ergosurface indicating a first order transition. . . . . 143

6.5 A selection of solution curves for D5 branes in the thermal geometry (with

u0 = 1). The grey region is the interior of the ergosurface and the black

region is the interior of the event horizon. . . . . . . . . . . . . . . . . . . 145

6.6 Embeddings with a baryon number chemical potential for Q = 0.1 at

T = 0 with with nonzero c1. As c1 approaches the numerical value of the

charge Q the quark mass can be made arbitrarily large. . . . . . . . . . . 147

10



List of Figures

6.7 Plot of parameters c, proportional to the condensate, versus m propor-

tional to the quark mass in the case of baryon chemical potential for

Q = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.8 Embeddings of the D5 branes for Q = 0.1 baryon chemical potential in

units of the black hole temperature. . . . . . . . . . . . . . . . . . . . . . 150

6.9 Plot of the quark condensate, c versus quark mass, m, for varying values

of Q (which determines the baryon number chemical potential) around the

critical value of Q where the phase transition between “spike” embeddings

(the top of the s-shape) and smooth horizon entering embeddings ends

(lower part of the s-shape). . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.10 Plot of the charged vector condensate (the parameter c from (6.31)) in

units of chemical potential squared versus 1/µ in the case of isospin chem-

ical potential at zero quark mass. . . . . . . . . . . . . . . . . . . . . . . . 153

C.1 Left hand figure shows the lowest four quasinormal frequencies in the

complex ω plane for α = 0.5, converging on mc2

~
(= 1 in the units used).

On the right is a scan of the ω plane where the logarithm of the field at

large radius is plotted - the ‘pits’ show normalizable solutions where the

field vanishes at infinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.2 Schrödinger potentials for the scalar in a Schwarzschild black hole back-

ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

E.1 Plot of background dilaton required to give a linearly-spaced tower of

glueball states in AdS with the lowest state being massless. Here the

spacing parameter ω has been set to unity. . . . . . . . . . . . . . . . . . . 172

11



List of Figures

Author’s declaration

The work in this thesis was carried out in collaboration with Professor Nick Evans of the

University of Southampton (and part of Chapter 3 in collaboration with the co-authors

of the papers mentioned below). The material has been previously published as follows:

• Chapter 3: N. J. Evans, J. W. French, K. Jensen and E. J. Threlfall, ‘Hadronization

at the AdS wall’, [arXiv:0908.0407[hep-th]] and J. K. Erdmenger, N. J. Evans, I.

Kirsch and E. Threlfall, ‘Mesons in gauge/gravity duals - a review’, Eur. Phys. J.

A 35 (2008) 81 [arXiv:0711.4467[hep-th]].

• Chapter 4: N. J. Evans and E. J. Threlfall, ‘Mesonic quasinormal modes of the

Sakai-Sugimoto model at high temperature’, Phys. Rev. D77: 126008, 2008

[arXiv:0802.0775[hep-th]].

• Chapter 5: N. J. Evans and E. J. Threlfall, ‘The thermal phase transition in a

QCD-like holographic model’, Phys. Rev. D78: 105020, 2008 [arXiv:0805.0956[hep-

th]].

• Chapter 6: N. J. Evans and E. J. Threlfall, ‘Chemical potential in the gravity dual

of a 2+1 dimensional system’, Phys. Rev. D79: 066008, 2009 [arXiv:0812.3273[hep-

th]].

No claims for originality are made for the material in Chapter 2 and in the remainder

of Chapter 3 which was compiled from a variety of sources.

Any significant help received from other sources is explicitly given credit in the relevant

chapter.

Some simple calculations performed by me which are somewhat aside from the main

text are relegated to appendices.

12



List of Figures

Acknowledgements

Professor Nick Evans deserves special mention for being a great and very patient super-

visor. In addition I would like to thank the following people and institutions (this list is

not in any particular order):

• The staff and postdocs in the theory group at the University of Southampton

• My fellow students in the theory group at the University of Southampton

• The IT support staff in the Department of Physics and Astronomy at the University

of Southampton

• My girlfriend Charlotte Hague

• PPARC / STFC for financial support

13



Chapter 1

Introduction and overview

Today’s fundamental theories of nature are relativistic quantum field theories, possibly

converting into ‘something else’ at vastly high energy. Despite the lack of any direct

experimental evidence, the current mainstream view is that the ‘something else’ is string

theory or M-theory. The energy scale associated to the fundamental objects of string/M-

theory is inaccessible to the experiments of today (and the forseeable future) but there

is a great deal of theoretical richness and consistency in these theories. During the

past decade or so string theory has given rise to remarkable new techniques for studying

certain quantum field theories at strong coupling, via gauge-gravity duality, and in this

thesis we explore some small corners of this methodology.

Quantum field theories arose from the coming together of quantum mechanics and special

relativity - generically one seeks a quantum-mechanical theory which is consistent with

Lorentz invariance in four dimensions. One especially important class of quantum field

theory is that of the gauge theories which started off with the notion of there being a

local change in the phase of the wave function of a matter field. This change of phase

is a local U(1) gauge invariance and the field Aµ we introduce to maintain the gauge

invariance of the Lagrangian is the four-vector potential of classical electrodynamics. On

14



quantization it describes the photon of quantum electrodynamics (QED). This theory

provides an excellent perturbative description of the dynamics of charged particles in

the weakly-coupled regime at energies below the electroweak scale.

It is not inconsistent with Lorentz invariance to generalize to a nonabelian gauge symme-

try. The result is Yang-Mills theory [1] coupled to fundamental representation matter,

with the Lagrangian

LYM = −1

4
Tr (FµνFµν) + iΨ̄iγ

µ
(

∇µ − igAaµτ
a
)

Ψi −mΨ̄iΨi . (1.1)

Here F aµν = 2∇[µA
a
ν] + gfabcAbµA

c
ν . The dimensionless coupling constant is g and fabc

are the Lie algebra structure constants.

With gauge group SU(3) the quantized theory is an excellent model of the strong nu-

clear force, the interaction of the fundamental representation quarks Ψi and adjoint

gluons Aaµ which we see in nature (at high energies). This theory is known as quantum

chromodynamics (QCD).

It is an important feature that the quantum interactions can make the coupling constant

g vary with energy scale. The running of the coupling is described by the beta function

of the theory, which is defined by

β(g) =
dg(µ)

d lnµ
, (1.2)

where µ is the energy scale. For QCD with Nf flavours of fundamental quark the beta

function at leading order in the coupling (ie one loop) is given by [2, 3]

β(g) =
g3

(4π)2

(

−11 +
2

3
Nf

)

. (1.3)

For a sufficiently small number of flavours this is clearly negative, showing that QCD is

perturbative above some scale and the gauge coupling gets weaker as the scale is taken

15



to infinity - a property known as asymptotic freedom (in this sense the theory is well

defined at high energies and is ‘UV complete’ - in modern language the theory has a

scale-invariant UV fixed point). Conversely, in the perturbative regime the coupling

grows stronger as we lower the scale until we lose control of perturbation theory (this

scale has to be experimentally determined and is known as ΛQCD). Notice that the pure

gauge theory has a nonzero beta function - this represents the anomalous breaking of

conformal invariance. The quantization preserves only a subgroup (the Poincaré group)

of the conformal symmetry group of the classical action. An associated phenomenon is

the generation of a mass gap in the theory - any state orthogonal to the QCD vacuum has

a finite positive mass - this mass gap is the reason we do not observe classical massless

nonlinear Yang-Mills waves in the world around us - the classical wave picture is only

appropriate at very high energy (≫ ΛQCD) [4].

If the interaction strength becomes ‘large’ (ie the dimensionless coupling constant g ∼ 1

- referred to as ‘strongly-coupled’) we have a quantum field theory which cannot be

treated perturbatively (ie interpreted as a tree-level theory with ‘small’ higher-order

corrections). A perturbative computation is not useful at strong coupling because the

few terms of the diagrammatic asymptotic expansion we can compute do not capture

the dynamics (the asymptotic expansion fails so one is not saved even if all diagrams can

be summed). A strongly-coupled theory would be dominated by the quantum dynamics

and the physical degrees of freedom would not necessarily be anything like the original

field degrees of freedom present in the Lagrangian. There is no general procedure for

doing calculations in a quantum field theory at strong coupling without resorting to

full-blown numerical simulation of the dynamics - today a vast area of research despite

the many challenges involved [5]. This inability to calculate at strong coupling is a

serious problem because our theory of strong nuclear force, QCD, is a strongly-coupled

field theory at everyday energies (below ΛQCD). To test if QCD really is the correct

theory at all scales, we would like to be able to calculate low-energy hadron physics (for
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example hadron masses, decay constants, magnetic moments...) from QCD. Techniques

for calculating in field theories at strong coupling are therefore of great interest even if

those field theories are somewhat different from actual QCD.

In recent years there has been much progress in the study of supersymmetric general-

izations of gauge theories. Instead of seeking a Lorentz-invariant field theory one may

extend the Poincaré algebra with the addition of anticommuting spinorial supercharges

(one can also seek to extend the conformal algebra to the super-conformal). The point

is that the supersymmetry constrains the form of the quantum theory which makes pos-

sible certain analytic calculations. In addition some novel dualities have been uncovered

in which the strong coupling regime of some theories has a dual description which is

perturbative in some different set of degrees of freedom [11].

In addition to the forces of nature which are described by gauge theories, there is also

the force of gravity. At low energies, Einstein’s theory of General Relativity (GR)

[6] provides an excellent model. One significant problem with GR is that, when a

perturbative quantization is sought, the resulting theory is not renormalizable. There

can be no microscopic understanding of how a gravitational background is built up from

elementary graviton particle states (whereas we do understand eg. how the Coulomb

potential of the atom arises in a particular limit of QED). Attempts to alleviate the

nonrenormalizability problem have been sought using supersymmetric generalizations of

gravity known as supergravities. It does not appear that this is enough to solve the

problem though at the time of writing it is possible that the maximally-supersymmetric

N = 8 supergravity avoids the problem [7]. The leading candidate quantum theory of

gravity is (super-) string theory [8] which reduces to supergravity at energies which are

small compared to the string scale (the latter provides a natural ultraviolet cut-off which

cures the nonrenormalizability malady). There are alternative quantum gravity theories

[9, 10] but string theory is by far the most developed today.

At the close of the Twentieth Century, string theory was found to contain non-perturbative
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objects known as D-branes [12]. D-branes are solitonic objects and the link to perturba-

tive string theory is that open strings have endpoints localized on D-branes. It is natural

that N coincident D-branes have a U(N) gauge theory living on their world volume in

the low energy limit. It is also the case that D-branes can emit and absorb closed strings

which at low energy lead to a bulk supergravity theory. There are therefore two possible

ways of describing the brane physics - the open and closed string sectors. Of course,

in general neither description contains all of the physics since open and closed strings

couple. However, it turns out that a certain limit exists in which the open and closed

sectors decouple and there is then the possibility that all the physics is captured by each

sector, independently. This opens the possibility of learning about a gauge theory by

studying a supergravity, and vice versa.

In 1997 a specific construction of this type was proposed by Maldacena [13], using N

coincident D3-branes in ten-dimensional IIB superstring theory. The field theory is the

maximally supersymmetric N = 4 super-Yang-Mills (SYM) theory with gauge group

SU(N) in the large-N limit - it has superconformal symmetry and is strongly coupled.

The bulk description in the large-N limit is weakly-coupled IIB supergravity on a back-

ground manifold with the metric of AdS5 ×S5. This was the first explicit gauge-gravity

dual (the original specific construction is known as the AdS-CFT Correspondence). It

gave a new method for studying a strongly-coupled field theory analytically because it

is a strong-weak duality. Of course the field theory is not QCD (it has N = 4 super-

symmetry, a large number of colours and initially contained only adjoint fields).

Over the past ten years or so, gauge-gravity duality has been extensively used to address

various problems in strongly-coupled field theories. It has brought new insight into some

of the features of QCD, black hole physics, collider physics and also to certain systems

in condensed matter physics. In this thesis I present work which is unified by virtue

of using gauge-gravity duality to address questions in strongly-coupled quantum field

theory. All original work was carried out in collaboration with my supervisor, Professor
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Nick Evans.

Chapter Two gives a flavour of the phenomenology of strongly-coupled field theory we

are going to study. The basics of string theory are presented and the background to

gauge-gravity duality is outlined. I focus on the original proposal for the AdS-CFT

Correspondence [13] which is derived from the D3-brane solution of string theory. I

present the remarkable relation between quantum field theory operators and classical

supergravity degrees of freedom [14, 15]. This chapter contains no original research.

Much of the phenomenology of QCD is dominated by the behaviour of fundamental rep-

resentation quarks. Gauge-gravity duality can be used to study the behaviour of funda-

mental matter coupled to gauge theory. In Chapter Three I review also the prescription

for adding fundamental matter to the field theory by including additional D-branes in

the supergravity background [16]. I review the computation of the masses of mesonic

bound states for the D3-D7 construction and I describe a procedure for computing the

meson density surrounding an isolated static quark and the radiation of mesons by an

accelerated quark. Parts of the latter computation are my own work [18].

There exists an interesting model which describes a non-supersymmetric large-N field

theory with the adjoint fermions decoupled by giving them a large Kaluza-Klein mass

[64]. Fundamental matter can be added to give the Sakai-Sugimoto model of chiral

symmetry breaking [46, 47]. The phase structure of this setup has been studied and a

high-temperature, deconfined phase found [50]. This model allows the study of mesonic

excitations in a large-N deconfined plasma phase. Chapter Four presents a computation

of the masses and decay widths of mesons in this phase, using an ingoing coordinate

chart to simplify the numerical method, as published in [19]. Returning to the D3 model,

in the high-temperature phase, I compute the masses and decay widths of some spin-half

excitations which may be interpreted as the superpartners of the field theory glueballs

or as the superpartners to the mesons associated to a probe D7 brane at zero hard quark

mass.
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Gauge-gravity duality can be used to investigate the phase structure of large-N field

theories. Chapter Five presents research concerning the deconfinement phase transition

in a QCD-like deformation of the D3 brane construction, beginning with a discussion of

the thermal behaviour of the theory on its moduli space. Some of the main results from

the literature concerning the features of the high and low temperature phases we find

are reviewed. This work was published in [20].

Recently there has been interest in using gauge-gravity duals to model strongly-coupled

condensed matter systems - it is known that certain condensed matter systems can

become strongly-coupled, ‘relativistic’ and conformal when tuned to a quantum critical

point. Descriptions of superconductivity-like behaviour has emerged from certain models

[17] giving the hope of understanding unconventional superconductivity as a strong-

coupling effect. Chapter Six presents research concerning adding a chemical potential

to the D3 system and examining the effect on fundamental quarks living on a 2 + 1-

dimensional defect. We attempt to obtain a dual description of a superconductor where

the brane construction gives an explicit understanding of what the degrees of freedom

in the condensate actually are. This work was published in [21].
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Chapter 2

Gauge fields, strings and duality

We review some of the classic features of strongly-coupled QCD and their generalization

to a large number of colours (N). We introduce the basics of string theory leading to the

AdS/CFT Correspondence.

2.1 QCD and large-N

The problem of strong coupling is ubiquitious in physics and a particularly important

case is the low energy regime of QCD. The main features of the theory arise from

strongly-coupled quantum dynamics and there is no derivation of the full force between

quarks from the underlying QCD Lagrangian. Some of the characteristic features of

low-energy QCD are:

Confinement - the only states we see are singlet representations of SU(3) (colour singlets)

- either states with three quarks (baryons), quark-antiquark pairs (mesons), along with

colourless associations of gluons (glueballs). It is supposed that there is a linear q̄q

potential describing a constant force as one tries to separate a quark and an antiquark.

At some point enough energy has been put into the colour field between the q and q̄
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2.1 QCD and large-N

to get pair creation and one ends up not with a separated quark and antiquark but a

bunch of colour singlet hadrons.

Chiral symmetry breaking - the key point is to note that, for one flavour of massless quark,

the QCD Lagrangian is invariant under the global U(1) vector and axial transformations

ψ → eiαψ , ψ → eiαγ
5
ψ .

The vacuum state of QCD contains a nonzero vacuum expectation value for an operator

describing a quark condensate 〈ψ̄ψ〉. If this is the case, this quantum effect breaks chiral

symmetry spontaneously (meaning that the system has to choose a particular vacuum

which breaks one of the symmetries present in the Lagrangian) because the variable

z ≡ ψ̄ψ − iiψ̄γ5ψ transforms under the axial transformation as z → ze2iα. There is

one spontaneously broken symmetry generator and we expect one massless state from

Goldstone’s theorem. This is the phase of z which is a pseudoscalar since the tangent

of this phase is iψ̄γ5ψ
ψ̄ψ

.

In the case of multiple flavours the symmetry breaking generalizes to U(Nf )×U(Nf ) →
U(Nf )V and N2

f Goldstone bosons would be expected. Experimentally the light flavours

(u, d) have very small current algebra masses and obey an approximate chiral symmetry.

One finds three light pseudoscalar pion states which is actually N2
f −1 because one state

receives a larger mass due to an anomaly in QCD.

These features are impossible to calculate using the perturbative expansion in Feynman

diagrams. Some aspects of the physics associated to chiral symmetry breaking can be

derived from the effective theory of the chiral Lagrangian but of course this comes from

arguing that the symmetries of the problem survive at strong coupling (which appears

to be true because the analysis works, but it cannot be proven from the Lagrangian).

It was theorized some time ago that strongly-coupled gauge theory could be described

by a kind of effective string theory [22]. QCD contains string-like objects which are
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2.1 QCD and large-N

the colour flux tubes or Wilson lines. The correct gauge-invariant operator describing a

quark-antiquark pair is

ψ̄(x′)Pei
R x
x′
Aµdxµ

ψ(x) . (2.1)

The strong dynamics cause the gauge field to form a ‘tube’ connecting the quark and

antiquark (unlike the case of a dipole in QED). In the SU(3) theory there would be a

‘thickness’ associated to the flux tube but it is possible to imagine that as the number

of colours N increases then the flux tube becomes thinner and more like a fundamental

string (at large N one also expects the string to become harder and harder to break as

the tension will become large). This can also be expressed in diagrammatic language

such that the quark and antiquark propagators are connected by a kind of ‘weave’ of

gluon field, which is suggestive of a string worldsheet.

It is also possible to imagine that as N becomes very large, the gauge theory simplifies in

some way and contact with QCD can be made via an expansion in 1
N (there are no other

dimensionless parameters in the theory one can base an expansion on). This argument

was successfully applied by ‘t Hooft [22]. The one-loop beta function for SU(N) pure

YM theory is given by

dg

d lnµ
= −11

3

1

16π2
Ng3 . (2.2)

It is apparent that both terms are of the same order if we take N → ∞ while keeping

λ ≡ g2N fixed. This is known as the ‘t Hooft limit and λ the ‘t Hooft coupling.

This is the correct parameter to use for the coupling as N is allowed to vary because

perturbative interaction vertices receive contributions ∼ N from group theory factors as

well as factors of g.

One can consider the vacuum diagrams of the theory written in ‘double-line’ notation

where an adjoint field propagator is expressed as a fundamental and antifundamental
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2.1 QCD and large-N

propagator. A diagram takes the form of a simplicial decomposition of a surface, with

each single-line loop viewed as the perimeter of a ‘face’. It is clear that each diagram can

be drawn without the propagators crossing on a surface which has a topology determined

by the number of crossing propagators if the diagram is projected onto a plane. Now

schematically the Lagrangian takes the form

L ∼ 1

g2
YM

(

Tr p2 φiφj + p cijkφiφjφk + dijklφiφjφkφl

)

. (2.3)

A natural question is what factors of N and λ are associated with a given diagram. From

the Lagrangian we see that a propagator will be proportional to λ
N , an interaction vertex

will carry a factor of N
λ and each closed loop will contribute a group theory factor of

N . Thus a diagram corresponding to a simplex with V vertices, E edges (propagators)

and F faces (closed loops) comes with a factor of NV−E+FλE−V . The combination

χ ≡ V − E + F is the topological invariant known as the Euler characteristic of the

surface.

It turns out that if the diagrammatic expansion is made, diagrams in which the gluon

propagators cross over each other are suppressed by a positive multiplicative power of 1
N

and indeed the expansion in 1
N takes the form of a genus expansion. The leading order

term is a planar diagram theory. Thus at large N one may expect the interaction of two

fundamental degrees of freedom to look like a two-dimensional ‘sheet’ of gluons. This can

be thought of as looking like a tree-level open string worldsheet (the fundamental index

forces the inclusion of a boundary) and perhaps the string itself can then be thought

of as the basic object. There are some problems in doing this in the four dimensions

one might expect the gauge theory to live in - obviously in four dimensions one has a

non-critical string theory containing an unwanted anomaly. Also because it seems the

string theory must necessarily be supersymmetric in order to work (the purely bosonic

theory has a tachyon when quantized in a Minkowski background), one may suspect

that supersymmetry may play a part in the field theory.
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2.2 String theory

In recent years there has been much study of the supersymmetric cousins of SU(N) gauge

theory. The four-dimensional Yang-Mills action can be made globally supersymmetric by

adding one, two or four spinors (four real degrees of freedom per spinor) of supercharges

to give N = 1, 2, 4 super-Yang-Mills (SYM) theories. The resulting theories contain

adjoint fields of spin 0 (scalars), 1
2 (gauginos) and 1 (gauge bosons), while adding more

than sixteen supercharges results in fields of greater spin.

Of these theories the maximally supersymmetric N = 4 theory has some particularly

interesting features. In particular this theory manages to retain its conformal invariance

upon quantization - it thus has a zero beta function (true order-by-order in perturbation

theory and known to be true non-perturbatively) because the supersymmetry in the

theory protects against quantum violations of scale invariance. The coupling will not

run and in the large-N limit it is possible to have a theory which is at large λ (strongly-

coupled) at all energy scales. We will see later that this exotic cousin of QCD does have

an explicit description in terms of a string theory.

2.2 String theory

Let us now turn our attention to the basics of string theory. The discussion is based in

part on lectures given by Dr. James Gray during a visit to Southampton University.

2.2.1 Stringy hadron physics

String theory arises from the attempt to quantize the embeddings of a 1+1-dimensional

manifold into a spacetime of larger dimensionality. Historically, string theory arose in

the 1960s in attempts to explain the large number of high-spin hadronic resonances and

also features of elastic hadron scattering eg. ππ → ππ.

Before the modern theory of strong interactions, the proliferation of high-spin hadronic
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2.2 String theory

resonances was a problem. These states seemed to have masses obeying the approximate

relation m2 = J
α′ where the Regge slope α ∼ 1GeV −2. Of course we now have a

theory telling us that these resonances are QCD bound states, but at the time they were

mysterious. It did not seem they could be new fundamental particles since theories of

elementary particles with spin > 1 were not known (and still are not).

We can consider the high-energy properties of ππ → ππ scattering by the exchange of

a σ particle. The σ particle has some spin J , and experiments showed a tower of states

of increasing integer J . A fundamental particle of spin > 1 leads to a divergence in the

ultraviolet behaviour. It seems there is only one way that the amplitude can be made

finite and that is to include an infinite tower of σ states and hope that the full sum is

actually convergent (one can compare to the series e−x = 1 − x + x2

2! − ... where the

removal of any term except the first one renders the x→ ∞ limit divergent whereas it’s

finite with all terms in place). There is also the fact that Bose statistics and the trace

cyclicity mean that the poles in the s channel must also be present in the t channel, and

it was argued [23] that the s and t channel amplitudes should actually be the same (this

also requires a sum over an infinite set of poles). In this case one need only sum over s

or t-channel poles and each description is an alternative or ‘dual’ version of the other.

One should be able to find a formula A(s, t) which can be expressed as a sum over either

s or t channel poles and is symmetric in (s, t). This is given by the formula proposed by

Veneziano in 1968 [24]

A(s, t) = β (−α(s),−α(t)) ≡ Γ(−α(s))Γ(−α(t))

Γ(−α(s) − α(t))
, (2.4)

which works because the Euler beta function obeys the identity

β(a, b) ≡
∞
∑

n=0

1

b+ n

(−1)n

n!
(a− 1)(a − 2)...(a − n) . (2.5)

The function is symmetric in its arguments so the Veneziano amplitude can be expanded
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2.2 String theory

as a sum over s or t-channel poles.

Selecting a linear ‘Regge trajectory’ α(s) = α′s−α(0) means the nth particle in the tower

has mass squared n−α(0)
α′ . Thus asymptotically the spin J and mass m of the resonances

are related by J ∼ α′m2. This relation between mass and spin is characteristic of a

rotating relativistic string, as shown in Appendix A. What the Veneziano model is really

describing is the scattering of hadrons by the exchange of string states - the Veneziano

formula can be explicitly derived from a tree-level exchange of string states ((6.4) in [8]).

The description of hadronic states as relativistic strings forms a reasonable description

of certain processes (Regge scattering) but it was abandoned as a model for strong

interactions when found to be inconsistent with data from deep inelastic scattering

(which showed point-like hadron substructure - now interpreted as quarks). There were

also a number of ‘technical’ problems (no obvious way of coupling to external currents,

26 dimensions were required, no fermionic states were present, there was a tachyon and

unwanted massless spin-2 states). Of course around 1973 a successful field theory of the

strong interaction was found (QCD!) and interest in strings was diminished for a number

of years.

2.2.2 Bosonic strings

In this section we review some of the basic features of the bosonic string theory.

The classical Nambu-Goto (NG) action describing the dynamics of a relativistic string

SNG =
1

2πα′

∫

d2σ

√

−Det
(

∂Xµ

∂ζa
∂Xµ

∂ζb

)

(2.6)

can be made equivalent to the Polyakov action

SP =
1

4πα′

∫

d2σ
√−γ

(

γab∂aX
µ∂bXµ

)

. (2.7)
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2.2 String theory

In a D-dimensional spacetime this has the appearance of a set of D massless scalars Xµ

living on the string worldsheet.

Varying the induced metric γab one obtains ‘Einstein’s equation’ for the induced metric

on the worldsheet

Rab −
1

2
Rγab = 8πα′Tab , (2.8)

where Tab is just the stress-energy tensor corresponding to the scalars Xµ. Since in two

dimensions the Rab ≡ 1
2Rγab identically, one must impose Tab = 0 as a constraint on the

scalars. This constraint is

Tab = ∂aX
µ∂bXµ −

1

2
γabγ

cd∂cX
µ∂dXµ = 0 . (2.9)

It is simple to show the Polyakov action recovers the NG action by computing the

determinants associated to both the original induced metric gab = ∂aX
µ∂bXµ and the

independent world sheet metric γab - using the constraint equation one obtains
√−g =

1
2

√−γγcd∂cXµ∂dXµ.

Classically one is free to choose any parametrization of the world-sheet and the Polyakov

action is invariant. There is a special subclass of coordinate transformations which are

local rescalings of the worldsheet metric

γ′ab = e2ωγab . (2.10)

This is known as Weyl invariance and it will concern us greatly when we come to quantize

the string.

There are a couple of other terms with the same symmetries which one could write down.

Firstly, a coupling between the worldsheet Ricci scalar and a bulk scalar field Φ

28



2.2 String theory

1

4πα′

∫

d2σ
√−γα′RΦ . (2.11)

Secondly, a coupling between the worldsheet induced metric and a bulk antisymmetric

tensor field Bµν known as the Kalb-Ramond field (in the same way the worldline of a

charged particle couples to a one-form gauge potential)

1

4πα′

∫

d2σ
√−γǫabBµν∇aX

µ∇bX
ν . (2.12)

Varying the Polyakov action with respect to the world-sheet scalars yields

δSP =
1

4πα′

∫

w
d2σ

(

−∇a

(

2
√−γγab∇bX

nugµν

))

δXµ+
1

4πα′

∫

∂w

dσ 2
√−γγab∇bX

νgµνδX
µna

(2.13)

the second term being a world-sheet boundary term. There are two obvious ways to

make this term vanish:

Neumann condition nb∇bX
µ = 0 at the boundary - this means we have an open string

with endpoints which move transversely to the string on null geodesics of the bulk

spacetime (in the absence of any other extended objects in the theory!).

No boundary - a worldsheet without boundary describes a closed string. All fields on

the string must be periodic in the coordinate used to parametrize the spacelike extent

of the string.

Note one might also take Xµ = constant but this actually leads to D-branes as we shall

reveal later.

The equations of motion from the Polyakov action are
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2.2 String theory

∇a

(√−γγab∇bX
µgµν

)

=
1

2
γab∇aX

µ∇bX
ρ∂νgµρ , (2.14)

Tab = 0 , (2.15)

plus equations for the fields Bµν , Φ if present in the background.

For now we specialize to Minkowski spacetime with no additional background fields

present. In this case the world-sheet scalars Xµ form a two-dimensional free field theory.

There is considerable freedom to choose coordinates on the worldsheet. We will choose

the conformal gauge such that the worldsheet line element is given by ds2 = e2ω(σ)
(

−dτ2 + dσ2
)

.

One can use the Weyl symmetry to set ω to zero. Then transforming to lightcone coor-

dinates σ± = τ ± σ one has the equations of motion in the form

∂+∂−X
I = 0 (2.16)

T++ = T−− = 0 . (2.17)

Open string mode expansion

For an open string these equations have the general solution

Xµ = Xµ
0 + l2pµτ + il

∑ 1

n
αµne

−inτ cosnσ . (2.18)

This describes a string with spacetime momentum pµ and which carries around excita-

tions with the amplitudes given by the Fourier coefficient αµn (note for the spacetime

coordinates to be real, one must have αµ−n ≡ αµn). Importantly, the mass squared of the

string M2 = −pµpµ is given by a Parseval’s theorem-like sum over these amplitudes.

The Hamiltonian related to the Lagrangian can easily be seen to be
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2.2 String theory

H =
1

4πα′

∫

dσ
(

Ẋ2 +X ′2
)

. (2.19)

Because of the constraint equation (T++ = T−− = 0) one finds that this Hamiltonian

needs to vanish. Evaluating the Hamiltonian on the solution and setting the result to

zero, one finds

M2 =
1

α′

∑

α−n · αn =
1

α′

∑

αn · αn . (2.20)

This is clearly positive definite and so a string carrying any excited modes has a positive

mass squared.

In fact the Hamiltonian is only one of an infinite set of conserved quantities associated

to the string. In the lightcone coordinates the law of energy-momentum conservation

∇aT
ab = 0 gives the two equations ∂−T++ = ∂+T−− = 0, each of these separately

implying the existence of an infinite set of conserved charges.

The constraint equations imply the vanishing of the Fourier components

Lm =
1

16πα′

∫ π

−π
dσ e−mσ

(

Ẋ +X ′
)2

=
1

2

∑

αm−n · αn . (2.21)

The constraint from the Hamiltonian is just the ‘zero mode’ of these (m = 0). In fact

the solution of the equation of motion (ie the classical dynamics of the Hamiltonian)

shows there are relations between the Poisson brackets of the αm

[αµm, α
ν
n]PB = im δm+n,0 η

µν , (2.22)

which lead to the Poisson brackets for the Lm as

[Lm, Ln]PB = i(m− n)Lm+n . (2.23)
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2.2 String theory

This is known as the Virasoro algebra. Note it has a representation in terms of the

simple operators Lm ≡ d
d(eimx)

which actually generate diffeomorphisms on a circle.

Closed string mode expansion

The general solution to the ‘X’ equation is a combination of left and right moving waves

XI = XI
L(σ+) +XI

R(σ−) . (2.24)

The expansions consistent with the periodicity of the closed string are

XI
L =

1

2
xI +

α′

2
pIσ+ + i

√

α′

2

∑

n 6=0

1

n
ᾱIne

−inσ+
(2.25)

XI
R =

1

2
xI +

α′

2
pIσ− + i

√

α′

2

∑

n 6=0

1

n
αIne

−inσ− . (2.26)

To ensure the reality of XI one requires αI−n =
(

αIn
)∗

and similarly for the barred

coefficients.

To see what the constraint equations look like here let us compute T++ = ∂+X
I
L∂+X

J
LηIJ

which is zero by the constraint equation. Noting that ∂+X
I
L =

√

α′

2

∑

n ᾱ
I
ne

−inσ+
one

computes

T++ =
α′

2

∑

m,n

ᾱInᾱm I e
−i(m+n)σ+

= 0 . (2.27)

One can set m+ n to any integer q obtaining the infinite set of conserved quantities

L̄q ≡
1

2

∑

n

ᾱInᾱq−n I = 0 . (2.28)
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There is another set for the unbarred right movers. Both sets obey the classical Virasoro

algebra.

Quantization

We now consider quantization of the degrees of freedom associated to the string. There

are only a handful of background spacetimes in which it is known how to quantize strings.

Again we stick to the simplest case which is flat D-dimensional Minkowski spacetime

with no background fields and the task is just to canonically quantize a set of free scalar

fields in 1+1 dimensions.

In order to quantize the theory canonically we replace the Poisson brackets by quantum

commutators

[ , ]PB → i

~
[ , ] . (2.29)

We replace real-valued functions on the classical phase space with operators acting on

a set of quantum states |ψ〉.

In order to quantize canonically the open string we would like to obtain [XI , πJ ] =

iηIJδ(σ−σ′). This can be successfully implemented by promoting the Fourier coefficients

in our mode expansions to operators satisfying

[αIm, α
J
n] = m δm+n η

IJ . (2.30)

By changing the normalization we can make these into a set of bosonic creation and

annihilation operators
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aIm =
1√
m
αIm (2.31)

(aIm)† =
1√
m
αI−m . (2.32)

For the closed string there are two commuting oscillator algebras, barred and unbarred.

Naively there is now a Fock space of states, the vacuum |0, pI〉 annihilated by the lowering

operators and some excited states such as αI−1|0, pJ 〉. There is a problem with states

associated to the ‘wrong sign’ kinetic term for the timelike world-sheet scalar X0 - there

are states of negative norm (ghosts), for example one can show the first excited state of

this scalar has a norm of opposite sign to the vacuum norm

〈0, pJ |(α0
−m)†α0

−m|0, pJ 〉 = −m〈0, pJ |0, pJ 〉 . (2.33)

This is the same problem that is fixed in the Gupta-Bleuler quantization of electrody-

namics. We will use the constraints in order to eliminate the unphysical states. The

classical constraints

Lm =
1

2

∞
∑

n=0

αInαI m−n = 0 (2.34)

can be unambiguously turned into operator equations for m 6= n since the quantum

algebra is of the form [αI−m, α
J
−n] ∼ ηIJδm+n. For the m = 0 charge we define the normal

ordered form to have the lowering operators on the right of the raising operators. The

conserved quantum charge is modified to

L0 =
1

2

∞
∑

n=0

: αI−nαI n : . (2.35)

In the quantum theory the Hamiltonian constraint that L0|ψ〉 = 0 is not a consis-

tent physical state condition since [L0, L0]|ψ〉 fails to vanish due to the presence of the
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anomaly and we must modify L0 = 0 to (L0 − a)|ψ〉 = 0 for a constant a. Evaluating

the commutator [Lm, Ln] using the quantum commutators in place of the classical Pois-

son brackets shows that the Virasoro algebra is no longer satisfied, rather one has in D

spacetime dimensions

[Lm, Ln] = i(m− n)Lm+n +
D

12
m(m2 − 1) δm,−n . (2.36)

The new term is known as the central charge of the algebra, which becomes the centrally-

extended Virasoro algebra. Taking the constant a = 0 would lead to the conclusion that

D = 0 which is clearly not right. In fact only setting a = 1 gives the correct number of

positive norm states and allows interactions.

All physical states are now required to satisfy all the constraints. One can show the

ghost states do not satisfy these and are thus removed from the physical spectrum.

With the quantum version of the Hamiltonian constraint the formula for the mass of a

state is modified to

M2 =
1

α′

(

∑

αn · αn − a
)

. (2.37)

In the quantum theory the sum over oscillators gives a number N = 0, 1, 2, ... and so

the quantum states are arranged into levels. The lowest level with N = 0 is clearly

tachyonic for a > 0. The next level is a state with a single Lorentz index and one finds

this state has negative norm unless a = 1. This is the only choice which gives a correct

number of degrees of freedon for this state to be a massless vector. With this choice of

a the ground state of the bosonic string theory is tachyonic when treated in flat vacuum

spacetime and so it does not seem a good candidate for a fundamental theory.

Strings in curved backgrounds
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In the case of a string embedded in a background spacetime with some nonzero curvature

one obtains an interacting two dimensional field theory on the worldsheet. This can again

be quantized and one could compute the beta function. Of course, there are still ghost

states and we need the Virasoro constraints in order to eliminate these. This means

that we require the Weyl symmetry to be preserved by the quantization, which in turn

implies we must have a two dimensional conformal field theory with vanishing beta

function. The beta function involves the worldsheet scalars and takes the form of an

infinite expansion in powers of α′. If the background contains a metric, a dilaton and

a Kalb-Ramond field strength H = dB, setting the one-loop beta function to zero gives

the conditions

Rab +
1

4
Hcd
a Hbcd − 2∇aΦ∇bΦ = 0 (2.38)

∇cH
c
ab − 2Hc

ab∇cΦ = 0 (2.39)

4∇cΦ∇cΦ − 4∇2Φ +R+
1

12
HcdeH

cde +
D − 26

3α′ = 0 . (2.40)

These consistency conditions are the Einstein, ‘Maxwell’ and Klein-Gordon equations

for the bulk fields, showing that low energy perturbative string theory recovers a General

Relativity - esque limit. The D − 26 term in the Klein-Gordon equation implies that

D = 26 for the bosonic string. If the two-dimensional beta function is calculated to

higher loop order one obtains something like (for vanishing dilaton and Kalb-Ramond

fields)

β ∼ Rab +
α′

2
RacdeR

cde
b + O(α′2) . (2.41)

Setting this to zero gives a higher-derivative theory of gravity, with the higher terms

interpreted as stringy corrections to General Relativity.
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2.2.3 Supersymmetric strings and supergravity

The bosonic string theory contains a tachyon state when expanded about a Minkowski

background. It is logical to seek a form of the theory which avoids this problem and one

thing which can be tried is to seek a supersymmetric string theory (as done in the 1980s’

‘First Superstring Revolution’). The Polyakov action can be made supersymmetric by

adding fermionic degrees of freedom living on the worldsheet

SP =
1

4πα′

∫

d2σ
√−γγab∂aXµ∂bXµ +

1

4π

∫

d2σ
√−γ ψ̄µΓa∇aψµ . (2.42)

There is of course the usual constraint that the two-dimensional stress tensor vanishes,

and in the supersymmetric case the two-dimensional supercurrent also must vanish.

The fermionic fields can obey one of two boundary conditions on the periodic worldsheet

of a closed string - they can be periodic (known as the Ramond, R, sector) or antiperiodic

(Neveu-Schwarz, NS, sector). The space of states consists of pairings of left and right

moving degrees of freedom giving the bosonic spacetime degrees of freedom in the NS-NS

and R-R sectors and spacetime fermions in the NS-R and R-NS sectors. The NS-NS

sector contains massless bosonic fields corresponding to the metric, a two-form and the

scalar dilaton. The R-R sector contains various form fields.

It is found that the Weyl anomaly is cancelled only if the theory lives in ten spacetime

dimensions. The tachyon is removed by the GSO projection ((10.6) of [8]) which also

imposes spacetime supersymmetry.

During the 1980’s several consistent supersymmetric string theories were found.

Type I - a theory of open and closed un-oriented superstrings with gauge group SO(32).

Type II - closed oriented theories. In IIA theory the right movers and left movers have

opposite chiralities whereas in IIB theory the chiralities are the same.

Heterotic - strings with different constraint algebras for the left and right moving sectors
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2.2 String theory

(possible because one can select different normal-ordering constants for the left and right

movers). Only one set of excitations is required to be supersymmetric and lives in ten

dimensions, the other living in 26. The gauge group is either SO(32) or E8 × E8.

During the 1990’s with the advent of D-brane physics some of these theories were shown

to be connected. Further, in 1995, Witten proposed (see for example [25]) that all the

consistent ten-dimensional string theories, as well as the eleven-dimensional supergravity,

are various limits of a single theory which is known as M-theory.

It is possible to truncate the string theory to a low energy limit by taking α′ → 0. One is

left with the massless states and the first ‘stringy’ correction has mass O
(

α′− 1
2

)

. If one

considers the closed oriented Type II theories, the low energy action is required to live in

ten dimensions and have the same amount of supersymmetry as the string theory, thus

N = 2 supersymmetry since there is one generator for the left moving modes and one

for the right movers. Depending on the relative chirality of the generators one has either

type IIA or type IIB theory. We focus on the IIB theory here. There is no covariant

action describing the self-dual five-form field strength so the field equations must be

supplemented by a constraint to impose the self-duality. With this in mind the action

can be taken to be

S =
1

4κ2

∫

d10x
√−ge−2Φ

(

2R + 8∇aΦ∇aΦ −H2
)

− 1

4κ2

∫

d10x
√−g

(

F 2
1 + F 2

3 +
1

2
F 2

5

)

(2.43)

where the latter term contains the various R-R fluxes (Fn) of the IIB theory.

There is also a Chern-Simons (topological) term and of course the fermions.
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2.3 D-branes

As mentioned the R-R sector of closed string theory contains various antisymmetric

tensor fields (the IIA theory contains forms Cp+1 with p even and the IIB theory p

odd). These were a puzzle since it was not clear what the sources of these fields were in

perturbative string theory where there are no suitable extended objects. It was argued

that the sources were the ‘black’ p-brane solutions of supergravity since a p-brane (an

object with a p + 1-dimensional worldvolume) would naturally couple to a p + 1-form

in a generally-covariant way. These solutions resemble higher dimensional black holes

coupled to the field strength Fp+2 from the form - the prototype is the four-dimensional

Reissner-Nordström (RN) black hole. Like the RN solution the black p-brane solutions

have an extremal limit where the charge saturates the BPS bound. The extremal cases

interpolate between flat spacetime (away from the brane) and an anti-de Sitter spacetime

(near the horizon).

This can be extended to the full string theory by identifying the extremal black p-branes

with the solitonic Dp-branes which were required in string theory [12]. These D-branes

are objects in string theory that allow open strings to exist within the closed string type

II theories - perturbatively they are hypersurfaces where string endpoints reside. In a

dimension orthogonal to the D-brane worldvolume, one can impose a Dirichlet boundary

condition (the ‘D’ is for Dirichlet) for a string worldsheet scalar, Xµ = constant, so the

endpoint really is stuck at the brane position. The D-branes can also act as a source of

closed strings which in the supergravity limit means they source all the massless fields

eg. the metric, dilaton and the appropriate R-R forms.

Strictly the low-energy supergravity limit of a string theory D-brane is the extremal

p-brane - the non-extremal case is not supersymmetric and might be expected to decay

via the emission of Hawking radiation. Also the supersymmetry is needed in order to

argue that the properties of the low-energy supergravity p-brane solution are valid as
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2.3 D-branes

the coupling is increased.

2.3.1 Toroidal compactification and T-duality

One can consider the effect of compactifying one dimension of a D + 1-dimensional

theory. As an example, consider a bosonic string in background with the X25 direction

compactified on a circle of radius R. A new feature is that the string may wind round

the compact dimension a number of times w.

The closed string mode expansion can be written

Xµ = xµ0 + x̄µ0 − i

√

α′

2
(αµ0 + ᾱµ0 )τ +

√

α′

2
(αµ0 − ᾱµ0 )σ + ... . (2.44)

The additional terms are oscillators which are automatically periodic when going round

the compactified dimension. Say the string has n units of momentum on the compactified

dimension. Then one clearly has

α25
0 + ᾱ25

0 =
2n

R

√

α′

2
(2.45)

α25
0 − ᾱ25

0 = wR

√

α

2
. (2.46)

Inserting these into the L0 and L̄0 constraints gives the mass and level matching formulae

M2 =
n2

R2
+
w2R2

α′2 +
2

α′
(

N + N̄ − 2
)

(2.47)

nw +N − N̄ = 0 . (2.48)

These equations are invariant under the exchange (n,w) and
(

R, α
′

R

)

. Exchanging the

momentum and winding number and changing the compactification radius R → α′

R
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is an invariance known as T-duality. The remarkable feature is that compactifying a

dimension on a very small radius does not make the degrees of freedom associated to it

go away (as they would in field theory since they would get an enormous Kaluza-Klein

mass). In the string case the momentum states get large masses but winding state masses

are correspondingly lowered. In fact all the properties of the world sheet quantum field

theory are invariant under T-duality (though the coupling has to be shifted g →
√
α′R
g )

so it is an exact symmetry of closed string perturbation theory.

One should also consider what happens in the open string case. These cannot wind

around the compact dimensions so there is no winding number. The states have some

associated momentum which becomes large and decouples states with momentum on the

compact dimension, so one is left with a D − 1 dimensional open string theory. In fact

the string can still oscillate in the compact dimension but the endpoints are restricted

to a D − 1 dimensional hyperplane.

With supersymmetry included, T-duality interchanges the two type II theories since it

reversed the relative chiralities of the left and right movers.

2.3.2 D-brane action

The dynamics of a single Dp-brane in a given background is given by the Dirac-Born-

Infeld (DBI) action

SDBI = −Tp
∫

dp+1ξ e−Φ
√

Det (P[gab +Bab] + 2πα′Fab) . (2.49)

With the metric only this is the action describing the embedding of a relativistic extended

object in a background spacetime developed by Dirac in 1962 as a model for a spatially-

extended electron [26]. The same action with nonzero Fab was proposed by Born and

Infeld in 1934 [27] as a non-linear extension of electromagnetism - in this case the action

would describe a brane filling all of Minkowski spacetime.
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The tension parameter is given by Tp = 1

(2π)pgsα
′
p+1
2

- it’s apparent that at weak string

coupling, D-brane states are heavy compared to f-strings. The 1
gs

dependence of the

tension is typical for a solitonic object.

In a background containing the correct R-R form there would also be a coupling term

Qp
∫

dp+1ξ Ap+1.

In the case of a multi-brane state with N branes the brane worldvolume degrees of free-

dom (coordinates, gauge field and superpartners) become N ×N Chan-Paton matrices

and the action involves a trace over these.

If the Yang-Mills field on the brane is small this can be expanded as

SDBI = −Tp
∫

dp+1ξ Tr
(

e−Φ
√

Det (P[gab +Bab])
)

(

1 +
1

4
(2πα′)2Tr

(

F 2
)

+ O(α′4)

)

.

(2.50)

In this limit there is clearly a Yang-Mills field on the brane worldvolume with a gauge

coupling given by g2
YM = (2π)p−2gsα

′ p−3
2 which is obviously dimensionless for a D3

brane.

There is a bound on how strong an electromagnetic field one can have on the brane before

it becomes unstable - indeed one of the ingredients of Born-Infeld theory was that there

should be a maximum value for electric fields so the self-energy of a point charge would

be finite. The ‘stringy’ interpretation of this is that the open string endpoints, which

are charged, repel each other more strongly than the string tension can counter.

D-branes are BPS states. A state in one of the Type II theories with a number of

(parallel) D-branes breaks half the supersymmetries of the string theory. This is because

the presence of the brane means that the open strings couple to the closed strings so

the separate supersymmetry of the left and right movers are no longer preserved. This

is also true of the supergravity vacua which are low-energy string theory states.
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D-brane technology can be used to compute the entropy of certain black holes giving

agreement with the results of Hawking and Bekenstein from the 1970s [30]. An explicit

computation of the entropy of an extremal black hole was presented for the first time in

1996 by Strominger and Vafa [28] and was subsequently extended to some non-extremal

cases [31]. The computation can only be performed for certain black holes in string

theory and is only really on a firm footing for the extremal (supersymmetric) cases

(nobody can perform the calculation for the four-dimensional Schwarzschild black hole,

for example). Also in the 1990s it was realized that the absorption cross section (‘grey

body factor’) of certain black branes could be successfully computed using the field

theory on the brane surface, giving a hint that this field theory had something to do

with the properties of gravity away from the brane. It was these considerations that led

to gauge-gravity duality.

2.4 AdS-CFT Correspondence / gauge-gravity duality

Gauge-gravity duality refers to a method for studying a large-N gauge theory using

supergravity. The basic idea is to take a vacuum of string (or M-) theory containing

some numberN of branes. The physics of these branes is then described by the dynamics

of open strings ending on the branes and the closed strings sourced by the branes. One

seeks a limit in which these two sectors are decoupled and then either description is

a complete description of the brane physics. Generically, the low-energy excitations of

the open strings for N branes create a field theory which for coincident branes is a

U(N) theory. The closed strings naturally have a low-energy description in terms of

supergravity in the bulk spacetime and the idea of gauge-gravity duality is to compute

using this gravity description and interpret the result in terms of the open-string field

theory.

The original gauge-gravity duality was proposed by Maldacena in 1997 and involved
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a superconformal field theory, hence the appellation Anti-de-Sitter / Conformal Field

Theory (AdS/CFT) Correspondence. Nowadays a wide range of field theory / gravity

duals (which are not all conformal) are known and hence ‘gauge-gravity duality’ is a

more appropriate handle.

At first it seemed that the details of a gauge-gravity dual were strongly dependent on

the microscopic theory from which it originated (string or M-theory). More recently

the idea has become accepted in its own right as an effective description of a quantum

field theory and is known as holography. The original ideas that a gauge theory might

be described by string theory were due to ’t Hooft [22], though his string theory was

thought to live in the same four dimensional spacetime as the field theory. Ideas that

a field theory system may be described by something higher dimensional were given by

Susskind [29], inspired by the Bekenstein-Hawking results which showed that the entropy

associated to a black hole is proportional to the horizon area only, not the volume.

2.4.1 The D3 brane construction

The original construction proposed by Maldacena is to start with type IIB string theory

in its critical dimension D = 10. One then considers adding a number N of parallel D3

branes into the ten-dimensional bulk. Because the world volume where the field theory

is going to live is four-dimensional and possesses Poincaré symmetry this is a natural

starting point for the dual description of a ‘realistic’ field theory (at least it exists in the

same dimensionality as real QCD!).

Open string description

Let us first consider the field theory associated to the lightest open string degrees of

freedom, which will live on the four-dimensional D3 world volume. If the D3s are taken

to be coincident these degrees of freedom are massless and constitute a Lorentz vector
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and six real scalars, plus their superpartners comprising four Weyl fermions, all in the

adjoint of the U(N). There is N = 4 supersymmetry which is descended from the ten-

dimensional supersymmetry of the string theory. The field theory is uniquely determined

by supersymmetry (of course it also comes from the α′ → 0 limit of the nonabelian DBI

action of the D3s) and is described by the Lagrangian

L = − 1

2g2
YM

Tr
(

FµνF
µν + 2∇µXi∇µXi − [Xi,Xj ]

2
)

− i

g2
YM

Tr
(

λ̄γµ∇µλ+ iλ̄γi[Xi, λ]
)

.

(2.51)

This is a remarkable field theory in that the classical conformal invariance is pre-

served at the quantum level, both order by order in perturbation theory and also non-

perturbatively.

The gauge coupling gYM is derived from the string coupling gs by g2
YM = 2πgs. For the

low-energy string description to be valid we need the strings to be weakly coupled. This

clearly means the gauge coupling is small also. However, we can consider the case where

N is a free parameter and in this case the appropriate coupling to use is the ’t Hooft

coupling λ ≡ g2
YMN mentioned in the previous section. In a perturbative description the

group theory factors at interaction vertices become larger for increased N and increase

the stringth of the coupling. Thus as we increase N we can keep the theory at strong ‘t

Hooft coupling even as gs → 0.

Closed string description

There exists a ten-dimensional supergravity vacuum corresponding to the spacetime

surrounding the N coincident D3 branes. It is constructed by considering the fields of

IIB supergravity that couple to a massive object carrying D3 brane charge. The D3

charge is related to the D3 tension by a supersymmetry preservation condition which

is equivalent to making the resulting solution extremal (it is a BPS state and preserves
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16 of the 32 supersymmetry charges of the IIB theory). In addition the self-duality

condition means that the total charge is quantized (by a Dirac quantization condition)

and so one can only have an integer number of branes.

It turns out the fields which take non-trivial values are the metric and the four-form, (the

two-form, dilaton and axion being zero). The vacuum solution is the extremal p-brane

solution of IIB supergravity which is explicitly

ds2 = f−
1
2 dx2

4 + f
1
2
(

dr2 + r2dΩ2
5

)

(2.52)

C(4) = f−1dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.53)

where

f = 1 +
R4

r4
. (2.54)

In the above, R4 ≡ 4πgsNα
′2. This parameter is not an arbitrary mass (as in the

Schwarzschild solution) but is fixed by the requirement of extremality.

Decoupling limit

As things stand one might worry about the gravity description being affected when we

excite some modes of the open string sector on the branes (the above solution assumes

the D3s are in the ground state). We can ask if there is a limit in which we do not

have to worry about this. Conceptually it may arise that the gravitational red shift

factor between the surface of the branes and the exterior spacetime is so large that

the excitations of the open strings are not a significant perturbation to the exterior

spacetime.

It is apparent that this can indeed be made the case by making R very large in relation
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to the ‘radius’ variable r. In this limit the supergravity metric becomes

ds2 =
r2

R2
dx2

4 +R2

(

dr2

r2
+ dΩ2

5

)

(2.55)

C(4) =
r2

R2
dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (2.56)

This corresponds to being trapped at small r
R , the ‘near-horizon’ limit of the D3 brane

solution. The metric is exactly the product of five-dimensional anti-de-Sitter spacetime

with a five-sphere. In this limit, 16 supersymmetries that were removed by the presence

of the D3 branes are actually recovered. On the supergravity side this corresponds to

the fact that the spacetime isometry group is actually the superconformal group rather

than the conformal group. It can be understood in terms of the string theory in that

the large redshift factor prevents closed strings in the bulk from coupling to the open

strings.

This region is a good description of the whole spacetime provided gsN can be considered

large. This is also the regime in which string theoretic corrections to the supergravity

description become small since the curvature of the above geometry is proportional to

1
R . Considering again the field theory, one recognizes that in the decoupling limit the ‘t

Hooft coupling is large and the field theory is strongly coupled.

Now the remarkable thing is that because we have decoupled the open and closed string

descriptions, we can pick either description and it must contain all information about

the physics of the D branes. This physics is seen to take the form of either a strongly-

coupled field theory or a weakly-coupled classical supergravity theory in the decoupling

limit. It is much easier to compute in the supergravity description so this immediately

becomes an immensely useful tool for studying the field theory at strong coupling.

It turns out that the D3 model has (super)conformal symmetry. This is again unlike

QCD where the gauge coupling is expected to become zero at very high energy (asymp-
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totic freedom). In all of the deformations of AdS-CFT, the UV limit always recovers the

conformal symmetry and supersymmetry.

The field theory can be thought of as residing on the boundary of AdS space. The

‘radius’ parameter can be thought of as representing the energy scale of the theory.

The N = 4 theory of the original theory is invariant under changes of scale and this

is reflected in the fact that the gravity dual is self-similar under translations in the r

direction.

It can be seen that the global symmetries of the two theories are the same. Both IIB

supergravity and the N = 4 theory have an SL(2,Z) symmetry group. Both have 32

supersymmetries. The SO(6) symmetry in the geometry is matched by the SO(6) ∼
SU(4) R-symmetry group of the field theory. The spacetime isometry group of AdS5,

SO(2, 4), is precisely the field theory conformal symmetry group.

The AdS-CFT Correspondence is yet to be proven mathematically, though work is cur-

rently being done with the aim of showing that N = 4 SYM is integrable (ie completely

solvable) [32].

2.4.2 Operator-field matching

Let us first consider a scalar field on an AdS5 ×S5 background. There is no coupling to

the four-form. The metric is

ds2 =
r2

R2
dx2

4 +R2

(

dr2

r2
+ dΩ2

5

)

. (2.57)

We are going to solve this by doing a harmonic decomposition on AdS5 to find the

effective mass on the S5 (so we’ll end up with a compactified theory with ∇2
(S5)Φ +

µ2R2Φ = 0). To this end let us solve the massive Klein-Gordon equation, ∇2Φ = m2R2Φ

on AdS5. This takes the form, for a function with only r-dependence

48



2.4 AdS-CFT Correspondence / gauge-gravity duality

1

r3
(

r5Φ′)′ = m2R2Φ = µ2R2Φ . (2.58)

The equation is solved by Φ ∝ rλ± where λ± =
−4±

√
16+4µ2

2 with both roots obeying

the quadratic λ (λ+ 4) = µ2.

The authors of [14, 15] proposed using the asymptotic behaviour of supergravity fields in

AdS to propose an explicit formula connecting the supergravity partition function and

observables in the dual field theory. Given a supergravity source φ0 at the boundary of

AdS and the corresponding operator O of the conformal field theory, one has

e−SSUGRA[φ0] = 〈e
R

d4x φ0O〉CFT . (2.59)

The great thing is that for each supergravity field on AdS5 × S5 there is an operator

with the correct superconformal algebra quantum numbers (mass dimension, Lorentz,

SU(4)R) in the set of chiral primary operators of the N = 4 field theory. This is how

one picks the correct operator O to put with a given SUGRA source φ0. This formula

is very remarkable in that one can extract n-point functions at strong coupling easily

simply by finding the appropriate Green’s function corresponding to a source in AdS.

It is clear that for a supergravity field scaling like ∼ rλ+ near the boundary of AdS,

Witten’s formula gives ∆ = λ+ + 4 as the operator dimension which therefore satisfies

∆ (∆ − 4) = µ2. Now one has

∆ =
4 +

√

16 + 4µ2

2
, (2.60)

and so for a relevant operator ∆ < 4 and one immediately sees this corresponds to a

tachyonic scalar in AdS5 (µ2 < 0). For a marginal operator one has ∆ = 4 corresponding

to a massless scalar and for an irrelevant operator ∆ > 4. Intuitively ∆ > 4 corresponds

to λ+ > 0 which implies this field diverges toward the boundary of AdS5 (r → ∞). This
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is in keeping with the picture that the AdS5 radius r represents the field theory energy

scale.

The most negative value of µ2 is in fact µ2 = −4. This is the most negative mass squared

which is stable. One can see how this might arise by considering the action for a massless

scalar in AdS5 (note actually the Klein-Gordon scalar does not have a tachyonic mode).

The action is

S =

∫

d5x
√−g

(

∇aφ∇aφ+m2φ2
)

. (2.61)

The solution is φ ∝ rλ where λ(λ+ 4) = m2. Plugging that in one has an action density

S ∼
∫

dr r3+λ
(

λ2 +m2
)

. (2.62)

The quantity λ2 +m2 equates to 8 + 2m2 −±4
√

4 +m2. It is easy to see that this is a

positive quantity provided m2 > −4 which is actually the correct bound for AdS5 (this is

known as the Breitenlohner-Freedman bound [33]. In short tachyons are allowed because

the vacuum configuration has some variation in the radial direction which prevents the

action from becoming a runaway negative.

The operator dimension also ought to tell you what representation of SO(6) or SU(4)

the SUGRA field needs to live in. For this one needs to understand spherical harmonics

on the S5. For simple fields the operator dimension ∆ is an integer (due to the super-

symmetry) from which it follows that µ2 is a positive or negative integer and we need

it to satisfy ∇2
(S5)Φ + µ2Φ = 0. In fact, for spherical harmonics on S5 one has always

∇2
(S5)Φ + l(l + 4)Φ = 0 for S5 spin l and so one deduces l = λ. Note this is only true

for operators described by the complex SUGRA scalar in the AdS5 dual, otherwise the

harmonics are clearly not scalar harmonics.

It turns out that the Kaluza-Klein harmonics of the IIB supergravity can be uniquely
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matched to the chiral primary operators of the N = 4 theory. These operators are in

small representations (short multiplets) of the supersymmetry algebra and so have their

operator dimensions protected by supersymmetry. The supergravity masses are also

protected by supersymmetry. Operators not in short multiplets are the duals of excited

‘string’ states in AdS5 ×S5 - their dimensions and supergravity masses become large at

large λ (∆ ∼ λ
1
4 ).

2.5 Non-zero temperature

The prescription for placing a gravitational dual at non zero temperature is to add a

black hole into the geometry. The thermodynamic properties of the black hole are then

associated to the thermodynamics of the degrees of freedom in the dual field theory.

The black horizon cuts off all energy scales below some scale in the radial holographic

direction, which is naturally associated to the Hawking temperature of the horizon.

The gravitational dual of the N = 4 theory is obtained by replacing the AdS5 with the

metric known as AdS-Schwarzschild

ds2 =
r2

R2

(

−fdt2 + dx2
3

)

+R2 dr
2

r2f
, (2.63)

where f = 1 − r4H
r4

giving a plane four dimensional black horizon at r = rH .

There is a Hawking temperature which is easily computed by going to the Euclidean

section and demanding the geometry be non-singular. Putting r = rH

(

1 + x2

R2

)

the line

element in the Euclidean time τ and radial direction plane is

ds2 =
4r2H
R4

dτ2 + dx2 . (2.64)

In order for there not to be a conical surfeit/deficit at x = 0, the periodicity of Euclidean
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2.5 Non-zero temperature

time needs to be πR2

rH
which is the reciprocal of the Hawking temperature. Thus TH =

rH
πR2 . Note in AdS, the larger the horizon radius the larger the temperature, which is

unlike the four-dimensional Schwarzschild solution (kBTH = ~c3

8πGM with all physical

constants explicit).

It is possible to imagine another way of putting the theory at a nonzero temperature and

that is to go to the Euclidean section and compactify the Euclidean time with a period

of β = 1
T . One would then consider comparing the free energy of this geometry to that of

the Euclidean black hole to find which ‘phase’ is favoured at a given temperature. This

is known as the Hawking-Page phase transition. For uncompactified spatial dimensions

one finds that for any T > 0 the black hole phase has the lower free energy and is the

thermodynamically-favoured phase. The free energy of the periodic AdS phase is of

order unity while that of the black hole phase scales as N2 - the interpretation is that

in the black hole phase the gauge degrees of freedom are deconfined as was argued by

Witten in [64].
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Chapter 3

Adding fundamental matter to

gauge-gravity duals

In this chapter we will review the construction of the gravity dual with fundamental

matter. This consists of the near-horizon D3 brane solution with added probe D7 branes.

We outline a procedure for computing the cloud of meson density surrounding a quark

in the N = 2 theory and also compute the meson-strahlung by an accelerated quark.

3.1 Fundamental flavoured matter from D-branes

In the AdS/CFT Correspondence described so far we have a gravitational dual of a field

theory in which all fields transform in the adjoint representation of the gauge group.

In order to better make contact with the gauge theories thought to describe nature, we

would like to be able to include fields transforming in the fundamental representation

of the gauge group. Almost all experimentally-known hadronic states contain valence

quarks and, in addition, at strong coupling, the effect of quark-antiquark loops on the

dynamics of the gauge field itself is expected to be strong in QCD (though not in a
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3.1 Fundamental flavoured matter from D-branes

large-N field theory).

The fields in the gravity dual to N = 4 SYM transform in the adjoint because there

are two string endpoints in contact with the D3-branes, each carrying a fundamental

index. In order to add fundamental matter, there needs to be one fundamental index

and hence only one string endpoint in contact with the D3s. This can be accomplished

by allowing a different type of D-brane to be present in the geometry as was done in

[16]. The IIB string theory contains Dp branes where p = 1, 3, 5, 7, 9. In order that

the field theory fundamental matter lives in four dimensions, the Minkowski directions

of the spacetime should be filled by the brane. A D3 brane away from the stack of N

coincident ones is known to describe a spontaneously broken SU(N) theory which is

just N = 4 SYM on its moduli space (although a probe D3 brane at infinite separation

behaves as effectively a quark of infinite mass and can be used to study the response of

the theory to an external source in the fundamental representation [34]). It is hard to

see how a D9 brane would describe any meaningful dynamics since it would fill the ten-

dimensional spacetime entirely. Thus if we wish to add four-dimensional fundamental

matter we are led to consider adding D5 or D7 branes. It turns out that the D7 is

easier to understand since the D3-D7 intersection preserves half of the supersymmetry

of N = 4 SYM whereas the D5 breaks all supersymmetry. In the supersymmetric case,

the anomalous dimension of operators describing the quark mass and condensate are

zero and thus in the ultraviolet of the theory have the same value as we expect for the

ultraviolet of QCD (also zero due to asymptotic freedom).

In order to add extra branes into the gravity dual, we need to find a solution to the IIB

supergravity equations consistent with the presence of D3 and D7 branes. The reaction

of the D7 brane to the geometry will tell about the effect of the gauge theory vacuum

on the fundamental matter and the backreaction effect of the D7 on the geometry will

tell how the gauge theory is affected by the presence of fundamental loops. It is actually

difficult to construct the full solution [37, 39] but progress can be made by neglecting
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3.1 Fundamental flavoured matter from D-branes

the backreaction effects (known as the quenched approximation). This can be justified

if the number of flavour branes we add is much smaller than the number of D3 branes,

that is Nf ≪ N . In this regime, the procedure is simply to extremize the D7 brane

action when embedded into the background.

Under this procedure a quark should be thought of as a fundamental string with one

end point on one of the D3’s and the other on a D7 brane. The mass of the quark is

given by the product of the string tension and the length of this stretched string.

Let us search for a regular probe D7 brane embedding in the AdS5 × S5 geometry. It is

convenient to take the D7 branes to wrap an S3 of the S5 (this is part of the statement

that some of the supersymmetry is preserved). We will look for a solution in which the

D7 fills the Minkowski directions, the radial direction down to some particular value,

and three out of the five angles on the S5. The set-up is as follows

0 1 2 3 4 5 6 7 8 9

D3 - - - - • • • • • •
D7 - - - - - - - - • •

and the geometry for AdS5 × S5 is then parametrized as in [40],

ds2 =
ρ2 + r2

R2
dx2

4 +
R2

ρ2 + r2
(

dρ2 + ρ2dΩ2
3 + dr2 + r2dϕ2

)

. (3.1)

The embedding can be set to constant ϕ and r = r(ρ). Note that this embedding

function encodes the source and vev of the bilinear quark condensate operator, via the

leading asymptotic terms near ρ→ ∞, r ∼ d+ c
ρ3

. These clearly have the correct radial

dependence to represent a dimension one and dimension three operator and in fact
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3.1 Fundamental flavoured matter from D-branes

d =
mq

2πα′ (3.2)

c =
〈ψ̄ψ〉

(2πα′)3
. (3.3)

The constant d is a current algebra quark mass and the constant c is a quark condensate.

The dynamics of the brane in the curved background are governed by the Dirac-Born-

Infeld (DBI) action (there is no coupling between the D7 and the self-dual five-form

field strength). For our D7 brane embedding the bosonic part takes the form (where the

tension is, in string theory constants, T7 = 1
(2π)7α′4gs

):

SD7 = −T7

∫

d8ζ

√

−Det
(

gMN
∂xM

∂ζa
∂xN

∂ζb

)

. (3.4)

This is

SD7 = −T7

∫

dρ ρ3
√

1 + r′2 . (3.5)

The equation of motion is

∂ρ

(

ρ3r′√
1 + r′2

)

= 0 . (3.6)

Clearly the quantity in the brackets is a constant (J) and so the equation is just r′ =

± J√
ρ6−J2

. Since we expect the D7 to occupy the range ρ ∈ [−∞,+∞] we must have

J = 0 for a regular embedding (else the gradient clearly blows up at a finite value of ρ).

This shows that all regular solutions have r′ = 0.

The regular solutions are therefore

r(ρ) = d . (3.7)
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3.2 Field theory of the D3/D7 intersection

This is just a trivial constant. These solutions preserve N = 2 supersymmetry. By the

above asymptotic, these solutions describe a quark mass mq and zero quark vev 〈ψ̄ψ〉.
The supersymmetry ensures that the quark mass does not run (so there is simply a

current algebra mass) and also means a non-zero bifundamental condensate is forbidden.

We have added in a scale d to the problem so for d 6= 0 there is no longer conformal

symmetry in the theory coupled to fundamental matter - we therefore anticipate the

presence of a discrete set of fluctuations of the D7 brane with a scale set by d. This is

indeed the case and the normalizable fluctuations have the interpretation as the mesons

of the theory (ψ̄ψ bound states) whose spectrum can be found analytically.

Note we have ignored back-reaction effects in the above, justified because at large ’t

Hooft coupling there are a large number of colours NC and we added only one flavour

brane. In fact one can consider adding Nf flavour branes and if Nf ∼ NC one would

have to allow for the effect of the D7 brane reaction on the background. Since the

D3-D7 intersection is still N = 2 supersymmetric we expect the embedding solutions

we have found will survive even if back-reaction is fully allowed for. An example of a

simple method for including back-reaction in a simple physical system can be found in

Appendix B.

3.2 Field theory of the D3/D7 intersection

By adding a number Nf D7 branes we have added additional field content to the dual

field theory. This takes the form of Nf N = 2 hypermultiplets transforming in the

fundamental representation of the gauge group. These modes come from the lightest

modes of the 3-7 strings. One finds that the 7-7 string modes (describing mesons) are

decoupled from the string sectors (3-3, 3-7, 7-3) because the eight-dimensional ’t Hooft

coupling for the D7 branes is given by λ′ = λ(2πls)
2Nf

N which vanishes in the supergravity

α′ → 0 limit. This makes the U(Nf ) group a global flavour symmetry group in the gauge
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3.3 Meson spectra from the D7 brane

theory.

The actual degrees of freedom associated to the 3-7 strings are in the fundamental repre-

sentation of SU(N) and comprise scalars and spin-1
2 superpartners. One notable result

is that the one-loop beta function is β ∝ λ
Nf

N which is positive. This is actually the exact

all-order pertubative beta function - it is possible that it is modified by nonperturbative

effects.

3.3 Meson spectra from the D7 brane

We will assay a fluctuation which is a plane wave on the Lorentz-symmetric ‘Minkowski’

part of the geometry and which is a harmonic function on the S3 with quantum number

l (this gives the R-charge of the state). The equation of motion from linearizing the DBI

action is

1

ρ3

(

ρ3Φ′)′ +
R4

(ρ2 + d2)2
M2Φ − l(l + 2)

ρ2
Φ = 0 . (3.8)

Making the rescalings x ≡ ρ
d and µ2 ≡ M2R4

d2
one obtains the equation

Φ′′ +
3

x
Φ′ +

(

µ2

(1 + x2)2
− l(l + 2)

x2

)

Φ = 0 . (3.9)

Taking the equation for the spin-zero mode (l = 0) one can define z = 1+r2 to transform

to

(z − 1)Φ′′ + 2Φ′ +
µ2

4z2
Φ = 0 . (3.10)

Defining Φ ≡ zpu with p(p− 1) = µ2

4 one has

z(1 − z)u′′ + (2p− 2(p + 1)z) u′ − p(p+ 1)u = 0 . (3.11)
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3.3 Meson spectra from the D7 brane

This is the hypergeometric equation with a = p, b = p+ 1, c = 2p. There is a globally-

regular, polynomial solution if either a or b is zero or a negative integer and c is not a

negative integer. Thus we will set b = 0,−1,−2, .... This clearly implies 4(n+1)(n+2) =

λ for n = 0, 1, 2, ... which is the result from [40]. Note our solution looks slightly different

to theirs but this is simply the fact that the singularities at 0 and 1 can be swapped

without changing the hypergeometric function. So we’ve found that the regular solutions

are

Φ = (1 + r2)p 2F1

(

p, p+ 1, 2p; 1 + r2
)

. (3.12)

Thus we have found the discrete meson mass spectrum for scalar mesons

M =
2d

R2

√

(n+ l + 1)(n + l + 2) . (3.13)

Since the current algebra quark mass is given by mq = d
2πα′ this can be expressed as

M =
2
√
πmq√
gsN

√

(n+ l + 1)(n + l + 2) . (3.14)

It is worth noting that this supersymmetric field theory is quite unlike QCD. The meson

masses are suppressed relative to the quark mass by a factor of ∼ 1√
λ

so at strong

coupling they are extremely light compared to the hard quark masses. In QCD the scale

of light meson masses is typically of order ΛQCD (much greater than the hard quark

masses!) and the majority of the meson mass comes from chromodynamic energy. We

will see in later work that certain deformations of AdS-CFT allow us to approach QCD-

like meson physics much more closely. Another problem to note is that states of non-zero

R-charge have masses of the same order as R singlet - so this model is unlike realistic

models of supersymmetric QCD which need to have R-charged states more massive by

order of the SUSY breaking scale.
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3.3 Meson spectra from the D7 brane

Of course there are also vector mesons coming from the Maxwell field associated to

the D7 brane DBI action, and fermionic ‘mesino’ states which are superpartners to the

integer-spin degrees of freedom [59]. The pattern of all of these masses is essentially the

same as we have shown for the scalar case. Naturally, a one-to-one matching can be

done for bosonic and fermionic degrees of freedom since the theory is supersymmetric.

Here AdS/CFT has given the full solution to bound states in a field theory which is

strongly coupled - a remarkable achievement since the result is non-perturbative in the

field theory. There have been many extensions to the method described above and a

review of meson physics in gauge-gravity duals can be found in [35].

The solutions are basically of the ‘particle in a box’ type (m2 ∝ n2) - this could have

been anticipated from plotting the effective Schrödinger potential corresponding to the

eigenvalue equation. Transforming eq.(3.8) into a Schrödinger equation by changing

variable to d tan dy = ρ where the new variable y is defined on [0, π2d ] one sees the

potential is

VS(y) = d2

(

5 + 8l(l + 2) + cos 4dy

2 sin2 2dy

)

. (3.15)

These potentials look very much like a ‘box’. One sees that the quark mass parameter

d sets the depth of the ‘box’ and the inverse width.

Note that if we take the limit d→ 0 one obtains Vs =
3
4
+l(l+2)

y2 with y ≥ 0 this is clearly

a semi-infinite box which does not support standing waves - what has happened is that

in this limit the theory is conformal and there are no discrete states.

In the massless case it is easy to treat the spinor excitation which is a superpartner to the

scalar fluctuation (because the D7-brane world volume has a simple product structure

4 × 4 gamma matrices can be used). The massive Dirac equation on AdS5 takes the

form
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3.3 Meson spectra from the D7 brane

(iΓa∂a − 2iγ4 +m)ψ = 0 . (3.16)

The mass comes from the spin on the sphere but shifted down one unit by coupling to

the five-form field strength.

Using the gamma matrices

γ0 =





· I

I ·



 γ4 =





−iI ·
· iI



 ,

and assuming a Lorentz-invariant state in which u1 and u2 multiply constant two-spinors

one has





−x∂x − 2 +m ω
x

ω
x x∂x + 2 +m









u1

u2



 = 0 .

One can eliminate one of the functions to obtain, for example,

u′′1 +
6

x
u′1 −

(m− 2)(m+ 3)

x2
u1 +

ω2

x4
u1 = 0 . (3.17)

Transforming to a Schrödinger problem and inserting the mass m = 1
2 + l for l = 0, 1, 2, ..

from the spin one finds a potential

VS(y) =
(1
2 + l)(3

2 + l)

y2
. (3.18)

This is clearly the same potential as for the scalar (obvious since the setup is supersym-

metric).
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3.4 Green’s functions on the brane: dressed quarks and radiation

3.4 Green’s functions on the brane: dressed quarks and

radiation

The prototype ‘quark’ can be visualized as a string of minimum length stretching be-

tween the D7 brane and the D3 brane. Since the string endpoint carries U(1) charge

with respect to the D7 brane worldvolume gauge field (which describes baryon number

chemical potential) one expects the quark to act as a source of baryon number density.

This ‘back reaction’ effect can be computed by evaluating to electric potential sourced

by a point electric charge on the D7 worldvolume ie. by computing the holographic

Green’s function. We can think of the holographic Green’s functions as encoding infor-

mation about the way a probe quark will ‘dress’ itself in a cloud of meson density. We

will find that, for a non-accelerating quark, there is a Yukawa potential for each meson

mode, with the weighting for each mode given by the amplitude of the partial wave at

the position of the string endpoint, ρ = 0. One can also calculate the radiation into rho

mesons by an accelerated string endpoint (one imagines the endpoint is moved by the

string pulling on it as the quark is accelerated by the gauge field dynamics). This work

forms part of [18].

Rho meson production

To understand how the string solutions above radiate energy into hadronic modes, one

must study the electromagnetic theory on the surface of the D7 brane. We take a D7

embedding r = d with induced metric

P [G] ≡ g =
ρ2 + d2

R2
dx2

4 +
R2

ρ2 + d2
(dρ2 + ρ2dΩ2

3) . (3.19)

Here, ρ is the radial direction on the world volume of the D7 so that ρ2 = r21+r22+r23+r24.

Although the analysis will be done for this simple setup we will see that the ρ dependence

of the problem enters essentially just through the mass of the mesonic states which can

therefore be easily altered to any more complicated set up (for example the QCD-like
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3.4 Green’s functions on the brane: dressed quarks and radiation

deformed geometries studied in Chapter 5).

The end points of the string act as electrically charged sources for the gauge field that

lives on the world volume of the D7 brane. The equation of motion for that gauge field

follows from the variation of the electromagnetic action on the brane,

SEM = −1

4

∫

d8x
√−gFabF ab +

∫

d8x
√−gjaAa . (3.20)

The variation of the gauge field gives both the equation of motion and the boundary

action,

δSEM =

∫

d8x
√−gδAb

[

1√−g∂a(
√−gF ab) + jb

]

+ δSbdy , (3.21)

so that the equations of motion are just Maxwell’s equations,

1√−g∂a(
√−gF ba) = jb , (3.22)

and there is a boundary action (at ρ = 1/ǫ→ ∞)

δSbdy = −
∫

ρ= 1
ǫ

d4xdΩ3
√−gδAaF ρa . (3.23)

Let us first understand the solutions in the absence of a source.

Rho mesons

The propagating modes of the gauge field arrange themselves into multiplets of the

SO(4) isometry group of the S3. The resulting Kaluza-Klein fields each map to different

operators of the gauge theory; in particular, the singlet on the S3 maps to a conserved

baryon current [40]. To study this current, we therefore give the solutions of Eq. (3.22)

without sources for the modes that only have non-zero Aµ and are singlets on the S3. We
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3.4 Green’s functions on the brane: dressed quarks and radiation

impose the gauge choice ∇µA
µ = 0. The equation of motion in the absence of sources

is then [40]

DAµ = − 1

ρ3
∂ρ(ρ

3∂ρAµ) −
R4

(ρ2 + d2)2
∇2

(4)Aµ = 0 , (3.24)

where ∇2
(4) = ηµν∂µ∂ν is the scalar Laplacian in Minkowski space and D is a second-order

differential operator. Fourier transforming in the Minkowski directions, we can write the

equation above as an eigenvalue equation in the radial coordinate with eigenfunctions

fn(ρ) given by

fn(ρ) = In
2F1(−n ,−n+ 1, 2;−ρ2/r20)

(ρ2 + d2)n+1
, (3.25)

where the In are normalization constants, n = 0, 1, 2..., and eigenvalues

M2
n = 4(n + 1)(n + 2)

d2

R4
. (3.26)

The solutions to Eq. (3.24) are therefore given by the modes Aµ,n = ǫµfn(ρ)e
ikn·x with

k2
n = −M2

n.

These states have a discrete mass spectrum and are identified with the rho mesons of

the dual gauge theory. The factor of d2/R4 ∼ m2
q/λ indicates that the meson masses are

much smaller than the quark mass at large ’t Hooft coupling. Moreover, the fn (with

appropriate choices of the In normalizations) are orthonormal functions (subject to the

weight factor w)
∫

dρ w fnfm = δmn , w =
ρ3R4

(ρ3 + d2)2
. (3.27)

We are using the solutions appropriate for the N = 2 D3-D7 configuration. However, as

we will see, the holographic directions only enter into our final radiation computation

through the masses they endow the four dimensional rho mesons and the value of In,

64



3.4 Green’s functions on the brane: dressed quarks and radiation

the normalization of the wave functions. In the more complicated case, one could simply

switch the spectrum and normalizations as appropriate.

Green’s functions

To observe the emission of rho mesons by the string end points we will solve (3.22)

by means of a Green’s function for the field Aµ. For the minimum-energy configuration

quark (a string connecting the D3 and D7 at their point of closest approach) the endpoint

lies at ρ = 0 where the volume of the three-sphere is zero and hence the Green’s function

is a constant on the three-sphere (the equivalent of the fn functions for R-charged states

fall to zero at ρ = 0). This implies that there is no production of R-charged rho mesons

associated with non-trivial spherical harmonics on the S3 (this is quite interesting given

that it is a generic problem with gravitational duals that R-charged meson states tend to

have masses comparable to the R-singlets). For a more generic string motion such states

would be produced. Moreover, since the sources do not move in the r1−4 four-plane,

both the radial and angular components of the source current ja vanish and thus Aρ

and Ai (the components of the gauge field along the S3) also vanish in this gauge. We

can therefore consider only the Minkowski components of the Green’s function.

Having chosen the Lorenz gauge, that Green’s function satisfies

DGµ′µ =
1

ρ3
δµ

′

µ δ(ρ − ρ′)δ(xν − xν
′

) , (3.28)

where D is the differential operator defined in Eq. (3.24). Since the equation of motion

for the gauge field in the presence of our source is given by

DAµ = ηµνj
ν , (3.29)

the full solution for an arbitrary current distribution jµ follows from the convolution

integral

Aµ(x) =

∫

d8x′
√−g Gµ′µ(x, x′)ηµ′ν′j

ν′(x′) . (3.30)
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3.4 Green’s functions on the brane: dressed quarks and radiation

The actual current distribution will be localized on the worldline of the string endpoint

and will take the form jµ = q
∫

dτẋµδ8(x) where the dot represents differentiation with

respect to proper time.

In order to obtain the Green’s function, let us expand in the basis of eigenfunctions

describing the rho mesons used in Eq.(3.25) so that Gµ
′

µ(ρ, xν ; ρ′, x′ν) =
∑

n fn(ρ)fn(ρ
′)Ḡµ

′

n,µ(xν , x′ν). Inserting this form into Eq.(3.28), multiplying by ρ3fm and

integrating over all space we find that the four-dimensional functions Ḡn are just the

Green’s functions for massive vectors in Minkowski spacetime with masses corresponding

to the rho meson masses.

Boundary data

The near-boundary behaviour of the gauge field is related to the one-point function

of the dual conserved baryon current in the field theory. In particular, that one-point

function is given as

〈Jµ(xν)〉 = lim
ǫ→0

δSSUGRA

δAµ(xν , 1/ǫ)
, (3.31)

where SSUGRA is the on-shell bulk gravity action and the bulk gauge field Aµ is the

singlet mode on the S3. Using the variation of the bulk action in Eq. (3.21), the

boundary current is simply

〈Jµ(xν)〉 = − lim
ǫ→0

ρ3ηµν∂ρAν(x
ν , ρ)|ρ=1/ǫ . (3.32)

We can therefore write a bulk-to-boundary Green’s function that relates the bulk source

to the boundary current. In particular, we write

〈Jµ(xν)〉 =

∫

d8x′
√−gGµµ′(xν ;x′)jµ

′

(x′) , (3.33)

where we define the bulk-to-boundary Green’s function G as

Gµµ′(xν ;x′ν , ρ′) ≡
∑

n

2(−1)nInfn(ρ
′)Ḡµn,µ′(x

ν , x′ν) , (3.34)
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where the fn are the eigenfunctions in Eq. (3.25) and Ḡn is the 4d Green’s function

for a massive vector as before. The factor of 2(−1)nIn comes from the insertion of the

near-boundary expansion of the fn’s,

fn(ρ) = (−1)(n+1)In
1

ρ2
+O(ρ)−3 , (3.35)

into the form of the boundary current in Eq. (3.32).

Retarded potential

We have now reduced the problem to solving for each mode Gn the retarded potential

for a massive field in flat space. The retarded potential takes the form [36]

Ḡµµ′ =
1

4π
θ(t− t′) (δ(σ) + V (σ)θ(−σ)) δµµ′ . (3.36)

Here we use the Synge world-function σ = 1
2ηµν(x−x′)µ(x−x′)ν . The non-singular part

of the solution is given by V (σ) = − Mn√
−2σ

J1(Mn

√
−2σ) where J1 is the Bessel function

of order 1.

Static string endpoint: a dressed quark

As a first example of using this formalism we will compute the baryon density around

a static quark. Consider such a charge at x = 0 and at ρ = 0 (r = r0), the point of

closest approach on the D7 brane. We will concentrate on the temporal component of

the gauge field A0 which is dual to the operator ψ̄γ0ψ, the quark density.

One seeks to evaluate the integral over the past trajectory of a point source moving with

a constant speed in a ‘static gauge’ given by x′ = βt′. Doing the spatial integral using

the fact that the source is located at a point in the space-like dimensions leaves one with

the integral
〈

J0(xν)
〉

n
= 2(−1)nI2nq

4π ×

∫

dt′ θ(t− t′) (δ(σ) + V (σ)θ(−σ)) dτ
dt′ · dt

′

dτ

(3.37)
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3.4 Green’s functions on the brane: dressed quarks and radiation

where we have used the fact that fn(ρ = 0) = In.

The time component of the four-velocity is actually cancelled by a Lorentz factor coming

from the splitting of Minkowski spacetime into space-like sections when integrating along

the particle worldline. The two contributions to the integral are easily computed (for the

non-singular piece due to the massive field using the integration variable u ≡Mn

√
−2σ))

giving the correctly Lorentz-covariant expression (γ is the usual boost factor)

〈

J0(xν)
〉

n
=

2(−1)nI2
nq

4π

γ e
−Mn

“√
γ2(x−βt)2+y2+z2

”

√

γ2(x− βt)2 + y2 + z2
. (3.38)

In the rest frame of the point source this reduces to the usual Yukawa form. The full

solution is a sum over modes weighted by the fn normalizations I2
n - these factors are

plotted in Figure 8. There is a rapid rise in these normalizing factors with n which

is due to the end point of the string being a delta function (in fact the formula I2
n =

2(n + 1)(n + 2)(3 + 2n) was found by one of my co-authors of [18](KJ)). Away from

N → ∞ one would expect the string to have some width and the expansion to truncate

at some intermediate n. In any case this rise is not faster than the exponential fall off

of the solutions so the physics away from the source is still dominated by the lightest

modes. The Green’s function converges for all |x| > 0 due to the exponential factor in

the Yukawa potential of each partial wave. The behaviour is dominated by the lighter

modes at distances comparable to the Compton wavelength of the lightest mode. We

interpret this Green’s function as the ‘dressing’ of an isolated quark by a cloud of mesons.

Holography gives the relative amounts of each of the excited states in the cloud.

Radiation from accelerated string endpoints

We now have a framework in which the emission of mesons can be modelled using the

techniques of classical relativistic wave equations. The retarded Green’s function is

straightforwardly integrated over the past worldline of an accelerating endpoint, giving,

for a particle moving in the x-direction (the u variable is as defined in the preceding
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Figure 3.1: Plots of the function x′(t′) in (3.41) used to describe the motion of an

accelerating point source. The parameter a controls the final speed and is set to a = 0.2

here. b controls the time scale of the acceleration and the plots show b = 0.8 (top),

b = 0.3 (middle) and b = 0.05 (bottom).

section)
〈

J0(xµ)
〉

n
= 2(−1)nI2nq

4π

[

1

t−t′(σ=0)− dx′

dt′
(x−x′(σ=0))

+

∫∞
0 du J1(u)

t−t′− dx′

dt′
(x−x′)

]

.

(3.39)

We will again plot the baryon number density which is holographically encoded by the

sum over the J0
n. It may be noted that the plots we obtain give the superposition of

radiated baryon density and the static baryon density associated with the probe quark.

An elementary prescription is available for computing the reaction force on the probe

quark due to the radiation (by differencing the advanced and retarded potentials) but

this is not what we are interested in here (it involves a negative counting of the non-

causal advanced potential and so would not produce a plot resembling meson emission).

In holographic scenarios (large N) the force exerted on the quark by the dynamics of

the colour flux tube far exceeds the reaction force from meson emission anyway. In the

case of an instantaneous acceleration it is possible to subtract the appropriate static and
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3.4 Green’s functions on the brane: dressed quarks and radiation

boosted solutions inside and outside of the particle’s light cone but we do not apply this

here.

Figure 3.2: The radiation of light mesons by a quark given an impulse in the positive x-

direction, shown in the z = 0 plane. The plot shows the density of the emitted (radiative

part of field) and bound (boosted static part) mesons. The top plot is for a terminal

velocity of 0.2c and below is 0.6c (in both plots the parameter b = 0.2).

Massless meson limit

In the strict λ → ∞ limit the meson masses are very small relative to the string mass

(see (3.26)). At least for the lightest members of the tower, it is therefore interesting
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3.4 Green’s functions on the brane: dressed quarks and radiation

to compute the radiation into a massless gauge field on the D7. For this case σ =

1
2

(

−(t− t′)2 + (x− x′(t′))2
)

. The first term in (3.39) then gives

〈

J0(xν)
〉

n
= 2(−1)nI2nq

4π

∫ t
−∞ dt′δ(σ)

= 2(−1)nI2nq
4π

∫ dσδ(σ)
“

(t′−t)+(x′−x)dx′

dt′

”

= 2(−1)nI2n
4π

1
t−t′(σ=0)−ẋ0(x−x′(σ=0)) .

(3.40)

This is straightforward to evaluate for accelerations of the string endpoint. For example,

the static end point is accelerated quickly to a constant speed. As an example form for

the function x′(t′) that describes a stationary particle accelerating to a final speed a we

take

x′(t′) =
ab

π
+ at′

(

1

2
+

1

π
tan−1

(

t′

b

))

, (3.41)

where the b controls the time interval over which the acceleration occurs - we plot some

sample trajectories in Fig.(3.1).

It is a simple matter to plot the resulting wave induced. Emission is typically a spherical

shell radiating from the point of acceleration - there is an SO(2) symmetry in the y, z

coordinates so we shall plot the intensity of the wave in the x, y plane at z = 0. Examples

of the gauge field produced are shown in Fig.(3.2). The radiative piece is visible along

with the ‘hill’ of the boosted static potential. A clear, narrow emission wave is observable.

For larger values of the final speed a the forward emission is typically enhanced relative

to the backwards emission, and the overall emission is greater. For smaller acceleration

times (smaller b) the wave front simply becomes narrower. For the accelerations of the

string end points in given by the trajectories of (3.41) we expect precisely such emission

of the lower mass members of the mesonic tower.

Massive meson limit
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Figure 3.3: The radiation of massive mesons by a quark given an impulse in the positive

x-direction, plotted along the x-axis. The plot shows the density of the emitted mesons.

The meson masses increase through the plots as 0,10−2, 10−1, 1
3 , 1. Note the background

static field peak becomes narrower as the mass is increased.

For members of the meson tower with masses close to the quark mass (very high n at

large ’tHooft coupling) we must compute the non-singular term in (3.39) which involves

numerical integration of the Bessel function. In Figs.(3.3) and (3.4) we show the effect

of increased meson mass on the radiated mesons (the meson mass should be compared

to the inverse time over which the string end point is accelerated). As the meson mass

is increased we find emission of the more massive states are suppressed.

In the massive case the waves are dispersive and produce an interesting pattern which

is not just a wave localized on the light-front. The ‘wavy’ emission of meson density can
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3.4 Green’s functions on the brane: dressed quarks and radiation

be considered to be arising from quantum-mechanical interference effects.

In principle we could sum over the emission of all of the meson states. At large ’tHooft

coupling though there are many states lighter than the quark mass so the result would

be unilluminating. The precise form of the meson masses and the coefficients I2
n are

also model dependent. However, we believe that the computations we have made show

how in principle the radiation could be computed and give a good understanding of the

generic features of that meson radiation.

Figure 3.4: Emission of massive vector mesons (m = 1
2). The parameters a = b = 0.2.
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3.5 The meson spectrum with D7 brane backreaction

3.5 The meson spectrum with D7 brane backreaction

We note that including the D7 brane in the probe limit allowed us to study the behaviour

of quarks coupled to the N = 4 theory. What this limit does not capture is the effect

of fundamental matter loops in intermediate states. For example, the fundamental

matter would be expected to give the gauge theory a running coupling by contributing

to the beta function (as discussed in section ). To include such effects, the gravity dual

prescription is to allow for the back reaction of the D7 branes on the D3 geometry.

This is called the D3-D7 brane intersection geometry. It still preserves the N = 2

supersymmetry (at zero temperature). Of course, in the large-N limit one expects the

D3 geometry to be little affected by the presence of a small number of flavours (Nf ≪ N).

However in QCD the number of colours and the number of flavours are comparable and

we would like to study the effects of virtual quark loops on the gauge dynamics.

In the literature an approximate solution for the D3-D7 intersection geometry is avail-

able (under the assumption of a logarithmic dilaton profile). The result is an N = 2

supersymmetric theory with a running coupling (obviously there is going to be a positive

beta function once we include the effect of virtual quark loops) and a non-trivial theta

angle.

One can attempt to add a probe D7 into this system and compute the meson spectrum,

which would allow for the presence of say Nf flavours of sea quark. It is most convenient

to take the sea quarks to be massless.

The back-reacted D3-D7 supergravity solution is given by

ds2 = h−
1
2 dx2

4 + h
1
2

(

dρ2 + ρ2dΩ2
3 + e−φ(dw2 + w2dθ2)

)

. (3.42)

Here h = 1 + R4

(ρ2+e−φw2)2
, where R is the usual R4 = 4πgsNα

′2 and e−φ =
Nf

4π ln
(

w2
Λ
w2

)

which also specifies the nontrivial dilaton in the backreacted geometry. Note this solution
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3.5 The meson spectrum with D7 brane backreaction

is the ‘near core’ (small w limit) of the actual solution which is given in terms of a series

expansion in [39].

One can add a single quenched flavour into this background. The action is

S ∼
∫

dρ eφ
(

√

1 + e−φ(∂ρw)2 − 1

)

. (3.43)

The latter term comes from the coupling of the D7 to the C8 field which is the Hodge

dual of the dilaton. This action is clearly extremized for w a constant, just like in the

unquenched background. The fact that the probe D7 still lies flat is because there is

still N = 2 supersymmetry.

We choose to add the probe brane at w = d. Then the Lagrangian for a small fluctuation

ϕ (ie leading order) of the brane in the geometry is

L =
1

2
ρ3eφ(w=d)

(

R4

(ρ2 + e−φ(w=d)d2)2
(∂xϕ)2 + (∂ρϕ)2

)

. (3.44)

This is the same as for the calculation in the unquenched background except for the

replacement d→ d
(

Nf

4π ln
(

w2
Λ
d2

))

. Thus the meson spectrum is given by

M2 =
8π

gsN

(

Nf

4π
ln

(

Λ2

m2
q

))

m2
q(n + 1)(n+ 2) , (3.45)

for n = 0, 1, 2, ....

The effect of unquenching the sea quarks is just to replace the gauge coupling with the

appropriate renormalized value at the scale of the probe quark mass.
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Chapter 4

Quasinormal modes of

gauge-gravity duals

Generically, the eigenfrequencies of classical wave equations on manifolds containing

horizons (ie black hole spacetimes) admit spectra of complex eigenvalues ω which are

interpreted as field states with mass Re(ω) and decay width Im(ω) as the field is ab-

sorbed by the horizon. In this chapter we will examine some applications of this physics

to strongly-coupled gauge theory at finite temperature where the gravity dual contains

a black hole. In this chapter we examine the mesonic thermal spectrum of the Sakai-

Sugimoto model of holographic QCD by finding the quasinormal frequencies of the su-

pergravity dual. If flavour is added using D8-D̄8 branes there exist embeddings where the

D-brane worldvolume contains a black hole. For these embeddings (the high-temperature

phase of the Sakai-Sugimoto model) we determine the quasinormal spectra of scalar and

vector mesons arising from the worldvolume DBI action of the D-brane. We stress the

importance of a coordinate change that makes the in-falling quasinormal modes regu-

lar at the horizon allowing a simple numerical shooting technique. Finally we examine

the effect of finite spatial momentum on quasinormal spectra. We also briefly examine
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the quasinormal modes associated to a spin-1
2 field in the AdS-Schwarzschild background

which is the dual of nonzero temperature N = 4 super-Yang-Mills theory.

4.1 Introduction

Gravity dual descriptions [13, 14, 15] of strongly coupled gauge theories with quarks

have recently shed light on the physics of mesons and chiral symmetry breaking [35].

There has also been considerable interest in studying the finite temperature behaviour

of these systems.

The simplest such dual is the near horizon geometry of a D3-D7 brane system which

describes an N = 2 gauge theory. The D7 branes can be treated as probes [16] in the

limit where the number of flavours is much less than the number of colours, Nf ≪ Nc,

or the full back reacted geometry can be found [37, 38, 39]. The meson spectrum in

the probe limit has been computed in [40]. Finite temperature manifests itself as the

presence of a black hole in the dual space-time [14]. In the infinite volume limit the

black hole geometry is energetically preferred for any temperature greater than zero.

The transition from an AdS space corresponds to the analogue of the deconfinement

transition in the pure glue gauge theory (which in a conformal theory occurs as soon

as the dimensionful parameter, T , is introduced). A further first order phase transition

has also been found in this system [41, 42, 43, 44, 93] when the temperature passes

through the scale of the mass of the mesonic bound states - this corresponds to when

the horizon of the black hole grows to swallow the D7 probe in the interior of the space.

This transition has an associated small jump in the chiral condensate’s value but the

main physics of the transition appears to be the meson fields melting into the thermal

background. Once the D7 brane enters the horizon there are no longer normalizable

fuctuations of the D7 brane that generate a discrete set of meson bound states. Instead

there are quasi-normal modes of the black hole corresponding to fluctuations of the
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D7 brane that are pure in-falling at the horizon. These fluctuations correspond in the

dual gauge theory to excitations of the plasma with a complex mass parameter - the

excitations have both a mass and a decay time. The spectrum of these quasi-normal

modes has been explicitly computed in [51].

Another interesting model is the Sakai-Sugimoto model [46, 47] which is based on a

(wrapped) D4 D8 D̄8 system. It is a gravity dual of a non-supersymmetric gauge theory

(which is four dimensional in the IR but five dimensional in the UV) that dynamically

breaks a non-abelian chiral symmetry of its quark fields. The high temperature phase

again corresponds to a transition to a black hole geometry. The transition occurs when

the black hole’s radius becomes of order the wrapped circumference of the D4 brane

which is also the parameter that determines the mass gap of the theory. This behaviour

is more akin to what one would expect in QCD than that of the conformal theory

discussed above.

Massless chiral quarks can be introduced by placing the probe D8 and D̄8 branes at anti-

podal points on the circle the D4 brane is wrapped on. In the near horizon limit of the

D4 branes these D8 branes choose to join at the scale of the mass gap breaking the chiral

symmetries on their world volumes to the diagonal sub-group and generating a mass gap

for the mesonic fluctuations of the D8s. When the geometry makes the transition at

finite temperature to the black hole background the D8 and D̄8 disconnect and instead

lie straight and fall into the horizon [50]. Chiral symmetry breaking is therefore restored

along with deconfinement.

There is a larger class of embeddings in which the D8 and D̄8 join at a larger radius in

the space so there is a bigger mass gap for the quarks. In [48] we have argued that these

embeddings describe a quark mass in the theory although it has been also argued in the

literature [49] that the chiral symmetry breaking scale is being enhanced in these cases

by higher dimension operators. The distinction is not important for what we discuss

here - in these cases there is a further first order transition as the temperature (horizon)
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4.2 The Sakai-Sugimoto model

grows through the mass scale of the mesons. The transition is very much like that of

the D3-D7 system in that the mesonic fluctuations of the D8 branes are replaced by

quasinormal modes of the black hole. The mesons of the theory have melted into the

plasma.

The mesonic fluctuations of the D8 branes above the phase transition have been studied

in [53]. Here we will concentrate on the very high temperature phase where the D8

branes lie straight and fall into the black hole horizon. We will explicitly compute the

quasinormal mode spectrum corresponding to the scalar and vector mesons of the theory.

As a prelude to this we compute the quasinormal spectrum of a Klein-Gordon scalar

living on the D8 brane worldvolume. We apply the idea of regularizing the coordinates

for ingoing modes, which has previously been used in asymptotically-flat spacetimes (see

for example [54]) and in the context of AdS-CFT in [55]. The result of this is that the

ingoing mode is described by a regular Taylor series at the black hole horizon. We use

this as the initial condition and obtain the quasinormal spectra by shooting out from

the horizon. We wish to stress that this is a much cleaner numerical process than trying

to match on to oscillating solutions at the horizon. We use the same method to examine

the spectra of modes arising from the DBI action of an embedded D8 brane. We treat

a scalar fluctuation of the brane in the geometry and a Lorentz vector arising from the

Maxwell field on the D-brane. Finally we briefly discuss the effect of nonzero momentum

on the spectra and extract the diffusion coefficient from the lowest quasinormal modes

of longitudinal vector excitations in the small k ‘hydrodynamic’ limit.

4.2 The Sakai-Sugimoto model

The aim of the Sakai-Sugimoto model is to provide a dual description of large-N QCD

coupled to Nf species of fundamental matter in the probe limit. The background ge-

ometry is that surrounding N D4-branes in IIA string theory, compactified on a circle.
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4.2 The Sakai-Sugimoto model

One can choose antiperiodic boundary conditions for the fermions on the circle so they

all get masses of order the inverse compactification radius. Thus the low energy field

theory content is just four-dimensional large-N QCD with fermions and KK excitations

suppressed at energies below the inverse compactification radius. Of course, the field

theory is five-dimensional in the UV and therefore requires a high-energy completion -

presumably this is just the open string theory.

The metric and dilaton describing the ten-dimensional bulk geometry is

ds2 =
( u

R

) 3
2 (

dx2
4 + fdτ2

)

+

(

R

u

)3
2
(

du2

f
+ u2dΩ2

4

)

(4.1)

eφ = gs

( u

R

)
3
4
. (4.2)

Here f = 1 −
(

uKK
u

)3
. The non-trivial dilaton is an indication that the theory is not

conformal and does in fact exhibit running coupling.

Into this geometry Sakai and Sugimoto introduced a probe D8 / D̄8 brane pair with the

set up as follows (the fifth dimension (τ) is the compactified one)

0 1 2 3 (4) 5 6 7 8 9

D4 - - - - - • • • • •
D8 - - - - • - - - - -

The key insight is that the D8 / D̄8 brane pair likes to join together, breaking the

U(Nf ) × U(Nf ) flavour symmetry group spontaneously to the vector subgroup - this is

the geometrical manifestation of chiral symmetry breaking.

The brane system exhibits a rich spectrum of mesonic excitations which are found from

the spectrum of the D8 brane DBI action in a similar way as for the D3-D7 system.

There is also a rich phenomenology associated to the Sakai-Sugimoto model at non-zero

temperature, as explored in [50]. Just as there is a non extremal of the near-horizon D3
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4.2 The Sakai-Sugimoto model

geometry (AdS-Schwarzschild), there is a non-extremal version of the compactified D4

background which is a candidate for the D4 field theory at non zero temperature. One

can seek a phase transition between the black hole phase and the Euclidean time phase.

One finds the black hole phase has the lower free energy above some finite temperature

and thus is the high-temperature phase. Now one can ask about the behaviour of the

probe fundamental matter in the high-temperature background - the free energy can be

computed by evaluating the DBI action associated to a single probe D8.

We will begin with the (non-Euclideanized) metric for the finite temperature Sakai-

Sugimoto model in the form

ds2 =
( u

R

) 3
2 (−fdt2 + dx2

3 + dτ2
)

+

(

R

u

) 3
2
(

du2

f
+ u2dΩ2

4

)

. (4.3)

Here f = 1 −
(

uT
u

)3
and the dilaton is eφ = gs

(

u
R

) 3
4 .

Parameterizing the D8-embedding by τ(u) and calculating the DBI action one finds

SDBI =

∫

dug−1
s R

3
2u

5
2

√

1 +
( u

R

)3
f τ ′2 . (4.4)

From this we obtain the equation describing the D8 embedding. One sees the first

integral ∂L
∂τ ′ = J . The equation is then

τ ′ =

(

R

u

)
3
2 J
√

g−2
s u8f2 − J2f

. (4.5)

Insisting the D8 turns over at u = u0 gives us J = g−1
s u4

0

√

f(u0).

Inserting this solution into the action we obtain the expression

SDBI = g−1
s R

3
2

∫ ∞

u0

du u
5
2

1
√

1 − u8
0f(u0)

u8f(u)

. (4.6)
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Now the thing to note is the equation for the D8-embedding also admits a solution

τ ′(u) = 0 with J = 0. This ‘flat’ configuration would have an action

SflatDBI = g−1
s R

3
2

∫ ∞

uT

du u
5
2 . (4.7)

Now although the two actions above are infinite their difference is finite and may be

evaluated. Changing variables to x ≡ u
u0

(and now the temperature enters as xT ≡ uT
u0

,

a parameter in the range [0,1])

∆S ≡ SDBI − SflatDBI

g−1
s R

3
2u

7
2
0

=













∫ ∞

1
dx x

5
2

1
√

1 − 1
x8

1−x3
T

1−
x3

T
x3













+
2

7

(

x
7
2
T − 1

)

. (4.8)

The extra term in from the fact that the curved embedding goes down to u = u0 whereas

the flat embedding goes all the way down to the horizon at u = uT .

Plotting this (Fig.(4.1)) reproduces Fig.(6) of [50]. Clearly for larger xT the flat em-

bedding has the lower action, so embeddings that would have had turnarounds near the

horizon become flat. In u0 is large compared to uT then xT is close to zero and the

curved brane embedding is favoured.

This analysis indicates that in the limit of high temperature, the D8 branes lie flat and

have a black hole horizon on their world volume. As a result of the latter, there is not

a disrete spectrum of mesons with real masses. Instead one expects mesons to have

a quasinormal spectrum and we now turn our attention to finding the characteristic

complex frequencies of these modes.
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Figure 4.1: Plot illustrating which phase has lower action. For ∆S > 0 the ‘flat’ D8

embedding is favoured (corresponding to the higher temperature phase). For ∆S < 0

the curved D8 embedding is favoured and the flavour branes do not intersect the black

hole horizon.

4.3 The geometry

The metric of the high temperature Sakai-Sugimoto model is

ds2 =
(

u
R

)
3
2
(

−f(u)dt2 + dx2
3 + dτ2

)

+
(

R
u

)
3
2

(

du2

f(u) + u2dΩ2
4

)

.

(4.9)

Here f(u) = 1 −
(

uT
u

)3
and the dilaton is e−φ = g−1

s

(

R
u

)
3
4 .

The parameter uT , representing the position of the horizon in the geometry, gives the

temperature in the dual field theory by the relation T = 3
4π

u
1
2
T

R
3
2
. This is the Hawking

temperature of the black hole.

Let us work in the dimensionless radial coordinate x ≡ u
uT

and measure the Minkowski

and τ dimensions in units of
√

R3

uT
. This corresponds to measuring frequencies and

momenta in units ∝ T .
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The metric becomes

ds2

R
3
2
√
uT

= x
3
2

(

−f(x)dt2 + dx2
3 + dτ2

)

+x−
3
2

(

dx2

f(x) + x2dΩ2
4

)

.

(4.10)

We will consider the spectrum of modes associated to a D8 brane. The D8 branes fill

the space except for the τ direction in which they live at a single value of τ = τ0 - this

is the energetically preferred high temperature configuration [50]. The induced metric

on the D8 brane worldvolume is just (4.10) with dτ = 0.

4.4 Regular horizon coordinates for quasinormal modes

As a warm-up we shall first consider linear fluctuations of a Klein-Gordon scalar re-

stricted to the worldvolume of the D8 brane. This is not a physical mesonic state of the

field theory but it exhibits similar quasinormal modes in the supergravity dual and we

use it to illustrate our calculational technique. The 9D action describing the fluctuation

is

SSF =
1

2

∫

d9x
√−ggab∇aΦ∇bΦ . (4.11)

Here the geometry is given by the induced metric on the D8 brane.

The equation of motion for the fluctuation is

1√−g∂a
(√−ggab∂bΦ

)

= 0 . (4.12)

Writing out the equation for a scalar fluctuation with spatial momentum k with respect

to the plasma rest frame and zero S4 spin as Φ ∝ e−iωt+ik·x3 one obtains the equation
(

x
19
4 f(x)Φ′

)′
+ x

7
4

(

ω2

f(x)
− k2

)

Φ = 0 . (4.13)

Here the prime indicates an x derivative. The large-x asymptotic of the equation is
(

x
19
4 Φ′

)′
= 0 with solution Φ ∼ c1 + c2 x

− 15
4 . For a normalizable solution we clearly

want the decaying power.
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Figure 4.2: The lowest five k = 0 Klein-Gordon scalar quasinormal frequencies in the

complex ω plane.

Taking the near horizon limit (x→ 1) one finds Φ ∼ (x−1)±i
ω
3 . Since the whole solution

is exp(−iωt± iω3 ln(x−1)) the solutions are ingoing (−) and outcoming (+) waves which

oscillate infinitely many times before reaching the horizon.

In these coordinates it will be hard to find the full solution numerically - one needs to

shoot out from, or on to, a highly oscillatory solution near the horizon. A better way to

proceed is to change coordinates to make the infalling solution regular at the horizon so

numerical methods can be more easily used. In particular we will shift coordinates so

t = h− α(x) . (4.14)

To make the infalling solution regular we require

α(x) =
1

3
ln(x− 1) + ... , (4.15)

where the additional terms are regular at the horizon. One way of satisfying this is to

define
∂α

∂x
=

1

x3 − 1
. (4.16)
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We then have

dh = dt +
1

x3f(x)
dx , (4.17)

leaving the metric in the new coordinates as

ds2 = −x 3
2 f(x)dh2 + 2x−

3
2dh dx+ x−

3
2 dx2

+x
3
2

(

dx2
3 + dτ2

)

+
√
xdΩ2

4 .

(4.18)

The induced metric is the above with dτ = 0.

The coordinates we have chosen here make the spatial sections look as if there is no

black hole present - in this sense they are analogous to the Painléve-Gullstrand coor-

dinates used in Appendix C. There are infinitely many other coordinate systems which

preserve the regularity of the ingoing wave at the horizon. Coordinates corresponding

to ingoing photon trajectories are an example - these were tried but did not behave as

well numerically as the ones above.

Note that the near horizon solution of (4.13) only depended on the powers of f in the

function not the powers of x (which becomes one in the near horizon limit). These

powers of f will turn out to be the same for all of the modes we consider below and so

this change of coordinates will suffice to make all infalling modes we look at regular.

We can now recompute the scalar equation of motion and we find

(

x
19
4 fΦ′

)′
− iω

(

2x
7
4 Φ′ +

7

4
x

3
4 Φ

)

+
(

ω2 − k2
)

x
7
4 Φ = 0 . (4.19)

We note that this is an equation with five singular points in the complex x-plane. The

general solution of such equations is not given in terms of well-known functions, nor can

one immediately apply the continued fraction method as used in [56]. Accordingly we

use a purely numerical approach.

There are two criteria for a good solution. Firstly the solution should be a purely ingoing

wave at the black hole horizon since classically a black hole can absorb but not emit
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4.5 Quasinormal modes from flavour branes

particles. Secondly the solution must be normalizable when integrated over the D-brane

worldvolume.

The large-x asymptotic of the equation is the same as we found in the usual ‘Schwarzschild’

coordinates and so we choose the decaying power which is normalizable as x→ ∞.

At the horizon we will seek a solution in the form of a Frobenius series Φ = Σ∞
n=0anz

n+s

in z ≡ x − 1. Now substituting this into the differential equation yields the indicial

equation

s

(

s− 2

3
iω

)

= 0 . (4.20)

The solution with s = 0 is regular at the horizon and corresponds to a purely infalling

solution.

Using the regular Taylor series for the infalling solution as the initial condition we shoot

out from the horizon. By requiring our solution to vanish as x → ∞ we can find the

quasinormal frequencies. They are displayed in Fig.(4.2).

4.5 Quasinormal modes from flavour branes

We will now consider the physical quasinormal modes of D8 branes, coming from the

DBI action.

The presence of the brane corresponds to the inclusion of a chiral quark field in the gauge

theory. Anomaly cancellation requires quarks to occur in vector like pairs so there must

naturally be a partner D̄8. The quasi-normal mode spectrum we compute below will

therefore be parity doubled in the gauge theory.

We will again use the coordinates (10) to make infalling solutions regular at the horizon.
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Figure 4.3: The lowest five k = 0 sigma meson quasinormal frequencies in the complex

ω plane.

4.5.1 Scalar mesons

We first analyze the scalar mode corresponding to a geometric fluctuation of the D8

embedding. The DBI Lagrangian for this is

L = e−φ

√

−Det
(

gMN
∂xM

∂ξa
∂xN

∂ξb

)

. (4.21)

We will parameterize the fluctuation as τ = τ0 + φ(x)e−iωh+ik·x3 representing a mesonic

excitation with spatial momentum k relative to the plasma rest frame with zero S4 spin.

The Lagrangian is (a dot indicates an h-derivative and a prime an x-derivative)

L = x
5
2

√

1 + x3f(x)φ′2 + 2φ̇φ′ − φ̇2 . (4.22)

Expanding the square root to quadratic order the equation of motion is

(

x
11
2 fφ′

)′
− iω

(

2x
5
2φ′ +

5

2
x

3
2φ

)

+
(

ω2 − k2
)

x
5
2φ = 0 . (4.23)

Using the regular Taylor series as initial condition we shoot out from the horizon and

requiring our solution to vanish as x → ∞ we can find the quasinormal frequencies.
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Figure 4.4: The lowest five static vector meson quasinormal frequencies in the complex

ω plane.

They are shown in Fig.(4.3).

4.5.2 Vector mesons - transverse

We obtain the quasinormal spectrum for a Maxwell field on the D8 brane worldvolume,

which is dual to the quasinormal spectrum of vector mesons. We use the ansatz Aµ =

ξµA(x)eik·x4 which is a Lorentz vector with zero S4 spin. The equation of motion is

∂a

(

e−φ
√−gF ab

)

= 0 . (4.24)

Fixing the gauge kµξµ = 0 one obtains the equation of motion for a transversely-polarized

Lorentz vector. With this ansatz the only nontrivial equation is (for example choosing

k2 nonzero and the vector in the 1-direction) for b = 1, ie ∂a(e
−φ√−gF a1) = 0, giving

(x
5
2 fA′)′ − iω

(

2x−
1
2A′ − 1

2
x−

3
2A

)

+
(

ω2 − k2
)

x−
1
2A = 0 . (4.25)

Using the regular Taylor series as initial condition we shoot out from the horizon and
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4.5 Quasinormal modes from flavour branes

requiring our solution to vanish as x → ∞ we can find the quasinormal frequencies.

They are displayed in Fig.(4.4).

4.5.3 Vector mesons - longitudinal

In the zero-temperature case the transverse mesons exhaust the vector spectrum. For

finite temperature however one can also identify a purely electric longitudinal solution

of the supergravity dual Maxwell field. The longitudinal electric field we deal with is

E1 = kA0 + ωA1 (k points along the 1-axis making the vector potential curl-free).

There are three relevant equations of motion: first ∂a
(

e−φ
√−gF ax

)

= 0. Writing this

out for our choice of metric one obtains

iωA′
0 + ikg11gxxA′

1 = −g11gx0
(

k2A0 + ωkA1

)

. (4.26)

The second equation is ∂a
(

e−φ
√−gF a0

)

= 0. Writing this out for our choice of metric

one obtains

0 = −
(

e−φ
√−gA′

0

)′ − ike−φ
√−gg11g0xA′

1

−e−φ√−gg11g00
(

k2A0 + kωA1

)

.
(4.27)

Finally from ∂a
(

e−φ
√−gF a1

)

= 0 one obtains

0 =
(

e−φ
√−ggxxg11A′

1

)′ − iωe−φ
√−gg0xg11A′

1

−
(

e−φ
√−ggx0g11 (iωA1 + ikA0)

)′

−e−φ√−gg00g11
(

ω2A1 + ωkA0

)

.

(4.28)

The trick is to form a second order ODE for the gauge invariant combination E1 =

kA0 + ωA1. We do this by putting the differential equations into such form as the

coefficients of A′′
0 and A′′

1 in the second and third equations are unity, then adding k

times the second equation to ω times the third equation. We patch up the first derivative

terms by adding zero in the form given by (4.26),

(

iωA′
0 + ikg11gxxA′

1 + g11gx0
(

k2A0 + ωkA1

))

≡ 0 . (4.29)
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4.6 Finite spatial momentum

We add this term with coefficient such that the first derivative terms add up to a multiple

of kA0 + ωA1.

The equation we finally obtain is

E′′
1 + f1E

′
1 + f2E1 = 0 . (4.30)

Here one has

f1 = 5
2x − iω

x3f
+

ik2

x3 +ω
“

5
2xf

+ 1
2x4f

”

− 2iω2

x3f
+ω

“

iω
x3f

− 5
2x

”

ω− k2

ω
f

,

(4.31)

and

f2 = − k2

x3 + iω
2x4f + ω2

x3f+

k
x3

(

k
“

ik2

x3 +ω
“

5
2xf

+ 1
2x4f

”

− 2iω2

x3f

”

+ω
“

iωk
x3f

− 5k
2x

”

i(ω2−k2f)

)

.

(4.32)

After all this work, it is easy to check that this equation has the same k → 0 limit

as the transverse mode - the quasinormal frequencies are degenerate in this limit. We

also note that by rescaling ω → λ2ω and k → λk and taking λ → 0 one finds that a

normalizable, regular solution to the longitudinal equation exists for k = ω = 0, which

is just E1 = x−
3
2 . This additional mode is not present in any of the other spectra, and

is related to the hydrodynamic behaviour of the field theory.

4.6 Finite spatial momentum

We can obtain an effective dispersion relation for our modes ie a function ω(k). This is

done by solving the wave equations obtained in the previous sections for general complex

k. Similar computations in the D3/D7 system can be found in [58].

Real momentum k corresponds to a state which is a travelling plane wave on the

Minkowski spacetime of the dual field theory. Switching on a finite real k in the equation
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Figure 4.5: Lowest quasinormal frequencies at finite real spatial momentum k in the

complex ω plane for the scalar q̄q bound state. The momentum k ranges from 0 to 5.0

in steps of 0.5 (in the same units as ω) as one moves to the right in the plot.

and using shooting we have found the behaviour of the quasinormal frequencies in the

complex ω plane. It is found that the states become more massive and more stable as k

is increased.

The results for the first three quasinormal modes for the scalar q̄q bound state are

plotted in Fig.(4.5). In Fig.(4.6) we show the first three vector quasinormal modes for

the transverse and longitudinal modes. These are degenerate for k = 0 but behave

differently as k is increased - the main difference is that the longitudinal states become

more stable but less massive relative to the transverse states for the same k as k is

increased.

Finally we note that, as mentioned above, there is an additional quasinormal mode for

the longitudinal electric field component of the Maxwell field on the flavour brane. For

small k this lies close to the origin and on the imaginary axis. As shown in for exam-

ple [57] the diffusion coefficient D for flavoured fundamental matter can be computed

from this state. For small spatial momentum k it obeys the ‘hydrodynamic’ relation

ω = −iDk2. Here we test whether this relation can be obtained using our ingoing co-
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Figure 4.6: Above we show the lowest vector q̄q bound state quasinormal frequencies at

finite real spatial momentum k in the complex ω plane (top). The momentum ranges

from 0 to 2.0 in steps of 0.2 as one moves to the right (the lowest mode in the lon-

gitudinal spectrum, corresponding to the diffusion pole in the hydrodynamic limit, is

excluded). For each mode the flatter trajectory corresponds to the transverse species

and the steeper to the longitudinal. Below this we show the momentum dependence of

the lowest quasinormal mode (‘diffusion pole’) for the longitudinal vector meson. The

equation of the line is y = log 2
3 + 2x showing the validity of the relation ω = −iDk2 for

small k, with D = 2
3 .
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4.7 Conclusion

ordinates. The calculation we do is then the generalization of the calculation done for

the vector meson, including a nonzero spatial momentum, and examining the gauge-

invariant longitudinal electric field component. In Fig.(4.6) we plot the position of this

pole on the imaginary axis as a function of k. We extract D = 2
3 .

We note our result for the diffusion coefficient is related to the value obtained in [57]

which is found to be D = 1
2πT . We are measuring in units of

√

R3

uT
so we obtain the

numerical value

D =
1

2π

4π

3
≡ 2

3
. (4.33)

Our result therefore matches that of [57] providing a check on our numerics (albeit for

small ω and k).

4.7 Conclusion

We have found the quasinormal frequencies for a variety of different species (the Klein-

Gordon scalar, scalar quark bound states and vector mesons) in the Sakai-Sugimoto

model at high temperature. A crucial part of the analysis was to change coordinates so

that the infalling quasi-normal modes become regular at the horizon so numerical shoot-

ing becomes straightforward. It is noteworthy that in these coordinates the equations

for the Klein-Gordon scalar, the scalar q̄q and the transverse vector q̄q all have the form

(xnfφ′)′ − iω
(

2xn−3φ′ + (n− 3)xn−4φ
)

+
(

ω2 − k2
)

xn−3φ = 0 .

(4.34)

For the Klein-Gordon scalar n = 19
4 , for the sigma n = 11

2 and for the vector n = 5
2 .

This means the quasinormal spectra look extremely similar. The only thing making the

frequencies different is the value of n. The effect of increasing the value of n is to move

the quasinormal modes out from the origin in the complex frequency plane.
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4.8 Fermionic excitations of the AdS-Schwarzschild background

We also computed these states at finite real momenta where the modes become more

massive and more stable. We have obtained the numerical value for the diffusion coeffi-

cient for fundamental flavoured matter and our result is consistent with the calculation

of [57].

4.8 Fermionic excitations of the AdS-Schwarzschild back-

ground

A discrete spectrum of fermionic ‘mesino’ states was found for probe D7 branes embedded

in the background geometry surrounding a stack of D3 branes in [59] and it was found

that the fermion masses were degenerate with the boson masses (a consequence of the

N = 2 supersymmetry). In this section we extend the analysis to the non-extremal

(finite temperature) background and find a discrete spectrum of quasinormal modes.

Since the finite-temperature background is non-supersymmetric we find that the spectra

of bosonic and fermionic excitations of the probe D7 are no longer degenerate. Our result

can be used for excitations of a space-filling probe D7 or for the full AdS5×S5 geometry

depending on the choice of Dirac mass in AdS5. One can thus compare to the spectrum

of a minimally-coupled scalar on the nonextremal AdS5 × S5 background studied in

[60], in which the quasinormal spectrum was evaluated using Leaver’s continued fraction

method [56]. We use shooting methods here.

4.8.1 The Dirac equation on curved spacetime

Firstly we note that the massless Dirac equation on a manifold of the form M = M1 ×
M2 (the direct product of two lower-dimensional manifolds) takes the form
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4.8 Fermionic excitations of the AdS-Schwarzschild background

iΓa∇aψ ≡ iΓa∇1,aψ + iΓa∇2,aψ . (4.35)

In our case the manifold is the direct product of five-dimensional AdS-Schwarzschild and

a sphere. The Dirac operator on for example the five-sphere can be replaced with its

eigenvalues which are well-known and given by iΓa∇S5,aψ = ±
(

5
2 + l

)

ψ for l = 0, 1, 2, ...

(in the field theory this means states of increasing R-charge). In the absence of other

couplings this means we can solve our problem simply by solving the Dirac equation on

five-dimensional AdS-Schwarzschild with a Dirac mass m = 5
2 for the ground state on

the five-sphere.

An expression for the covariant derivative of a spinor can be straightforwardly obtained

(see for example [61]). The derivative will take the form

∇µψA = ∂µψA − ΣB
A µψB , (4.36)

along with a similar expression for a complex conjugate spinor, ∇µψ̄A′ = ∂µψ̄A′ −
Σ̄B′

A′ µψ̄B′ .

The curved spacetime gamma matrices satisfy Γ(µΓν) = gµνI and since the covariant

derivative preserves the metric one has

∇µΓ
µ
AB′ = 0 . (4.37)

Writing this out explicitly one obtains

∂µΓ
ν
AB′ + ΓνµρΓ

ρ
AB′ − ΣC

AµΓ
ν
CB′ − Σ̄D′

B′µΓ
ν
AD′ . (4.38)

Multiplying on the left with ΓEF
′

ν and noting eg. ΓEF
′

ν ΓνCB′ ≡ δEC δ
F ′

B′ leads to the

expression
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ΓEF
′

ν

(

∂µΓ
ν
AB′ + ΓνµρΓ

ρ
AB′

)

− ΣE
Aµδ

F ′

B′ − Σ̄F ′

B′µδ
E
A = 0 . (4.39)

This expression can be contracted over F ′ and B′ indices to give, for a n × n gamma

matrix representation (we will be using n = 4)

ΓEB
′

ν ∂µΓ
ν
AB′ + ΓνµρΓ

EB′

ν ΓρAB′ = n ΣE
Aµ . (4.40)

The expression for the conjugate spin coefficient follows from contracting (4.39) over the

A and E indices. From now we will suppress the spinor indices of the gamma matrices.

Note that it is easy to extend the above prescription to higher half-integer spin and

so one could calculate quasinormal frequencies associated to spin-3
2 excitations and so

forth.

The Dirac equation therefore takes the explicit form

iΓµ
(

∂µ +
1

4
Γν

(

∂µΓ
ν + ΓνλµΓ

λ
)

)

ψ +m ψ = 0 . (4.41)

Here the 3-index symbol Γνλµ is the usual Christoffel symbol. The meaning of the Γµ

symbols will become clear in the next section.

This we take in the form

(

iΓµ∂µ +
i

4
(α+ β)

)

ψ +m ψ = 0 . (4.42)

Here one has

α = ΓµΓν∂µΓ
ν , (4.43)

and
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β = ΓνλµΓ
µΓνΓ

λ . (4.44)

4.8.2 Coordinate system and calculation

The metric is (+−−−−) having done rescaling so that energies are measured in units

of the Hawking temperature and translated the metric to an analogue of the infalling

Painleve-Gullstrand coordinates (ie we make the spatial sections look like there is no

black hole - this is known as the Newtonian gauge in some of the literature)

ds2 = x2fdh2 − 2

x2
dhdx− dx2

x2
− x2

(

dy2
1 + dy2

2 + dy2
3

)

. (4.45)

Here f = 1 − 1
x4 .

With the flat space little gammas defined in the obvious sense (γ2
0 = 1 all others square

to −1 and all anticommute) we now want a basis (Γµ) such that

Γ0 = x

(

γ0 +
1

x2
γ4

)

(4.46)

Γi = xγi (4.47)

Γ4 =
1

x
γ4 . (4.48)

These satisfy Γ(µΓν) = gµνI for our five-dimensional metric.

The reciprocal basis (Γµ) satisfying Γ(µΓν) = δµν I (easily checked using the standard

gamma matrix algebra) is clearly
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Γ0 =
1

x
γ0 (4.49)

Γi = −1

x
γi (4.50)

Γ4 = −x
(

γ4 +
1

x2
γ0

)

. (4.51)

Evaluating the matrix-valued quantities needed for the spinor covariant derivative (ex-

pressions (4.43) and (4.44) for α and β) for the coordinate basis we have chosen, one

obtains

α = 3

(

γ4 +
1

x2
γ0

)

, (4.52)

and

β = − 7

x2
γ0 − 11γ4 . (4.53)

Thus α+β = − 4
x2γ0 − 8γ4. Note that if the same calculation is done in the background

with no black hole the term in γ0 vanishes.

The Dirac equation takes the Hamiltonian form (setting ∂h = iω and ∂i = −ik, leaving

m general for now)

−ω
x
γ0ψ − 1

x
kiγiψ − i

(

xγ4 +
1

x
γ0

)

ψ′ − i

(

1

x2
γ0 + 2γ4

)

ψ +mψ = 0 . (4.54)

Choosing the gamma matrices to be the analogue of the chiral basis (but with iγ5 playing

the role of γ4) we set

γ0 =





· I

I ·



 γi =





· σi

−σi ·



 γ4 =





iI ·
· −iI



 .
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Taking the two functions u1(x) and u2(x) to multiply constant 2-spinors ξ1, ξ2 of the 4D

Lorentz subgroup of the 5D Lorentz group one obtains the system of equations





x∂x + 2 +m −ω+k·σ
x − i

x∂x − i
x2

−ω−k·σ
x − i

x∂x − i
x2 −x∂x − 2 +m









u1 ξ
1

u2 ξ
2



 = 0 .

The two-spinor polarization can be resolved into helicity eigenstates (σ · k) ξ± = ±|k|ξ±

as and for the both positive helicity case one has

xu′1 + (2 +m)u1 −
(

ω + k

x
+

i

x2

)

u2 −
i

x
u′2 = 0 (4.55)

xu′2 + (2 −m)u2 +

(

ω − k

x
+

i

x2

)

u1 +
i

x
u′1 = 0 . (4.56)

Including |k| 6= 0 allows the calculation of the dispersion relation for the spinor wave

(the equations are straightforward but cumbersome). Here we will focus on the case

|k| = 0 only.

Note that if |k| = 0 and if there is no Dirac mass m the two equations are not linearly

independent - one can add i times the second equation to the first, obtaining the equation

for v ≡ u1 + iu2 (with m = 0)

xv′ + 2v +

(

iω

x
− 1

x2

)

v − 1

x
v′ = 0 . (4.57)

This first order equation can be solved exactly to something which clearly does not admit

a discrete spectrum and is not regular at the horizon

v =
v0

x
√

1 − x2

(

1 + x

1 − x

)
iω
2

. (4.58)

A naive attempt to solve this equation by shooting out from the horizon (using the
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Figure 4.7: What you get in the complex ω-plane for the asymptotic value of ln |v| if

you fail to include the Dirac mass term from the sphere (ie. m = 0 in the equations in

the text).

Taylor series for the ingoing mode as initial data) produces a curious-looking plot which

is exhibited in Fig.(4.7).

Of course the problem is we need a Dirac mass coming from the spin of the fermion

on the sphere part of the geometry (the spectrum of the Dirac operator on spheres of

various dimension can be found in [62]). For an n-sphere one should have m = ±n
2 . In

the case of a fermionic excitation of the N = 4 theory one would expect to use m = ±5
2

and in the case of a fermionic excitation of a zero mass ‘quark’ (on the worldvolume

of a space-filling probe D7 brane) one expects m = ±3
2 . In fact the degeneracy of the

particle and antiparticle spectrum is broken by the coupling to the background five-form

field strength ( for the D7 case see [63]) which has the effect of shifting the ‘particle’ and

‘antiparticle’ Dirac masses up one unit. So for the N = 4 excitation one wants Dirac

masses of m = +7
2 ,−3

2 and for the probe brane excitation m = +5
2 ,−1

2 .
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To obtain the quasinormal spectrum one could choose to solve either the equation for

u1 or that for u2 - the spectra will be identical. It is an easy exercise to eliminate

either u1 or u2 in order to obtain a linear second order ODE in the remaining variable.

Eliminating u1 gives the equation

u′′2 + f1u
′
2 + f2u2 = 0 , (4.59)

were

f1 =
1 +m− 2iω(1 +m)x+ 2ω2x2 − 7(1 +m)x4 − 6iωx5

x(1 − x4)(1 +m+ iωx)
, (4.60)

and

f2 =
−(1 + m) − (3 + m)iωx − (1 + m)ω2x2

− iω3x3
− (1 + m)(2 − m)(m + 4)x4 + i(m2

− m + 6)ωx5

x2(1 − x4)(1 + m + iωx)
. (4.61)

Note this differential equation seems to have an additional singular point compared to

the scalar case - this would appear to preclude the use of Leaver’s method.

In the near-horizon limit the solution for either u1 or u2 is (x−1)s times a regular Taylor

series in x− 1. The solutions for the exponent are s = 0 which is the ingoing mode and

s = −1
2 − iω

2 which is the outgoing mode. Note this does not depend on the mass m.

In the large-x limit close to the boundary of AdS the solution tends to a linear combi-

nation of two powers of x. The exponents are given by −5
2 ±

(

m+ 1
2

)

. For this case we

have m = 5
2 and so the exponents are +1

2 and −11
2 , the latter being the normalizable

mode.

Using the regular Taylor series solution at a distance ǫ from the horizon as initial data

for the numerical solution and tuning to the normalizable mode at large x we can find

the quasinormal spectrum.
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Figure 4.8: Plot showing the quasinormal modes of excitations of a probe D7 at k = 0.

The blue points are the scalar modes found in [51]. The first four ‘particle’ fermionic

excitations (m = +5
2) are shown on the right and the first eight ‘antiparticle’ excitations

(m = −1
2) on the left.

A plot of the solution corresponding to the lowest modes appropriate to the spin-1
2

equation on the worldvolume of a zero current algebra quark mass D7 brane is shown in

Fig.(4.8). Our results look qualitatively different from the scalar cases analyzed in [60]

and [51] because the scalar particle and antiparticle spectra are degenerate, as there is

no coupling to the five-form.

4.8.3 Finite momentum

We could solve the same problem for a state with k 6= 0 to obtain the dispersion relation

for fermions in the plasma background. There presumably are not any hydrodynamic

poles for the fermions due to the fact that the fermions always have a minimum mass

of order the supersymmetry breaking scale (the temperature), hence no poles in the

ω, k → 0 limit.

Acknowledgements: I would like to thank one of the authors of [54] (SD) for helpful

comments regarding the transformation to ingoing coordinates, and also Professor Tim

Morris for pointing out the representation of the five-dimensional Clifford algebra.
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Chapter 5

The thermal phase transition in a

QCD-like holographic model

We can attempt to apply gauge-gravity duality to study the high-temperature phase struc-

ture of strongly-coupled field theory. In this context we investigate the high temperature

phase of a dilaton flow deformation of the AdS/CFT Correspondence. We argue that

these geometries should be interpreted as the N = 4 gauge theory perturbed by a SO(6)

invariant scalar mass and that the high-temperature phase is just the well-known AdS-

Schwarzschild solution. We compute, within supergravity, the resulting Hawking-Page

phase transition which in this model can be interpreted as a deconfining transition in

which the vev for the operator TrF 2 dissolves. In the presence of quarks the model also

displays a simultaneous chiral symmetry restoring transition with the Goldstone mode

and other quark bound states dissolving into the thermal bath.
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5.1 Introduction

The simplest examples of non-supersymmetric deformations of the AdS/CFT Correspon-

dence [13, 15] are those in which the dilaton has some non-trivial profile in the radial

direction of the space [65]-[71]. Since the dilaton carries no R-charge the five-sphere is

left intact. The presence in the dilaton profile at large AdS radius, r, of a term of the

form 1/r4 indicates the presence of a vev for the operator TrF 2 in the N = 4 gauge

theory. This operator is the F-term of a chiral superfield so supersymmetry is manifestly

broken.

Simple gravitational theories of this type have been shown to generate confining be-

haviour in Wilson loops in the dual gauge theory and a discrete glueball spectrum

[66, 70]. Quarks have also been introduced through D7 brane probes [16]-[35] and chi-

ral symmetry breaking in the pattern of QCD is induced [41, 73]. These models are

therefore a nice toy model of a gauge theory that behaves in many respects like QCD.

Given the successes of this model at zero temperature it is interesting to investigate the

finite temperature behaviour of the solution. One expects a Hawking-Page type phase

transition [76] where, when the temperature grows greater than the perturbation, the

vev for TrF 2, a first order transition would occur from the zero temperature solution

with a compact time dimension to a black hole geometry. The former has free energy of

order one whilst that of the latter is of order N2 - we would be seeing deconfinement of

the gauge degrees of freedom [14, 64]. It would be interesting in addition to understand

how chiral symmetry breaking behaves through this transition.

Here we will seek dilaton flow black hole geometries that might describe the high tem-

perature phase of the gauge theory. In fact though we will analytically show that there

are no black hole geometries with a non-trivial dilaton in five dimensional supergravity.

The only candidate for the high temperature phase of the dilaton flow geometry, at the

supergravity level, is in fact the normal AdS-Schwarzschild geometry. This is of course
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identical to that describing the high T phase of the N = 4 gauge theory. We conclude

that the vev for TrF 2 is an induced operator which dissolves at finite temperature.

Taking this as our assumption we compute the Hawking-Page type transition and show

that the behaviour matches the usual intuition discussed above, though we must caveat

our analysis because we ignore potential string theory corrections to the highly-curved

region of the low temperature phase.

We learn that in the low temperature phase the vevs of the glue and quark fields are

temperature independent as are the glueball and meson masses. This matches large

N field theory arguments made in [77]. The finite temperature solution of the N = 4

theory has also been studied vigorously [83] including in the presence of quarks [35]- all of

those results can now be seen to apply to the high temperature phase of the dilaton flow

geometry too. In particular the vev of TrF 2 and the chiral symmetry breaking quark

condensate (at zero quark mass) both switch off in the high T phase. The Goldstone

boson of the symmetry breaking becomes massive and indeed melts into the thermal

bath.

The above account though requires some additional explanation. In the low T phase

if the vev for TrF 2 is an induced operator what is the perturbation to the N = 4

gauge theory that is breaking supersymmetry? We propose a story that might explain

this. Since supersymmetry is broken but SO(6)R preserved we expect all other SO(6)R

invariant operators to switch on. As was argued in [66] and we will discuss more below,

amongst these operators, at large N , is an SO(6) preserving scalar mass term. This mass

term is not described by a supergravity field so is essentially invisible in the solutions -

there are examples of supersymmetric [78, 79] and non-supersymmetric [81] flows where

this operator is present yet invisible in terms of a supergravity field. In those geometries

the mass appears to be generated through the RG flow by a fermion mass term that

is described by a supergravity mode. Here a simple D3 brane probe shows there is no

explicit mass in the dilaton flow geometry though and it is not in this class.
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The SO(6)R invariant scalar mass is described by a string rather than supergravity mode

so one naively expects it to describe a super-irrelevant source (if nothing else is there to

regenerate it). That is, if present, the source would be invisible in the IR before growing

sharply in the UV and dominating the physics. Such a source term would show up as a

sharp UV cut off, so the only impact of that cut off in the low energy theory would be

the symmetries it imprinted. We propose that the dilaton flow geometry describes the

IR physics below such a UV cut off.

When the dual gauge theory is viewed as the N = 4 theory with a scalar mass per-

turbation it seems a very natural theory to study as a toy for QCD - it is a sensible

non-supersymmetric, strongly coupled gauge theory. Of course none of the gaugino

super-partners are decoupled from the strong dynamics so it is not QCD.

Our results are also interesting as ten dimensional realizations of the “hard-wall” tran-

sitions explored in [77] (the introduction of a hard infra-red wall has long been used as

a very simplistic way of introducing a mass gap into the gauge theory [84]). To make

that connection stronger we will begin by describing briefly the thermal transition in

the N = 4 gauge theory with an SO(6) invariant scalar vev. This should be the ultra-

relevant operator that is described by the string mode discussed above. The gravity dual

of this theory is precisely AdS5 × S5 with a hard IR cut off at some finite radius - the

cut off corresponds to the surface of a five-sphere that the D3 branes have been spread

evenly over. This case serves as an example of how these scalar operators are invisible

in the supergravity solution.

Our main computation here is to show that there is no dilaton flow black hole in five

dimensional supergravity and to compute the Hawking-Page transition to a pure AdS-

like black hole in that model. Finally we will briefly review the phase structure of the

non-supersymmetric gauge theory collating results from elsewhere in the literature.
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5.2 A Hard wall - N = 4 SYM On Moduli Space

We begin by creating a true AdS-dual of a hard wall model. The set up is simple -

one spreads the D3 branes at the origin (r = 0) of the usual AdS/CFT construction

onto the surface of a five-sphere centred at the origin. If a finite number of D3 branes

are evenly distributed then the configuration will preserve a discrete sub-group of the

SO(6) symmetry group. In the infinite N limit where the distribution becomes smooth

the SO(6) group is preserved. In the gauge theory this configuration corresponds to one

where

Trφiφj ∝ δij , (5.1)

which is an SO(6) singlet. The U(N) gauge theory is broken to a U(1)N theory that is

non-interacting (all matter is in the adjoint so uncharged) in the case of a finite number

of D3 branes. As the density increases the scalar vevs connecting adjacent sites become

small and one has a deconstructed model of a five dimensional U(1) gauge theory living

on the five sphere surface - again it is non-interacting.

On the gravity side it is clear from a Gauss’ law argument that the geometry does

not change (as in the case of a planet being described by the Schwarzschild black hole

metric). The dual is just AdS5 × S5 with the usual four form (here L4 = 4πgsNα
′2)

ds2 =
u2

L2
dx2

4 +
L2

u2
du2 + L2dΩ2

5 (5.2)

C(4) =
u4

L4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (5.3)

except that the surface of the five sphere of D3 branes acts as a cut off on the space

(formally within there is flat space since there are no sources).

The obvious candidate for the finite temperature version of the theory is just AdS-

Schwarzschild [64]. Restricting ourselves to a black hole background with temperature

equal to uh
πL2 and working with the usual Poincaré coordinates

ds2 =
K(u)

L2
dτ2 + L2 du2

K(u)
+
u2

L2
dx2

3 + L2dΩ2
5 , (5.4)
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with

K(u) = u2 − u4
h

u2
. (5.5)

We can seek a Hawking-Page transition by comparing the free energy of AdS cut off at

the radius of the D3 five sphere, u0, and with a compact time dimension versus that

of the AdS Schwarzschild solution cut off by either the radius of the five sphere or the

horizon whichever is largest.

This computation can be performed within the five dimensional truncation of IIB su-

pergravity on this space. The two five dimensional metrics are then simply

ds2 =
u2

L2
dτ2 + L2du

2

u2
+
u2

L2
dx2

3 (5.6)

ds2 =
K(u)

L2
dτ2 + L2 du2

K(u)
+
u2

L2
dx2

3 , (5.7)

with no four-forms. The comparison at this level is naively precisely the computation of

Herzog [77] which we briefly review. We will see shortly that in the full theory there is

an extra contribution to the computation.

The Euclidean action for either cut-off AdS or AdS-Schwarzschild is

S = − 1

4πG5

∫

d5x
√
g

(

1

4
R+

3

L2

)

. (5.8)

On-shell R = − 20
L2 for both backgrounds.

One must rescale the time coordinates so as to ensure that the period of the time

directions match at the cut off Λ [64]. One then finds the action difference

SBH − SAdS =
1

2G5uhL3

(

∫ Λ

uh

u3du−
√

K(Λ)

Λ2

∫ Λ

u0

u3dr

)

. (5.9)

Taking the limit Λ → ∞ one obtains SBH−SAdS = 1
8G5uhL3

(

u4
0 − 1

2u
4
h

)

. This is Herzog’s

result.

This computation suggests that if u0 >
4

√

1
2uh the black hole action is larger and a hard

wall solution is favoured - giving Herzog’s transition temperature Tc =
4√2u0
πL2 .
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5.2 A Hard wall - N = 4 SYM On Moduli Space

In fact the above computation can be interpreted as a valid result in the AdS-QCD

approach, in which one constructs phenomenological models without insisting that the

holographic physics is an exact realization of IIB SUGRA. To study the actual behaviour

of the dual N = 4 gauge theory we must solve the SUGRA problem in its entirety. There

is an additional term in the action from the boundary between the flat spacetime within

the shell of D3 branes and the AdS geometry outside, which is the difference between the

Gibbons-Hawking term from each ‘side’ of the boundary (we thank Andreas Karch and

Steve Paik for pointing this out to us). It is simplest to perform the calculation in the

full 10D geometry. The Gibbons-Hawking term is 1
8πG5

∫

ΣKdΣ where the integration is

over the boundary Σ andK is the trace of the second fundamental form on the boundary.

This is easily evaluated using the relation [82]

∫

Σ
KdΣ =

∂

∂n

∫

Σ
dΣ . (5.10)

The normal derivative is evaluated by setting the metric coefficient of the radial holo-

graphic direction to unity (by means of a coordinate transformation) and then differen-

tiating with respect to the radial direction.

The ten-dimensional flat space within the D3 brane shell has line element ds2 = L2(dτ2+

dx2
3) + 1

L2

(

du2 + u2dΩ2
5

)

and thus
∫

Σ dΣ = u5 up to constants, a multiple of the five-

sphere volume and four-space volume. Performing the normal derivative one obtains a

contribution of 5u4
0.

The AdS5 ×S5 geometry outside the D3 brane shell has line element ds2 = L2e2r(dτ2 +

dx2
3)+

1
L2

(

dr2 + dΩ2
5

)

and thus
∫

Σ dΣ = e4r up to volume factors. Performing the normal

derivative and transforming back to the ‘u’-type coordinates one finds a contribution of

4u4
0 times the overall factors.

Including this in our computation we see that it cancels out the total action for the

cut-off AdS spacetime entirely leaving
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SBH − SAdS =
1

8G5uhL3

(

−1

2
u4
h

)

. (5.11)

This implies that the Hawking-Page transition actually takes place at any finite temper-

ature for the theory on its moduli space, which is the same result as for the theory at

the superconformal point. Field theoretically this is because the temperature generates

a potential for the adjoint scalars of the gauge theory which forces their vev to zero.

The transition then naturally occurs immediately above T=0.

5.3 Dilaton Flow Geometries

We now turn to constructing solutions of the supergravity equations of motion with

non-trivial dilaton flows.

5.3.1 Five-dimensional action and equations of motion

We will work in N = 8 SUGRA in five dimensions [85]-[87] which is a truncation of IIB

string theory on AdS5×S5 and it is known that any solution can be lifted to a complete

ten dimensional geometry. The 40 scalars which participate in the superpotential will

be set to zero (leaving a constant superpotential which acts as a negative cosmological

constant) and we consider a solution with nontrivial dilaton and zero axion.

The effective five-dimensional action is (we use the normalization conventions of [66] and

set L ≡ 1 for this section)

S =
1

4πG5

∫

d5x
√−g

(

1

4
R− 1

8
gab∇aφ∇bφ+ 3

)

. (5.12)

The non-extremal background and the background with a nontrivial scalar are both non-

supersymmetric and we cannot apply the technique of Killing spinor equations. Instead

we use symmetry to constrain the form of the solutions.
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We will make an ansatz, following the analysis of the N = 2∗ gauge theory in [88], of

the form

ds25 = e2A
(

−e2Bdt2 + dx3
3

)

+ dr2 . (5.13)

The presence of A allows the dilaton to have a non-trivial r dependence and that of B

allows for non-zero temperature.

The field equations are

1

4
Rab =

1

8
∂aφ∂bφ− gab (5.14)

∇2φ = 0 . (5.15)

Using the linear combinations Ā ≡ A+ 1
4B and B̄ ≡

√
3

4 B as in [88] these equations take

the form

φ′′ + 4Ā′φ′ = 0 (5.16)

B̄′′ + 4Ā′B̄′ = 0 (5.17)

6(Ā′)2 =
1

4
(φ′)2 + 2(B̄′)2 + 6 . (5.18)

The first two equations can be integrated to yield φ′ = c1e
−4Ā and B̄′ = c2e

−4Ā. We

will see later that the two solutions we concentrate on correspond to setting either one

or the other of these constants zero. Defining 6c23 ≡ (1
4c

2
1 + 2c22) we obtain

(Ā′)2 = c23e
−8Ā + 1 . (5.19)

These equations are analytically solvable with solutions

e4Ā =
c24e

8r − c23
2c4e4r

(5.20)

B̄ =
c2
4c3

ln

(

c4e
4r − c3

c4e4r + c3

)

+B0 (5.21)

φ =
c1
4c3

ln

(

c4e
4r − c3

c4e4r + c3

)

+ φ0 . (5.22)

For any solution that returns to AdS asymptotically B0 = 0 and φ0 is the dilaton value

in the AdS limit.
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5.3.2 Solution with no event horizon

Let us first take the solution above and set B ≡ 0 to find a zero temperature dilaton flow

with manifest 4D Lorentz invariance. The solution can be recast (by setting c3 = c4ζ)

in the form

e2A =

√

c4
2

√

e4r − ζ2e−4r (5.23)

φ =

√

3

2
ln

(

e4r − ζ

e4r + ζ

)

+ φ0 . (5.24)

To match to other results in the literature [73] one can rescale the x4 coordinates to

effectively set c4 = 1/2, set 2u2 = e2r and ζ = −4u4
0. Reinstating the five sphere and

moving to string frame one arrives at the 10D metric

ds2 = eφ/2
(

u2

L2
A2(u)dx2

4 +
L2

u2
du2 + L2dΩ2

5

)

, (5.25)

with

A(u) =

(

1 −
(u0

u

)8
)

1
4

, eφ =

(

(u/u0)
4 + 1

(u/u0)4 − 1

)

√
3/2

. (5.26)

The four form is just that in pure AdS. This metric clearly becomes AdS5 × S5 at large

u and has a deformation parameter u4
0 which has dimension four and no R-charge - this

parameter is naturally identified with TrF 2 in the gauge theory. Since TrF 2 is the

F-term of a chiral superfield supersymmetry is therefore broken in this gauge theory.

A crucial aspect of the geometry is that it is singular at u = u0 with the dilaton blowing

up. A singularity should be a source of unease and we do not have a full explanation

of it but we wish to argue there are number of ideas that suggest such geometries are

worthy of study none the less. The presence of D3 branes in the geometry do provide

sources that, in some non-supersymmetric configuration, might complete the geometry

(compare to the hard wall model where they account for the discontinuity between AdS

and flat space). The N=2∗ geometry [79] is also singular at a point where the effective

gauge coupling diverges - this geometry has been matched to the expected field theory
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solution at a particular point on moduli space [80]. This model provides evidence that

a divergent gauge coupling can show up as a divergence in the geometry.

Our real motivation for the continued study here though is the phenomenological suc-

cesses of the geometry. It has been shown to be confining in [66, 70] and to break chiral

symmetries when quarks are introduced [73] as we will discuss below. In this sense

we can think of it as a back reacted hard wall with the correct properties to describe

QCD-like physics.

5.3.3 Black hole geometry

Let us now turn to finding the high temperature phase of the dilaton flow geometry just

explored.

To have a solution with a horizon we will choose constants such that the function B goes

as a constant plus ln r near r = 0 (B̄ ∼
√

3/4 ln r). From (5.21) this gives the constraints

c2 =
√

3c3 , c4 = c3 . (5.27)

At this point we note that, with the definition of c3 (6c23 ≡ (1
4c

2
1 + 2c22)), c1 vanishes so

the dilaton profile in the non-extremal solution is just a constant. This result is a simple

example of a ‘no hair’ theorem. For another example in a four-dimensional context see

Appendix D.

We have learnt that there is no black hole solution with a radially dependent dilaton.

This means there is not a gravity dual of a high temperature theory with TrF 2 switched

on. One’s immediate response is to become worried that if the N = 4 gauge theory

cannot be perturbed by a vev for TrF 2 at finite temperature then the zero temperature

model is suspect. In fact though we believe it is telling us that the vev for TrF 2 is not

the fundamental perturbation but an operator induced by the dynamics. We will discuss

what the true perturbation might be in the next section.
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We are left with a unique black hole solution which in the unbarred quantities is thus

e2A =
c4
2

(

e2r + e−2r
)

(5.28)

B = ln

(

e4r − 1

e4r + 1

)

(5.29)

φ = φ0 . (5.30)

This geometry should describe the high temperature phase of the dilaton flow theory.

In fact by rescaling x4 to set c4 = 2u2
h and defining e2r =

u2+
√
u4−u4

h

u2
h

(which are asymp-

totically the same choices as for the dilaton flow geometry) this solution can be reduced

to the usual Poincaré coordinate form of five-dimensional AdS-Schwarzschild (5.4) with

Hawking temperature TH = uh
π . We conclude that the scalar mass deformed gauge the-

ory shares the same supergravity description at finite temperature as the unperturbed

N = 4 gauge theory! A similar conclusion was reached in [74] in the context of adding

a dilaton to the hard wall model.

5.4 The Origin Of Supersymmetry Breaking

We now turn to the question of the origin of supersymmetry breaking in the dilaton

flow geometry if TrF 2 is an induced operator as it appears it must be from the above

analysis.

Since supersymmetry is broken, yet SO(6)R preserved, in the T=0 geometry, we expect

all SO(6) invariant operators to be present. Amongst these SO(6) invariant operators

is an equal mass for each of the six scalar fields - one would expect the scalar masses

to rise to the scale of the supersymmetry breaking scale. Such an SO(6) invariant mass

is invisible in the supergravity solution for the same reasons as the SO(6) scalar vev

operator discussed above. A frequently argued interpretation of the fact that this source

is not described by a supergravity mode is that it is a super-irrelevant operator. The

vev for the scalar operator discussed in the hard wall model above would then be super-
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relevant; that is it would have no impact on the UV of the theory until suddenly at some

point in the IR it would dominate it - this can certainly be matched to its appearance

as a sharp IR cut off on the geometry. In this language one would expect the mass term

to show up as a sharp cut off on the space at some large radius or UV scale. Below

that scale it would naively have no impact on the dynamics. This is not quite true

though because it would define the symmetries of the theory below that UV cut off and

in particular leave a non-supersymmetric but SO(6) invariant flow at lower energies.

The dilaton flow geometry is the natural candidate for this flow. In this interpretation

one should cut off the dilaton flow at some point in the UV, although this point could

presumably be set at an arbitrarily high scale. In analogy with the hard wall model the

point where the cut off appears would be undetectable in the low energy flow.

The above seems a consistent interpretation but the supersymmetric N=1∗ [78] and

N=2∗ [79] theories suggest a more complicated story is also possible. In those theories

precisely the scalar mass discussed here is present in the Lagrangian of the gauge theory

yet no supergravity mode directly represents it in the supergravity duals. The scalar

mass must, by supersymmetry, be present and tied to the fermion masses (in superspace

there is only the one mass parameter) which are described by supergravity fields. The

flows for these fields show the mass term to be relevant. These are therefore examples

of theories with a relevant scalar mass present but no explicit dual operator to indicate

it. The Yang Mills∗ geometry [81] is a non-supersymmetric example - a fermion mass

term is introduced there yet the potential for a D3 probe shows there to be a scalar

mass present too. This is the simple way for us to test whether there is a scalar mass

present here - we look at the potential for moving a D3 probe in the transverse directions

of the dilaton flow geometry. The result is clear on simple dimensional grounds - the

asymptotic potential for the D3 motion must go like u4
0 (note the fourth power is the

lowest to occur in the metric) to some positive power so that it vanishes when u0 does.

We can only have a u dependent term of the form V ∼ u8
0/u

4 - there is no m2u2 term
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and so no explicit mass. The full D3 potential is given by

V ∼ u4A4 − u4 ∼ − u8
0

u4
, (5.31)

which is stable.

Presumably in the theories with fermion masses the scalar mass is continually regener-

ated through the RG flow whilst if only the scalar mass is present it flows to zero in

the IR. We conclude that in the dilaton flow geometry the scalar mass would indeed

only be visible through a sharp UV cut off as discussed above. This seems a consistent

interpretation to us and with this in mind we will go on to analyze the high temperature

transition in the dilaton flow geometry.

Note this geometry is also closely related to those of Constable and Myers [71] which

have in addition non-trivial u dependence in the four form - the existence of this larger

class of geometries suggest that there are multiple SO(6) invariant string modes that

are invisible in the supergravity and that determine the dynamics. In the field theory

one can imagine higher dimension operators and so forth that could play a role. These

geometries typically also show confinement and chiral symmetry breaking though [41].

5.5 Thermodynamic computation

One way to test our assertion that AdS-Schwarzschild is the high temperature phase

of the non-supersymmetric deformation of the N = 4 gauge theory is to check the

Hawking-Page phase transition makes sense. We will compute the Euclidean action for

both solutions, specifying a black hole horizon at u = uh and a dilaton flow singularity

at u = u0.

To make the comparison fair we must set the parameter c4 equal in the two geome-

tries so they have the same large-r AdS limit. We will perform the calculation in the

Schwarzschild-type coordinates, rescaling the Euclidean time coordinate for the dilaton
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5.5 Thermodynamic computation

flow geometry as for our hard-wall calculation. Both geometries asymptote to AdS5 so

we can set the same UV cut-off Λ in both cases, before taking the limit Λ → ∞.

Our interpretation above that the dilaton flow geometry is the IR theory below some

UV cut off associated with the presence of a scalar mass means that formally we should

keep the UV cut off fixed. We can though imagine that that scale is arbitrarily high. In

any case we will give the result for arbitrary Λ below.

The Euclidean action density per unit spatial volume for the black hole solution is

SBH = − 1

4πG5

∫ πL2

uh

0
dτ

∫ Λ

uh

√−g
(

1

4
R+

3

L2

)

dr . (5.32)

The trace of the Einstein equation gives R = − 20
L2 so

SBH =
1

2G5uhL3

∫ Λ

uh

u3du =
1

8G5uhL3

(

Λ4 − u4
h

)

. (5.33)

The Euclidean action density per unit spatial volume for the dilaton flow solution is,

having used the trace of the equation of motion to remove the scalar gradient term and

allowing for the rescaling of Euclidean time, simply

SDF =
1

2G5L2

∫ πL2

uh

r

1−
u4

h
Λ4

0
dτ

∫ Λ

u0

√−g dr . (5.34)

This is

SDF =
1

2G5uhL3

√

1 − u4
h

Λ4

∫ Λ

u0

(

u3 − u8
0

u5

)

dr

=
1

8G5uhL3

√

1 − u4
h

Λ4

(

Λ4 +
u8

0

Λ4
− 2u4

0

)

. (5.35)

Hence, in the Λ → ∞ limit, the difference in the actions is simply

SBH − SDF =
1

16G5uhL3

(

4u4
0 − u4

h

)

. (5.36)
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5.5 Thermodynamic computation

For a deformation scale u0 >
uh√

2
the dilaton flow solution is thermodynamically favoured

whereas for a deformation scale u0 <
uh√

2
the AdS-Schwarzschild solution is favoured.

The transition temperature is Tc =
√

2u0
πL2 .

The phase transition appears to make complete sense with our interpretation of the high

and low temperature phases. For temperatures below the value of the supersymmetry

breaking scale u0 (up to a factor of order unity) the non-supersymmetric SO(6) invariant

scalar mass deformed N = 4 gauge theory is described by the dilaton flow geometry with

an induced vev for TrF 2. As the temperature passes through the supersymmetry break-

ing scale there is a transition to the deconfined plasma described by AdS-Schwarzschild

- here the vev of TrF 2 is zero.

It is important to stress though that the computation above may not be complete. We

saw above that when the hard wall model was converted into a full string geometry a

Gibbons-Hawking term appeared at the IR singularity that played a crucial role in the

thermodynamics of the N = 4 theory on moduli space. One must worry that a similar

surface term might appear if the dilaton flow geometry were completed to a fuller string

theoretic understanding. In addition the negative term in our action computation is

dominated near the singularity and might also change were the singularity resolved in

someway. Within supergravity, our only available tool, it is hard to see how to address

these complications - it is encouraging though that the calculation as is does agree with

expected field theory intuition and the naive hard wall geometry as applied to QCD. It

is interesting to compare this case to the AdS-QCD models of [72] in which the action

computation is dominated away from the IR singularity - those theories may have better

control.

Another interesting point is that the supergravity computation naively suggests the

dilaton flow geometry’s action is lower than that of AdS! Our discussion of the ori-

gin of supersymmetry breaking though suggests this is not a correct comparison - we

have argued that the geometry only applies below some UV cut off corresponding to
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5.6 Aspects of the Phase Transition

the scale where a super-relevant scalar mass becomes important. It is an artefact of

supergravity that this cut off is invisible in the IR. Above that cut off the presence of

a non-normalizable mode would make the dilaton flow geometry’s action much greater

than the case of AdS extended to infinity. We do not expect the N = 4 theory to

spontaneously break supersymmetry. This does not affect our computation since both

the AdS Schwarzschild black hole and the dilaton flow geometry share the same UV (at

least if the cut off is far enough into the UV) and hence would see the same UV cut off

physics.

5.6 Aspects of the Phase Transition

The identification of AdS-Schwarzschild as the high T phase of a non-supersymmetric

theory and the dilaton flow as the low temperature phase of that same theory is quite

remarkable. Our findings go some way towards explaining why the AdS-Schwarzschild

gravity dual is a reasonable toy model of high-temperature QCD whereas the zero-

temperature supersymmetric D3-D7 model is quite unlike low-temperature QCD (it is

conformal, for example, when the quarks are massless). Both of the geometries have

been studied in detail already in the literature, including in the presence of quarks, and

we can look at a number of properties of the transition.

5.6.1 Glueballs

Below the critical temperature, the core of the dilaton flow geometry is repulsive to

strings. The result is that a Wilson line calculation shows there to be a linear quark-

antiquark potential as the string falls towards r = 0 before settling a little away from

the singularity at u0 [66, 73]. In keeping with the implied confinement there is a discrete

spectrum of glueballs which are the eigenmodes of the Klein-Gordon equation on the

geometry for the usual plane-wave (∝ eik·x4) ansätze. Table I shows the masses of the
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5.6 Aspects of the Phase Transition

lowest five scalar glueball states, in units of u0/L
2 (we can reproduce the field equations

for these fluctuations in [66] but disagree on the numerical values for the masses) 1

n 1 2 3 4 5

Mn 4.1 7.2 10.2 13.2 16.2

Table I: Lowest five glueball masses in the zero temperature dilaton flow geometry in

units of the deformation scale u0/L
2.

n ωn

1 ± 3.119452 - 2.746676 i

2 ± 5.169521 - 4.763570 i

3 ± 7.187931 - 6.769565 i

4 ± 9.197199 - 8.772481 i

5 ± 11.202676 - 10.774162 i

Table II: Lowest five glueball quasi-normal modes in the AdS-Schwarzschild geometry

in units of uh
L2 .

Above the critical temperature, the theory is in a deconfined phase. There is no longer

1The dilaton equation of motion is given by ∂u(u5
A

4∂uφ) + uA2M2φ = 0 (here we write u in

units of u0 and rescale x4 so that factors of L, u0 are common to the metric). The UV solutions

take the form φ ∼ c1 + c2/u4 with the latter being required for a glueball fluctuation. In the IR the

equation can be recast in Schrödinger form - we write u = 1+ z, then change coordinates to y such that

dy/dz = 1/(8z)1/4, and finally write φ = uv with 1
v

dv
dy

= −3/(8z)3/4. The potential is then of the form

V = −
1

4y2 . Such a potential is of the limiting form that possesses a discrete spectrum bounded from

below (see [94] or chapter 5 of [95]). The IR solutions, written in the original u coordinates are of the

form φ ∼ c3 + c4 ln (u − 1) - the former are the physical solutions, the latter blow up and are therefore

inconsistent with linearization. All of this is in complete agreement with the analytic discussion in [66]

and we can numerically shoot from both the IR and UV solutions to find the values of M for which

solutions match to the required UV and IR boundary conditions. We disagree with [66] on the numerical

values of these solutions though.
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5.6 Aspects of the Phase Transition

a spectrum of glueball normal modes, rather the gravity dual admits a spectrum of

unstable quasinormal modes which was calculated in [60]. The field theory interpretation

of the quasinormal spectrum is to give the mass and decay width for a glueball excitation

embedded in a thermal bath of SYM plasma. The finite decay timescale can be viewed as

the timescale for the ‘melting’ of the glueball state. The breaking of Lorentz symmetry

means there is a nontrivial dispersion relation ω(k) for a scalar glueball excitation [60].

Table II shows the lowest five quasinormal frequencies, which are measured in units of uh
L2

which is ∝ T - the natural scale of the lowest quasinormal frequency is the temperature.

We would of course expect the same features for the fermionic superpartners of glueballs,

with a discrete spectrum of masses in the confining phase and a quasinormal spectrum

in the deconfined phase as we found in the previous chapter. In both cases bosonic and

fermionic masses will not be degenerate as neither background is supersymmetric.

5.6.2 Quarks and mesons

Now that we have a candidate model which may describe a more QCD-like theory, a

natural thing to do is to study the behaviour of probe quarks in the theory. Following

the method outlined in chapter 3 let us consider adding a D7 brane into the geometry.

The action in the isotropic coordinates is

SD7 =

∫

d8ξ eφ
√−g =

(w4 + 1)

q

3
2
+1

(w4 − 1)

q

3
2
−1

ρ3

w8

√

1 + r′2 . (5.37)

The equation for the embedding can be solved and the crucial point is that the singluar

region of the geometry repels the D7 brane.

There is stable D7 brane embedding which describes a theory with zero current algebra

quark mass, shown in Fig.(5.1).

One can seek the spectra of mesonic excitations associated to this brane. One finds the
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ρ0.0

0.2
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0.6
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1.2

1.4

w6HΡL

Figure 5.1: Embedding with zero current algebra quark mass. Note the singularity is

shown as a quarter-circle here (the singularity is located on the circular locus ρ2+w2
6 = 1)

- this is an artifact of the isotropic coordinates as it actually has zero metric surface area.

degeneracy of masses lifted due to the fact that there is no supersymmetry.

Flavour degrees of freedom can be included by embedding D7 branes in each of the

geometries discussed [37, 38, 35] - the results to date in these geometries use the probe

or quenched limit [16]. The asymptotic profile of the D7 encodes the relationship between

the hard quark mass mq and the expectation value of the quark condensate 〈q̄q〉 [41].

Mesonic modes are dual to fluctuations derived from the DBI action of the D7 [40].

Below the critical temperature we find the probe D7 always wants to lie outside the

deformation scale of the dilaton flow geometry for the embeddings of physical interest

(usefully avoiding the singular region of the geometry). One finds there is a nonzero value

of 〈q̄q〉 = 1.51u3
0 for zero mq, indicating spontaneous breaking of a U(1)R symmetry of

the model (this symmetry is analogous to the axial U(1)A of QCD) - this is a nice

model of QCD-like behaviour since the dynamics of the quark condensate generation

is included even if the full non-abelian chiral symmetry breaking is not present. There

are discrete spectra corresponding to pion-like and sigma-like scalar excitations [70].

The lowest pion-like state is massless for mq = 0 and its mass grows in accordance

with the Gell-Mann-Oakes-Renner relation for small mq. In addition there is a tower of
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5.6 Aspects of the Phase Transition

massive vector meson excitations dual to the Maxwell field on the D7 worldvolume. The

numerical values for all these meson masses tend to the no-deformation result (equation

(3.19) in [40]) for large mq, that is M ∼ 2
√

2mq/L
2 - we list them in Table III and

display them in Fig.(5.4) in units of u0.

It is possible to obtain the effective Schrödinger potentials for the mesons. Because the

embedding is known only numerically we must proceed using numerical methods only.

The equation one (linearized ‘pion’ fluctuation) has is of the form

(

fφ′
)′

= gφ− λhφ . (5.38)

We change variables to y(x) where dy
dx =

√

h
f to yield

λφ = −d
2φ

dy2
+ p(x)

dφ

dy
+
g

h
φ , (5.39)

where p(x) = −
(

f
h
d2y
dx2 + f ′

h
dy
dx

)

(here f ′ is an x-derivative). Now writing φ ≡ uv with

2 d
dy (ln v) = p and noting v′′

v ≡
(

v′

v

)′
+
(

v′

v

)2
one obtains the Schrödinger potential as

V (x) =
p2

4
−
√

f

h

p′

2
+
g

h
, (5.40)

where p = −
(

f
h

(√

h
f

)′
+ f ′

h

√

h
f

)

(the primes are x-derivatives). This can be plotted

to give the potential as a function of the untransformed x-coordinate. A parametric plot

can give the potential as a function of the Schrödinger y-coordinate where dy
dx =

√

h
f is

solved numerically with y(0) = 0. The resulting potential should be compared with the

potential in the undeformed geometry for the same asymptotic quark mass (Figs.(5.2)

and (5.3)).

The reason you can have a massless pion ground state is the fact that the potential goes

below the axis for small quark masses in the deformed geometry.
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mq=10-3
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Figure 5.2: Schrödinger potentials for the pion in Ghoroku geometry for different quark

masses. The presence of the deformation stops the box becoming infinitely wide as the

hard quark mass is dialled to zero since an additional energy scale is introduced (the

‘QCD bag’). It also makes the potential dip down below zero, which is what gives the

zero-mass ground state.
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5.6 Aspects of the Phase Transition

It is possible to show that the potential returns to the ‘particle in a box’-like form for

D7 embeddings with current algebra mass much greater than the deformation scale.

0.0 0.2 0.4 0.6 0.8 1.0
y0

20

40

60

80

100

VHyL

0.0 0.1 0.2 0.3 0.4
y0

50

100

150

200

VHyL

Figure 5.3: Here we show that the Schrödinger potential in the Ghoroku geometry (the

non-symmetric curve) tends back to the undeformed box-like (symmetric) case as the

quark mass becomes large relative to the deformation scale (unity for our numerics).

The left hand plot shows the potentials for mq = 2 and the right hand plot for mq = 4.

mq MπL
2 MσL

2 MvectorL
2

0.10 0.7 3.1 2.9

0.50 1.9 3.5 3.3

1.00 3.1 4.1 3.9

2.00 5.7 6.0 6.0

3.00 8.5 8.6 8.6

4.00 11.3 11.4 11.4

Table III: the mass of the pion, sigma and rho meson modes as a function of the quark

mass in the low temperature dilaton flow geometry - all in units of u0.

Above the critical temperature the physically relevant D7 embeddings in the black hole

geometry [41, 92, 42, 43, 44, 93] give 〈q̄q〉 = 0 for mq = 0 - there is no chiral symmetry

breaking and hence no pion-like meson. The D7 can either end on the black hole horizon
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8
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12
M

Figure 5.4: Pion (lowest mass state for given quark mass), sigma (highest) and vector

(intermediate) masses as a function of quark mass - all in units of u0. The line shows

the large-mq limit.

(small mq) or for large enough mq it has sufficient tension to support itself away from

the black hole (Fig.(5.5))- there is a first-order phase transition in the behaviour of

(quenched) quark matter as one raises the quark mass in the plasma background. In

the former case there are quasinormal spectra representing the melting of scalar and

vector mesonic excitations in the hot background [53, 51, 57]. In the latter case there

are discrete spectra of scalar and vector meson masses with scale set by mq which tend

to the values in [40] as mq ≫ T . Our transition behaves in the same way as long as

the quarks are sufficiently light (mq < 0.92
√
λT
2 ) [51]. In the undeformed theory this

bound implies that the mesons melt once the temperature of the background becomes

of order the meson mass since the meson masses are ∼ mq√
λ
. In our case the pion-like

meson is an exception to this - one can have a massless pion that does not ‘melt’ until

the background reaches some finite temperature.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ρ

0.5

1.0

1.5

w6

Figure 5.5: D7 brane embeddings in the AdS-Schwarzschild geometry in isotropic co-

ordinates. They may either terminate on the horizon (shown as the quarter-circle at

ρ2 +w2
6 = 1

2) or wrap a contractible cycle that closes outside the horizon.

n ωn

1 ± 2.1988 - 1.7595 i

2 ± 4.2119 - 3.7749 i

3 ± 6.2155 - 5.7773 i

4 ± 8.2172 - 7.7781 i

5 ± 10.2181- 9.7785 i

Table IV: the scalar mesonic quasinormal frequencies in the high T phase (mq = 0) - in

units of uh
L2 .

There are recent results concerning a lower bound for the ratio of viscosity to entropy

density of a strongly-coupled field theory [91], η
s ≥ 1

4π , where the equality is for the

deconfined phase of N = 4 SYM theory (for a review see [83]). Our findings show that

strict equality also applies to certain non-supersymmetric theories in their deconfined

phase, physically due to the universality of this phase in the large-N limit.

We can perform an estimate of the deconfinement temperature in our model. The mass

of the lowest-lying vector state for zero quark mass can be compared to the mass of the
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ρ meson, experimentally 776 MeV. The vector mass is 2.80u0/L
2 and the deconfinement

temperature is Tc =
√

2u0
πL2 . This gives an estimate for the deconfinement temperature of

Tc ∼ 124 MeV. This is very similar to the estimate produced by the ‘hard-wall’ model

[77] and is somewhat low compared to real QCD.

Note that in addition to the well-understood operator deformations of the AdS/CFT

Correspondence one can also try to construct the gravity dual of real QCD in a bottom-

up fashion. An extremely simple example calculation can be found in Appendix E.

5.7 Conclusion

We have found the finite-temperature version of a chiral symmetry breaking dilaton flow.

Performing a calculation at the level of classical supergravity we found that for a temper-

ature sufficiently high that the black hole radius is greater than the deformation scale,

the geometry undergoes a first-order phase transition to the AdS-Schwarzschild geome-

try. From the gauge-theory perspective, we have argued that the dilaton flow solution

results from turning on a SO(6) invariant scalar mass deformation. This deformation is

not described by a SUGRA mode and is probably present only as a UV cut off that deter-

mines the symmetries of the IR theory, but one does observe that the non-trivial dilaton

profile describes a running coupling and the operator TrF 2 is ‘induced’. We have found

that at high temperature this does not happen and TrF 2 remains zero. Incorporating

other results already in the literature one can see that the transition corresponds not

just to a deconfinement transition but also a simultaneous chiral symmetry restoration

transition if (quenched) quarks are introduced into the theory. We believe this is the

simplest, four dimensional, AdS/CFT derived caricature of a QCD-like theory.

It may also be noted that essentially the same results apply to the system in one di-

mension fewer, with a low-temperature deformed AdS4 dilaton flow background and a

corresponding AdS4-Schwarzschild phase This presumably defines the phase transition
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of a 2 + 1-dimensional field theory. It is of somewhat less interest than the 3 + 1 di-

mensional field theory, for example there is no chiral symmetry for 2 + 1 dimensional

quarks.

Acknowledgements: During the production of the paper on which this chapter is

based, the authors had the benefit of comments from Johanna Erdmenger, Ingo Kirsch

and Kazuo Ghoroku.
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Chapter 6

Chemical potential in the D3 − D5

intersection

Recently there has been much interest in applying gauge-gravity duality to understand

problems in strongly-coupled condensed matter particularly non-BCS superconductivity.

Here we study probe D5 branes in D3 brane AdS5 and AdS5-Schwarzschild backgrounds

as a prototype dual description of strongly coupled 2+1 dimensional quasi-particles. We

introduce a chemical potential through the U(1)R symmetry group, U(1) baryon number

and a U(1) of isospin in the multi-flavour case. We find the appropriate D5 embeddings

in each case - the embeddings do not exhibit the spontaneous symmetry breaking that

would be needed for a superconductor. The isospin chemical potential does induce the

condensation of charged meson states.

6.1 Introduction

Recently there has been interest in whether the AdS/CFT Correspondence [13, 14, 15]

can be used to understand 2+1 dimensional condensed matter systems (for example
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[96, 17, 97, 98, 99, 100, 101]). The typical UV degrees of freedom in these systems are

electrons in the presence of a Fermi surface and a gauged U(1), QED. When brought

together in certain 2d states they can become relativistic and strongly coupled - possibly

such systems might induce superconductivity too by breaking the gauge symmetry. The

philosophy, which may be overly naive, is to find relativistic strongly coupled systems

that show these behaviours and hope they share some universality with the physical

systems. Whether or not that linkage becomes strong, it is interesting to study the AdS

duals of 2+1d systems.

In this chapter we will study the dynamics of the theory on the world volume of a mixed

D3 and D5 brane construction with a 2+1 dimensional intersection, which has previously

been studied at zero temperature in the absence of chemical potential in [102, 103, 104].

The gravity dual of the D3s, at zero temperature, is AdS5 × S5, which is dual to the

3+1 dimensional N = 4 super Yang Mills theory. Here these interactions will be used to

loosely represent strongly coupled “phonons”. We will introduce 2+1d “quasi-particles”

via D5 branes (with a 2+1d intersection with the D3s). Strings connecting the D3

and D5 branes should be expected to carry quantum numbers that interact with the

D3 brane background and flavour quantum numbers associated with the D5 branes -

the full field theory can be found in [104]. We will work in the probe approximation

for the D5 branes which corresponds to quenching quasi-particle loops in the phonon

background [16]. At zero chemical potential the theory has N = 4 supersymmetry and

at zero quasi-particle mass is conformal [102, 103, 104]. The system is related to the

higher dimensional D3-D7 intersection where the N = 4 gauge theory on the D3 branes

has been used to describe gluon dynamics and the D3-D7 strings quarks - some progress

in the study of the properties of mesons in 3+1d strongly coupled gauge theories has

been achieved [35]. The D3-D5 defect system seems a natural starting point therefore

for 2+1 dimensional systems.

To attempt to mimic a solid state system one must weakly gauge a U(1) symmetry of
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the system and introduce an associated chemical potential (by setting At = µ). There

are a number of possible U(1)s that can play this role.

Firstly the D3-D5 world volume theory has an unbroken SO(3) global symmetry corre-

sponding to rotations in the 4-plane transverse to the D5 brane. We will introduce a

chemical potential for the quasi-particles with respect to a U(1) subgroup of the SO(3)-

this can be done by simply spinning the D5 branes in an SO(2) plane [105]. The embed-

ding of the D5 brane is described by a scalar that is charged under this U(1) symmetry

so one naively expects to trigger superconductivity in the spirit described in [17] - but

here we would have an explicit understanding of the UV degrees of freedom the scalar

describes. Naively one expects the scalar describing the D5 embedding to be destabilized

by the presence of a chemical potential which gives the scalar a negative mass squared.

An equivalent statement is that one expects the centrifugal force associated with the

rotational motion of the brane to force it off the spin axis. In fact though, by finding

the minimum-area embedding for such spinning probe D5 branes, we show that this is

not the case.

The crucial physics is that the speed of light decreases as one moves into the centre of

AdS - eventually it becomes less than the rotation speed of the D5 brane. We show,

following the higher dimensional analysis in [105, 106, 108] that there are regular D5

embeddings into the interior which have a more complicated embedding structure. The

branes bend in the direction of the rotation so that there are two linked scalar fields

describing the embedding - this richer theory turns out to not include superconductivity,

a subtlety on top of the arguments in [17].

We can introduce mass terms for the quasi-particles that explicitly break the U(1) sym-

metry and we discuss the embeddings in these cases. There is a first order phase tran-

sition when the R-charge chemical potential grows above the mass of the quasi-particle

bound states - below the transition the quasi-particles exist as deconfined particles whilst

above it they are confined into bound states. This transition is analogous to the me-
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son melting transition seen in this system and the D3-D7 system at finite temperature

[41, 53, 51, 43]. We also analyze the finite temperature behaviour of these solutions by

using the AdS5 Schwarzschild geometry as the background.

Next we study a chemical potential for the U(1) associated with baryon number for the

quark fields - this seems the most natural candidate for how QED would manifest in the

effective relativistic theory of a solid state system. The U(1) appears in the gravity dual

as the U(1) gauge symmetry on the surface of the D5 branes - we allow configurations

with non-zero profiles for these fields on the D5. Here we are again led by results in the

D3-D7 system [109].

At zero temperature the presence of the gauge field on the brane naively adds in an

additional constraint on the solutions that that gauge field should be regular as the

brane passes from positive to negative values of the effective radial coordinate on the

brane. This criterion rules out small perturbations of the standard flat embeddings of

the D5 brane - instead the true solutions become ones where the D5 brane kinks through

the origin of the space. The kink, which for large quark mass is rather sharp, has been

interpreted in [109] as a tube of strings connecting the asymptotic branes. In [111] it

has been argued that an external charge could be responsible for the irregularity of the

gauge field and that the flat embeddings should be retained. In either interpretation,

amongst these configurations is one for zero quark mass which turns out to simply lie

straight through the origin of the space - the chemical potential does not induce any

R-charged operators to condense. The other fields on the D5 world volume carry no net

baryon number and so do not couple to the chemical potential - there is no condensation.

The system does not therefore act like a superconductor.

The finite temperature behaviour of these solutions with non-zero baryon number chem-

ical potential is also explored. The D5 brane embeddings kink on to the black hole event

horizon in this case. As in the D3-D7 case there is a first order phase transition be-

tween two different sorts of in-falling solutions which is analogous to the meson melting
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transition at finite temperature but zero chemical potential [41, 53, 51, 43].

Finally we turn to isospin chemical potential in the case of multiple (but still probe) D5

branes. This theory seems less relevant to solid state physics because the quasi-particles

have a U(2) flavour symmetry - electrons don’t! On the other hand it is natural to

discuss in this context and as advocated in [99, 97] may provide some lessons for p-

wave superconductors. The embeddings of any individual brane is simply the same as

for an equal magnitude baryonic chemical potential and there is no induced R-charge

breaking at zero quark mass. Where the theories differ is that there are vector bosons

(‘W±’) on the branes’ world volume that couple to the chemical potential - we work in

a truncated version of the DBI action that is just Yang Mills theory on the D5 world

volume. We show, with an analysis very similar to that of [99, 97] and recent work

in the D3-D7 system [112, 113], that below some critical value of the temperature the

W -bosons condense at a second order transition. This is dual to the formation of a spin

one condensate which is charged under U(1) isospin number in the gauge theory. Were

one to identify that U(1) with QED we would have a superconductor.

6.2 The D3 Theory

We will represent the strong interaction dynamics with the large N N = 4 super Yang

Mills theory on the surface of a stack of D3 branes. It is described at zero temperature

by AdS5 × S5

ds2 = (ρ2+r2)
L2 dx2

3+1

+ L2

(ρ2+r2)
(dρ2 + ρ2dΩ2

2 + dr2 + r2dΩ̃2
2) ,

(6.1)

where we have written the geometry to display the directions the D3 lie in (x3+1), those

we will embed the D5 on (x2+1, ρ and Ω2) and those transverse (r and Ω̃2). L is the

AdS radius.
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6.3 Quenched Matter from a D5 Probe At T=0

At finite temperature the description is given by the AdS-Schwarzschild black hole

ds2 =
u2

L2
(−h(u)dt2 + dx2

3) +
L2

u2h(u)
du2 + L2dΩ2

5 (6.2)

h(u) = 1 − u4
0

u4
. (6.3)

It is helpful to make the change of variables to isotropic coordinates

u du
√

u4 − u4
0

=
dw

w
, (6.4)

and choose the integration constant such that if u0 = 0 the zero-temperature geometry

is recovered

2w2 = u2 +
√

u4 − u4
0 . (6.5)

The metric can now be written as

ds2 = 1
L2

(

w2 +
u4
0

4w2

)



−
(

w4−u4
0
4

w4+
u4
0
4

)2

dt2 + dx2
3





+L2

w2

(

dρ2 + ρ2dΩ2
2 + dr2 + r2dΩ̃2

2

)

,

(6.6)

with w2 = ρ2 + r2, which shares the coordinate structure of (6.1).

6.3 Quenched Matter from a D5 Probe At T=0

We will introduce quenched matter via a probe D5 brane. The underlying brane config-

uration is as follows:

0 1 2 3 4 5 6 7 8 9

D3 - - - - • • • • • •
D5 - - - • - - - • • •
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6.4 R-Charge Chemical Potential/Spin

In polar coordinates the D5 fills the radial direction of AdS5 and is wrapped on a two

sphere.

The action for the D5 is just its world volume

S ∼ T

∫

d6ξ
√
−detG ∼

∫

dρ ρ2
√

1 + r′2 , (6.7)

where T is the tension and we have dropped angular factors on the two-sphere.

This is clearly minimized when r is constant so the D5 lies straight. The value of the

constant is the size of the mass gap for the quasi-particles. We will mainly be interested

in the conformal case where the constant is zero. Note the general large ρ solution is of

the form

r = m+
c

ρ
+ ... . (6.8)

Here m is an explicit mass term for the quasi-particles in the Lagrangian and c the

expectation value for a bi-quasi-particle operator - note m has dimension one and c

dimension two adding to three as required for a Lagrangian term in 2+1d. The solution

with non-zero c is not normalizable in pure AdS5. Note that when m = c = 0 the theory

is conformal. Including a non-zero m or c breaks the SO(3) symmetry ie it breaks one

transverse SO(2) symmetry. From this it is apparent that m and c carry charge under

that U(1). Were c to be non-zero when m = 0 it would be an order parameter for the

spontaneous breaking of the U(1) symmetry.

6.4 R-Charge Chemical Potential/Spin

Our theory as yet lacks the relevant perturbation of the Fermi surface and the U(1) of

QED. We will associate the U(1) with a subgroup of the SO(3) of the Ω̃2 - for concreteness

we will use the angle in the x7 − x8 directions.

To include a chemical potential we will spin the D5 brane in the angular direction φ of

this U(1) with angular speed µ.
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6.4 R-Charge Chemical Potential/Spin

The spinning of the D5 branes implies that the quasi-particles see a chemical potential.

This is in fact a little bit of a peculiar limit since the background D3 theory also has

fields, including scalars, charged under the U(1). We are not allowing that geometry to

backreact to the chemical potential. In fact we had better not - the pure D3 theory has

a moduli space for separating the D3s in the transverse 6-plane. Were we to set them

spinning they would scatter to infinity since there is no central force to support rotation.

In the theory on the D3 surface there is a run away Bose-Einstein condensation. We sim-

ply wish to switch off this physics - it is not what we are interested in - so we forbid such

backreaction. The D3 theory is in an unstable state but will nevertheless provide some

strongly coupled interactions for the quasi-particles that do see the chemical potential.

6.4.1 An Overly Naive Ansatz

We first look for solutions where the D5 embedding has φ = µt and we will allow the

position r (the radial distance in x7 − x8) to be a function of ρ. The action is

S ∼
∫

dρ ρ2

√

(1 + r′2)(1 − L4

(ρ2 + r2)2
r2µ2) . (6.9)

Naively one is expecting the centrifugal force from the spinning to eject the brane from

the axis at all but the end points where the boundary conditions hold the brane. This

would lead to a spontaneous symmetry breaking or superconducting state. We will see

that this is what this naive system tries to achieve.

The equation of motion for r as a function of ρ is easily computed but unrevealing. At

large ρ the solutions tend to the no-rotation limit r ∼ m+ c
ρ .

The (pair of) circle(s) in the (ρ, r) plane described by L4µ2r2 = (ρ2 + r2)2 is clearly a

zero of the action so branes wrapped there provide a solution to the equation of motion.

Anything going within the locus described by the two circles is moving faster than the

local speed of light and is presumably not physical. This locus is a stationary limit

surface - we call it the ergosurface below.
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6.4 R-Charge Chemical Potential/Spin

There exist “Karch-Katz” type solutions [16] for D5-branes that do not encounter the

stationary limit surface - these solutions essentially lie flat above everything plotted in

Fig.1. We want to know what happens to those which have a close encounter with the

ergosurface. It turns out that the curves which minimize the action like to hit the surface

at a right angle. They then kink onto the surface where they can have zero action.

The relation between m and c for curves impacting on the stationary limit surface

in this way is shown in Fig.(6.1) - the presence of non-zero c at m = 0 appears to

indicate spontaneous breaking of the U(1) symmetry ie superconductivity. Note there

is a first order phase transition between the Karch-Katz embeddings and those hitting

the ergosurface - we will discuss this transition further below.
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Figure 6.1: Embeddings of D5 branes impacting on the ergosurface and some of the

Karch-Katz type embeddings (note these actually exist down to the top of the ergosur-

face) (top). At the bottom is a plot of c vsm for embeddings impacting on the ergosurface

(circles) and Karch-Katz embeddings (squares). The solutions oscillate around the value

for the lowest Karch-Katz solution as the D5 approaches the very top of the ergosurface.

The problem of course here is that the solutions are singular at the ergosurface where

they kink. This is a sign that our ansatz is wrong - none of this is the right physics.
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6.4 R-Charge Chemical Potential/Spin

6.4.2 A More Sophisticated Ansatz

We will now try a more sophisticated ansatz where the brane has in addition some

profile φ(w) where φ is the angle on which they spin (ie φ = µt+ φ(w)). The ansatz is

inspired by the work in [106] where similar issues are encountered when a magnetic field

is switched on on the brane’s world-volume.

We find it numerically convenient to switch coordinates and write the AdS geometry as

ds2 = w2

L2 dx
2
3+1 + L2

w2

(

dw2

+w2
(

dθ2 + sin2 θdΩ2
2 + cos2 θdΩ̃2

2

))

.

(6.10)

The D5 will now be embedded in the x2+1, w and Ω2 directions - the naive solutions

above are recovered by looking for solutions that have θ(w) and φ = µt where φ is the

‘first’ angle of the Ω̃2.

In these coordinates the Lagrangian for our more ambitious ansatz for the rotating D5

embedding is

L = w2 sin2 θ×

√

(

1 − L4µ2 cos2 θ
w2

)

(1 +w2θ′2) + w2 cos2 θ φ′2 .

(6.11)

If φ′ ∼ µ the two µ2 terms compete against each other removing the naive intuition

about centrifugal force.

Since the action only depends on φ′ and not φ one can integrate the equation of motion

for φ′. One could then substitute back in for φ′ in terms of the integration constant -

this though gives an action with a “zero over zero” form at the ergosurface that is hard

to work with. Instead, following [106, 107], we Legendre transform to L′ ≡ L − φ′ ∂L∂φ′ .
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6.4 R-Charge Chemical Potential/Spin

This gives (setting ∂L
∂φ′ = J)

L′ = 1
w cos θ

√

(

1 − L4µ2 cos2 θ
w2

)

√

(1 + w2θ′2)

×
√

(

w6 sin4 θ cos2 θ − J2
)

.

(6.12)

This has a “zero times zero” form at the ergosurface which is simpler to work with

numerically.

For a solution that crosses the ergosurface we demand that the action be positive every-

where and this fixes J - the two terms must pass through zero and switch signs together.

Having fixed J in this way one can then look at the θ equation of motion near the er-

gosurface. Expanding near the surface, and after some algebra, one finds the following

consistency equation for the θ derivative

-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0
Ρ
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1.5

2.0

rHΡL

Figure 6.2: A selection of solution curves for D5 embeddings. The grey region is the

interior of the ergosurface.
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6.4 R-Charge Chemical Potential/Spin

Figure 6.3: A particular solution curve in the three dimensional (w, θ, φ) subspace. The

torus represents the ergosurface. Note the D5 rotates at speed µ in the φ direction

(around the symmetry axis).

w2 θ′2 + tan θ w θ′ − 1 = 0 (6.13)

There are thus two allowed gradients at the ergosurface. In fact numerically we find

choosing any gradient focuses on to the same flow both within and outside the ergosur-

face. We can numerically shoot in and out from a point near the ergosurface in order to

generate regular embeddings.

In the three-dimensional (w, θ, φ) subspace the ergosurface is the torus given by L2µ cos θ =

±w, which in a plane of constant φ gives two adjacent circles of radius µL2

2 . Fig.(6.2)

shows a sequence of regular solutions in the (ρ, r(ρ)) coordinates of the previous section.

To obtain regular solutions one should make an odd continuation to the negative quad-

rant as shown. We show a full D5 embedding in Fig.(6.3) with both the θ(w) and φ(w)

dependence plotted - note the D5 rotates at speed µ in the φ direction (around the axis

of the torus).
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Figure 6.4: A plot of c vs m for embeddings smoothly penetrating the ergosurface

(circles) and Karch-Katz embeddings (squares). The solutions again oscillate around

the value for the lowest Karch-Katz solution as the D5 approaches the very top of the

ergosurface indicating a first order transition.

Clearly there is no spontaneous symmetry breaking in these solutions - the solutions

smoothly map onto the solution which lies along the axis as the mass parameter m

is taken to zero. In the field theory presumably the conformal symmetry breaking

parameter (µ) which might trigger symmetry breaking is the same parameter as that

telling us there’s a plasma density cutting off the theory - there’s no room for dynamics.

This model turns out not to be an example of the behaviour studied in [17].

The presence of a non-trivial profile φ(w) for the embeddings that penetrate the er-

gosurface indicates on the field theory side of the duality that there is a vev for the

scalar field associated with the phase of the condensate c - this would be the Goldstone

mode if there were spontaneous symmetry breaking. Note that the regular Karch Katz

embeddings, away from the ergosurface, have φ(w) constant so there is no such vev.

Again we see there is a first order transition between the Karch-Katz type solutions and

those that enter the ergosurface region. We plot the values of c vs m for these solutions

in Fig.(6.4) - it shows the same spiral structure around the first order transition as we

saw with the naive ansatz. We will discuss the meaning of this transition below in the

thermal context.
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6.4 R-Charge Chemical Potential/Spin

6.4.3 Thermal behaviour

One can perform the same analysis in the thermal background. Writing b4 ≡ u4
0
4 , there

is again a torus-like ergosurface given by the equation

L2µ cos θ = ± 1

w

w4 − b4√
w4 + b4

, (6.14)

and also a spherical horizon at w = b. One finds the horizon always lies within the

ergosurface because the local speed of light is zero at the horizon. Note, below we find

no phase transition when raising the temperature through the scale of the chemical

potential. There would be a transition from a runaway Bose-Einstein condensation to a

stable theory were we to allow the chemical potential to backreact on the geometry.

One can form the Legendre-transformed Lagrangian (which recovers the T = 0 case for

b = 0)

L = 1
wcθ

w4+b4

w4−b4

√

(w4−b4)2
w4(w4+b4)

(

1 − L4µ2c2θw
2 (w4+b4)

(w4−b4)2)

)

√

(1 + w2θ′2)

√

(

s4θc
2
θ

(w4−b4)2
w2 − J2 w4

w4+b4

)

.

(6.15)

The embeddings which extremize the action fall into two types - Karch-Katz type em-

beddings and those which hit the ergosurface. Fluctuations of the former would reveal

a bound state spectrum. The latter embeddings inevitably fall onto the event horizon

(a selection of these is plotted in Fig.(6.5) for u0 = 1). In addition for these embeddings

that pass through the ergosurface gtt switches sign on the world volume - the ergosur-

face acts like a horizon for the world volume fields [108]. Here fluctuations would have

a quasinormal spectrum along the lines of [51].

There is therefore a first order transition in the behaviour of the theory as the quasi-

particle mass goes through the scale of the chemical potential or temperature. This

transformation is explored in detail in [108]. Note here it seems the transition is always

a meson melting transition at finite temperature. At zero temperature the transition is
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Figure 6.5: A selection of solution curves for D5 branes in the thermal geometry (with

u0 = 1). The grey region is the interior of the ergosurface and the black region is the

interior of the event horizon.

driven by quantum rather than thermal fluctuations and has been described in terms of

a metal-insulator transition in [110].

6.4.4 The D3-D7 System

Much of the above parallels results already found in the D3-D7 system [105, 108]. That

system describes an N = 2 3+1d gauge theory with fundamental matter hypermultiplets

in the gauge background of N = 4 super Yang-Mills theory. In [105] an analysis similar

to our “naive ansatz” was performed suggesting spontaneous symmetry breaking. Those

authors have since refined their analysis in a related system with a background electric

field [106] and concluded that if regular embeddings are insisted upon the symmetry

breaking is not present (see also [107]). Were they to update [105] they would find

embeddings analogous to our D5 embeddings above as they indicate in [108].
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6.5 Baryon number chemical potential

Another, and perhaps the most likely, way in which to embed the U(1) symmetry of QED

into the brane set up is through the quasi-particle number global symmetry (essentially

baryon number). The conserved vector current and its source, which is effectively a

background gauge field configuration for this symmetry, manifest holographically as the

U(1) gauge symmetry living on the world volume of the D5 brane. We can introduce

a chemical potential for baryon number by switching on a constant At component for

this U(1) gauge field. We will study the embeddings of such a configuration at zero and

non-zero temperature. Much of this analysis again mirrors that for the D3/D7 system

which can be found in [109].

6.5.1 Zero temperature

The DBI action for the D5 brane including the surface gauge field is

S ∼ T5

∫

d6ξ
√

det(P [Gab] + 2πα′Fab) . (6.16)

We consider embeddings of the D5 brane in the ρ−r plane with in addition 2πα′A0(ρ) =

A(ρ) to represent the chemical potential. The action is then of the form

L ∼ ρ2
√

1 + r′2 −A′2 . (6.17)

Since the action is independent of A the equation of motion for A implies ∂L
∂A′ is a

constant, Q. We find

A′2 = Q2 1 + r′2

ρ4 +Q2
. (6.18)

It is useful to perform a Legendre transform again (L′ = L −A′ ∂L
∂A′ ) and work with

L′ =
√

(1 + r′2)(ρ4 +Q2) . (6.19)

146



6.5 Baryon number chemical potential

The r-independence again gives a simple equation for the embedding that is

r′ =
c1

√

ρ4 +Q2 − c21
, (6.20)

with c1 a constant.
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Figure 6.6: Embeddings with a baryon number chemical potential for Q = 0.1 at T = 0

with with nonzero c1. As c1 approaches the numerical value of the charge Q the quark

mass can be made arbitrarily large.
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Figure 6.7: Plot of parameters c, proportional to the condensate, versus m proportional

to the quark mass in the case of baryon chemical potential for Q = 0.1.

To interpret this equation it is helpful to initially turn off the chemical potential, Q = 0.

It is then clear that the solutions are singular at ρ =
√
c1 and the only regular case is

c1 = 0 so that r′ = 0 - we recover the usual flat embeddings.

When we allow non-zero Q there become a bigger set of regular solutions - those with

c1 ≤ Q. These solutions are plotted in Fig.(6.6) for varying c1 and provide an alternative
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embedding, that crosses through the origin, for each value ofm in the large ρ asymptotics

of the embedding. In [109] it was argued (in the D3-D7 case) that these are the true

embeddings when there is a surface gauge field on the brane. We can see that the flat

embeddings (c1 = 0) are not regular from (6.18)- they have a none zero gradient A′ at

ρ = 0 so there will be a kink in the A field as it crosses over the r axis. For the solutions

that pass through the origin though the A field is regular. In [111] it has been argued

that the irregular solutions should be maintained with the irregularity interpreted as the

presence of an external source.

As can be seen from Fig.(6.6), whichever interpretation is taken, the embedding for the

case of massless quarks is unchanged from the usual flat embedding. The embedding

does not therefore spontaneously break any symmetry with the introduction of a baryon

chemical potential. Away from m = 0 for the case of the regular embeddings the

embeddings do change and there is a condensate present. From (6.20) we can see that

up to a sign c1 is just the asymptotic parameter c that determines the condensate. For

small c1 the quark mass grows linearly but as c1 approaches Q m rises sharply - the

resulting plot of c vs m therefore shows that the condensate asymptotes to a constant

value for large mass - see Fig.(6.7).

Another possible source of spontaneous breaking would be if the gauge field vev on the

D5 led to other fields in the D5 brane world volume condensing. In fact though all

the fields on the D5 are in the adjoint representation of, generically, a U(Nf ) flavour

symmetry. Adjoint fields of the U(1) of baryon number are chargeless and hence have

no interaction with the gauge field. There is no possibility for such condensation and

the system is not superconducting.
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6.5.2 Finite temperature

We can also study the theory with baryon number chemical potential at finite tempera-

ture by finding D5 embeddings with a non-zero surface At gauge field in the black hole

geometry (6.6). We again set b4 ≡ u4
0
4 .

The DBI Lagrangian for such an embedding is

L = ρ2w
4 + b4

w2

√

1

w4

(w4 − b4)2

(w4 + b4)
(1 + r′2) −A′2 . (6.21)

This time we have the gauge field

A′2 =
Q2 1

w4

(

(w4−b4)2
(w4+b4)

)

(

1 + r′2
)

ρ4
(

w4+b4

w4

)2
+Q2

. (6.22)

The Legendre-transformed version of the Lagrangian is

L′ =

√

√

√

√

1

w4

(w4 − b4)2

w4 + b4
(1 + r′2)

(

ρ4

(

w4 + b4

w4

)2

+Q2

)

. (6.23)

One can shoot out from the horizon attempting to fill out the m parameter space asymp-

totically. The solutions are very similar to those in the D3-D7 case as outlined in [109]

and see also [110]. There is no spontaneous symmetry breaking. There is a first order

phase transition between the large m embeddings, that are essentially flat except for a

spike down onto the black hole, and smoother embeddings that fall into the black hole

at lower m (some embeddings are shown in Fig.(6.8)). This transition persists until

the chemical potential becomes large, where there is no transition and the two phases

coexist. In Fig.(6.9) we plot the quark condensate, c versus quark mass, m, for varying

values of Q (which determines the chemical potential) around the critical value of Q

where the phase transition between “spike” embeddings and smooth horizon entering

embeddings ends. The disappearance of the phase transition is evident - the physics

closely resembles that in the D3-D7 case discussed in detail in [109].
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Figure 6.8: Embeddings of the D5 branes for Q = 0.1 baryon chemical potential in units

of the black hole temperature.

6.6 Isospin chemical potential

The final possible source of a chemical potential in the D3-D5 set up is from the isospin

symmetry present when there are two or more flavours of quasi-particle (D5) present.

In contrast to the discussion of baryon number above, there are clearly operators which

carry isospin charge eg. 〈ψ̄γ0τ3ψ〉. These can be expected to condense at zero isospin

chemical potential and break the symmetry spontaneously in the spirit of the zero tem-

perature work in [114] and the phenomenological holographic model of p-wave conden-

sation in [99, 97]. Here we will work first at finite temperature and only consider the

case of zero quark mass - the embeddings of the branes are identical to those above for

baryon number, where one uses the modulus of the isospin as the chemical potential,

so at zero quark mass the D5s lie straight along the axis as shown in Figure 6. The

mesons of the theory are therefore melted by the thermal bath but the operators can

nevertheless condense. One is perhaps making a departure from any obvious connection

to a solid state system at this point since one would require a system with a U(2) or

greater flavour symmetry on the quasi-particles - presumably there is only one sort of
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Figure 6.9: Plot of the quark condensate, c versus quark mass, m, for varying values of

Q (which determines the baryon number chemical potential) around the critical value of

Q where the phase transition between “spike” embeddings (the top of the s-shape) and

smooth horizon entering embeddings ends (lower part of the s-shape).

electron in a solid state system!

The full theory of flavours on the D5 brane is expected to be unstable in the presence

of a chemical potential at zero temperature. The situation is analogous to the D3-D7

system discussed in [115] - the squarks have a moduli space in the gauge theory at zero

temperature and chemcial potential which shows up on the gravity side as a moduli

space for the size of instanton configurations on the D7 (here D5s) world-volume [116].

An isospin chemical potential will induce a negative mass squared for the scalars forcing

the vev or instanton size to infinity. We will simply neglect this runaway behaviour here,

fix the scalar vevs to zero and study the fermionic operators of the theory - hopefully

this tells us about the behaviour of a theory with fermions but no scalars.

The full DBI action to all orders in the surface gauge field is not fully known - an attempt

to use the full DBI on a similar problem in the D3-D7 set up has recently appeared [112].

We though will follow the path of the D3-D7 analysis in [113] and just use the first order

expansion of the action

S ∼ T5

∫

d6ξ
√
−detG

(

1 − 1

4
Tr
(

F 2
)

)

. (6.24)

We expect this action to represent the dynamics well.
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6.6 Isospin chemical potential

We will write the ansatz for the gauge fields as

A = Φ(ρ)τ3dt+ w(ρ)τ1dx1 , (6.25)

as in [99]. The coordinate representation of the Yang-Mills equation is

∂ρ
(√−gF ρνi

)

= −gYM
(

δimδjl − δilδjm
)

AjµA
µlAνm . (6.26)

For our ansatz there are two equations of motion

(√−gg00grrΦ′)′ = gYM
√−gg00g11w2Φ (6.27)

(√−gg11grrw′)′ = gYM
√−gg00g11Φ2w . (6.28)

Restricting ourselves to a massless quark D5 brane so the induced brane metric is given

by isotropic AdS-Schwarzschild, the equations are (having absorbed factors of gYM and

L into the definitions of the fields)

(

(r4 + 1)
3
2

r4 − 1
Φ′
)′

= +

√
r4 + 1

r4 − 1
w2Φ (6.29)

(

r4 − 1√
r4 + 1

w′
)′

= −
√
r4 + 1

r4 − 1
Φ2w . (6.30)

In the isotropic coordinates one should shoot out from a small displacement x from the

horizon using the initial condition w = w0 and Φ = Φ2x
2 for constants w0 and Φ2. Near

the boundary of AdS the solutions behave as

Φ ∼ µ− ρ

r
(6.31)

w ∼ µ′ +
c

r
. (6.32)

We search for solutions which have µ′ = 0 because these are solutions which are normal-

izable and hence describe a condensate of the charged mesonic operator. Requiring this

to be the case one can solve the coupled nonlinear equations to yield multiple branches

of solutions. The lowest, monotonic branch is presumably the stable solution and for
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6.6 Isospin chemical potential

these solutions one can plot the dependence of the condensate on the chemical potential.

Since the quarks we put in were massless, the only two scales are the chemical poten-

tial and the temperature and so large chemical potential can be equivalently viewed as

low-temperature.

The results are plotted in Fig.(6.10) - for µ ≪ T there is no condensation. For large

µ though there is a second order phase transition to a phase with a charged vector

condensate. The behaviour is similar to that previously observed in [99, 97, 113, 112].

As µ/T goes to infinity the condensate c tends to a finite constant (≈ 0.3) when measured

in units of µ2, which is similar to the behaviour found in [113] for a pair of D7 probe

branes - in their 3+1 dimensional theory the condensate tends to a constant in units of

µ3.
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Figure 6.10: Plot of the charged vector condensate (the parameter c from (6.31)) in

units of chemical potential squared versus 1/µ in the case of isospin chemical potential

at zero quark mass.
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6.7 Summary

6.7 Summary

We have proposed probe D5 branes in D3 brane backgrounds as a plausible dual for

a strongly coupled quasi-particle theory in 2+1 dimensions - at zero temperature and

chemical potential the theory is supersymmetric and conformal. We introduced a chem-

ical potential with respect to the global U(1) symmetries associated with R-charge and

baryon number and found the resulting regular D5 embeddings. These embeddings do

not display spontaneous symmetry breaking and, indeed, at zero temperature and zero

intrinsic mass the theory is essentially indifferent to the chemical potential remaining as

a state of conformal quasi-particles.

For the R-charge case we show a first order phase transition in the massive theory as the

quasi-particle mass crosses the value of the chemical potential - on one side the quasi-

particles are confined on the other they are not. At finite temperature the transition is

between solutions that fall into the black hole and those that don’t.

At finite temperature in the baryon number case there is also a phase transition be-

tween two different black hole embeddings which is the equivalent of the meson melting

transition at finite temperature but zero chemical potential. If the chemical potential

becomes too large then the transition ceases to occur for any quark mass.

Finally we introduced isospin chemical potential in the case of two probe D5 branes

and reproduced the second order transition to a phase with a charged vector condensate

previously seen in other systems in [99, 97, 113, 112]

We hope that these explorations will form a useful platform from which to find a holo-

graphic model of some real solid state system. We note that many of the transport

properties of this system have also been recently explored in [117].
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Appendix A

A rotating string in flat spacetime

Consider the static-gauge ansatz

X0 = l τ (A.1)

X1 = l cos σ cos τ (A.2)

X2 = l cos σ sin τ (A.3)

X3 = 0 . (A.4)

We will fix the gauge by demanding the independent world-sheet metric to be flat two-

dimensional Minkowski space-time. In order to show the above ansatz extremizes the

Polyakov action note that the coordinates satisfy the Klein-Gordon equation

∇2Xµ ≡
(

− ∂2

∂τ2
+

∂2

∂σ2

)

Xµ = 0 . (A.5)

The condition ∂Xµ

∂σ = 0 is satisfied at the endpoints σ = 0, π and the σ coordinate covers

the string once.
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The constraint equation can be verified by noting that the induced metric on the world-

sheet, hab ≡ ∂aX
µ∂bXµ is given by

hab = l2 sin2 σ





−1 ·
· 1



 . (A.6)

Noting that the independent worldsheet metric is just

γab =





−1 ·
· 1



 (A.7)

allows one to quickly verify that the equation hab − 1
2γabγ

cdhcd = 0 is satisfied.

The energy of the string can be calculated as
∫

dσP0 = l
2α which has the interpretation of

length times tension. The angular momentum evaluates to J3 =
∫

dσ (X1P2 −X2P1) =

l2

4α′2 giving the relation J3 = α′E2. The parameter α′ is therefore referred to as the

Regge slope.

The solution has of course all the features of Lorentz invariance (for example if boosted

in the X3 direction the speed of spinning slows down since end points must move at

light speed!).
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Appendix B

Back-reaction in the hydrogenic

atom

One can wonder about the effect of the charge of the electron in the hydrogen atom

solution - if treated as a classical wave the electron ought to feel its own field, which

would be expected to result in a very loosely-bound electron (much less well-bound than

in the usual Schrödinger model). In a classical treatment the field equations are to be

derived from the Lagrangian (for simplicity our electron is a charged scalar here)

L =
(

∇̃aφ
)∗

∇̃aφ+m2φ∗φ− 1

4
F 2 . (B.1)

The derivative operator in the above equation is the gauge covariant derivative (∇̃a ≡
∇a − ieAa). The equation of motion for the scalar is

∇a (∇a − ieAa)φ = m2φ+ ieAa (∇a − ieAa)φ . (B.2)

If we allow for back reaction we must compensate the gauge potential for the presence

of the oppositely charged scalar field. For a spherically-symmetric state and harmonic
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time dependence, φ(r)e−iωt one has

∇2A0 = −Ze
ǫ0c

(

δ(x) − 1

Z
φ2

)

. (B.3)

One solves the problem perturbatively by means of the expansion in 1
Z (this will be good

for highly-charged nuclei)

φ → φ+
1

Z
φ̃ (B.4)

ω → ω +
1

Z
ω̃ (B.5)

e

~
A0 → −Υ

r
+

1

Z
Ã0 . (B.6)

Here Υ ≡ Zα is a parameter we keep fixed. Perturbation theory gives us a consistent

way to implement the computation of finding how the electron field behaves in a given

potential, then how that electron field changes the potential, then how that change to

the potential affects the electron field and so forth. Inserting into the Maxwell equation

one has

∇2

(

−Υ

r
+

1

Z
Ã0

)

= −4πΥ

(

δ(x) − 1

Z
φ2

)

. (B.7)

Since ∇2
(

1
r

)

= 4πδ(x) the zero-order equation is clearly satisfied. At the next order in

1
Z one has

∇2Ã0 = 4πΥφ2 . (B.8)

The physical interpretation of this is that is a correction to the electrostatic potential

sourced by the zero-order electron field φ. Since the zero-order wave function is known

this can be solved by the method of Green’s functions to obtain Ã0 (particularly easy

as here spherically-symmetric and Gauss’ law can be applied).
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Putting the perturbative expansion into the Klein-Gordon equation one obtains at zero-

order

ω2φ+
1

r2
(r2φ′)′ = m2φ− 2Υ

r
ωφ− Υ2

r2
φ , (B.9)

and at first order

ω2φ̃+
1

r2
(r2φ̃′)′ −m2φ̃+

2Υ

r
ωφ̃+

Υ2

r2
φ̃ = −2

(

ω +
2Υ

r

)

(

ω̃ − Ã0

)

φ . (B.10)

Note setting φ̃ to the original φ makes the left hand side vanish (in that case the tilde

quantities on the right hand side would make that side vanish also).

At least in the limit of a non-relativistic electron moving in the background field of a

much heavier particle these classical backreaction effects actually do not matter since

the effective description is a particle moving in the background Coulomb potential with

no backreaction. The argument that the electron’s own field is as strong as the proton

in hydrogen is irrelevant since the true physics is whatever limit of QED one is in, and

not classical electrodynamics. The removal of backreaction in atoms is therefore an

extremely important quantum effect!
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Appendix C

Scalar quasinormal modes of a

Schwarzschild black hole

The dumbest ‘quantum gravity’ problem imaginable is to consider a Schrödinger atom

with the 1
r2

electrostatic force replaced by the Newtonian 1
r2

gravitational force. By

solving the Klein-Gordon equation on the Schwarzschild background, it is possible to

address the relativistic version of this problem.

Start with the Schwarzschild metric

ds2 = −f(r)c2dt2 +
1

f(r)
dr2 + r2

(

dθ2 + sin2 θdϕ2
)

, (C.1)

where f(r) ≡ 1 − 2GM
c2r

.

Now doing the transformation cdt = cdτ − β(r)dr and requiring the dτ = 0 spacelike

sections look like flat spacetime (thus giving β =
√

2GM
c2r

1
1− 2GM

c2r

) one obtains the metric

in ingoing Painleve-Gullstrand coordinates [52] (τ is the time as measured by an infalling

massive observer starting at rest at infinity)
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ds2 = −fc2dτ2 +

√

8GM

c2r
cdτdr + dr2 + r2dΩ2

2 . (C.2)

The equation we consider is
(

∇2 − m2c2

~2

)

φ = 0 which has the coordinate representation

1√−g∂a
(√−ggab∂bφ

)

− m2c2

~2
φ = 0 . (C.3)

For time dependence φ ∝ e−iωτ and assuming a spherically-symmetric state (it is easy

to put in nonzero angular momentum l,m) one obtains

(

r2fφ′
)′ − i

ω

c

√

2GM

c2

(

2r
3
2φ′ +

3

2

√
rφ

)

+ r2
(

ω2

c2
− m2c2

~2

)

φ = 0 . (C.4)

We rescale to x ≡ r
r0

with r0 = 2GM
c2

and set ω = mc2

~
ω0 so ω0 is a dimensionless

frequency. Then defining the dimensionless gravitational coupling αG ≡ GMm
~c ≡ Mm

M2
Pl

one obtains the equation

(

x2fφ′
)′ − 2iω0 αG

(

2x
3
2φ′ +

3

2

√
xφ

)

+ 4α2
Gx

2
(

ω2
0 − 1

)

φ = 0 . (C.5)

As usual when using the ingoing coordinates, ingoing modes at the horizon are described

by a regular Taylor series which we use as initial condition and shoot out from the hori-

zon. At large x the state is a spherical wave modulated by either a growing exponential

(non normalizable) or, for a discrete set of complex frequencies, a decaying exponential.

The latter are the ‘bound states’. The tightest-bound states are shown in Fig.(C.1).

It is easy to obtain a picture of the Schrödinger potential for the black hole bound states

problem. In the usual Schwarzschild coordinates the Klein-Gordon equation takes the

form

(

x(x− 1)φ′
)′

= 4α2
Gx

2

(

1 − ω2
0x

x− 1

)

φ . (C.6)
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Figure C.1: Left hand figure shows the lowest four quasinormal frequencies in the com-

plex ω plane for α = 0.5, converging on mc2

~
(= 1 in the units used). On the right is a

scan of the ω plane where the logarithm of the field at large radius is plotted - the ‘pits’

show normalizable solutions where the field vanishes at infinity.

To bring this into the form of a canonical Schrödinger equation one should change

variables such that dy
dx = 2αGx

x−1 . This is satisfied by y
2αG

= x + ln(x − 1) which is the

‘Regge-Wheeler tortoise coordinate’. This can be inverted to give x = 1+PL
(

e
y

2αG
−1
)

where PL is the product-log function.

One obtains the following equation in the transformed variable

d2φ

dy2
+

1

αG

x− 1

x2

dφ

dy
=

(

x

x− 1
− ω2

0

)

φ . (C.7)

To complete the transformation we put φ = uv and set the term ∝ u′ zero. This

determines v = 1
x and the Schrödinger potential is

V (x) = 1 − 1

x
+

1

4α2
G

x− 1

x4
. (C.8)

The variable y is on the interval (−∞,∞) where the negative infinity corresponds to

the black hole horizon and the positive infinity to the asymptotically-flat region. In

Fig.(C.2) the potential is shown for αG = 0.1 (top curve) to 0.35 (bottom curve) in the
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Schrödinger variable y. The ‘bound states’ sit in the dip but decay by tunnelling into

the horizon which is located at y = −∞.

-4 -2 0 2 4 6 8 10
y

0.5

1.0

1.5

2.0

2.5
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Figure C.2: Schrödinger potentials for the scalar in a Schwarzschild black hole back-

ground.

The problem we have looked at here does actually have a known solution - in the

Schwarzschild coordinates the equation obtained is technically a singly-confluent Heun

equation. In (C.6) put φ = (x−1)qe−kxζ and choose k2 = 4α2
G(1−ω2

0) and q = −2iαGω0

to reduce to the canonical form of the singly-confluent Heun equation (two regular sin-

gular points and one irregular)

ζ ′′+

(

−2k +
1

x
+

2q + 1

x− 1

)

ζ ′+

(

−k + q

x
+
q − k(2q + 1) − 4α2

G + 8α2
Gω

2
0

x− 1

)

ζ = 0 (C.9)

which should be compared to the canonical form for the singly-confluent Heun equation

H ′′ +

(

α+
β + 1

x
+
γ + 1

x− 1

)

H ′ +

(

µ

x
+

ν

x− 1

)

H = 0 . (C.10)

There does not seem to be a closed form solution for the eigenvalues though one can

obtain a solution via the continued-fraction method. There is a closed form solution
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for the eigenvalues of the confluent hypergeometric equation (which has one fewer reg-

ular singular point) which gives for the energy levels of a charged scalar in a Coulomb

background, with p(p− 1) + Z2α2 = 0 and n = 0, 1, 2, ...

~ω =
mc2

√

1 + p2α2

(p+n)2

. (C.11)
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Appendix D

Dilaton flows in

asymptotically-flat geometry

The Schwarzschild solution in four dimensions is very well-known. In fact there is a very

simple generalization to Einstein gravity coupled to a massless scalar field. Let us seek

static, spherically-symmetric solutions to the Einstein and Klein-Gordon equations in

four dimensions with zero cosmological term

Rab = l2P
(

∇aφ∇bφ+m2gabφ
2
)

(D.1)

∇2φ = m2φ . (D.2)

Using the ansatz ds2 = −fdt2 + 1
f dr

2 +R2dΩ2
2 one has, setting the scalar field mass to

zero
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1

2
f

(

2f ′R′

R
+ f ′′

)

= 0 (D.3)

−2f ′R′ +Rf ′′ + 4fR′′

2fR
= l2P φ

′2 (D.4)

1 − fR′2 −R(f ′R′ + fR′′) = 0 (D.5)

(

R2fφ′
)′

= 0 . (D.6)

A simple solution can be found for f = 1 which is just

R =
√

(r − r+)(r − r−) (D.7)

φ = φ0 +
1√
2lP

ln

(

r − r+
r − r−

)

. (D.8)

This is a solution with no mass, but non-zero scalar charge (for r+ 6= r−). If instead we

keep f general it is possible to obtain the equation (with δ an arbitrary constant and lP

set to unity)

2f ′′ + 4f ′ − f

(

f ′′

f ′

)2

= −2δ2
f ′2

f
. (D.9)

This looks nasty but can be easily solved with f ≡ ey to yield (using dimensional analysis

to restore the Planck length)

f =

(

1 − 2l2PM∆

r

)
1
∆

(D.10)

R = r

(

1 − 2l2PM∆

r

)
∆−1
2∆

(D.11)

φ = φ0 +
δ

∆ lP
ln

(

1 − 2l2PM∆

r

)

. (D.12)
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Here ∆ ≡
√

1 + 2δ2. This is clearly the generalization of the Schwarzschild solution

(δ = 0) to include a massless scalar - the (Komar) mass is M and the scalar charge

q = 2lPMδ (in fact the above f = 1 solution can be recovered by setting M∆ to a

constant and taking ∆ → ∞, equivalent to maintaining constant scalar charge while

letting the mass go to zero). If there is a nontrivial scalar present (δ 6= 0), instead of a

horizon of finite area it has a true singularity of apparently zero metric area - this is the

same sort of thing we found in AdS in the main text. This solution was actually found

long ago [75].
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Appendix E

Bottom-up models - cooking the

dilaton

It’s not difficult to cook up models which return whatever spectrum you like - these can

then be interpreted as the glueballs or mesons of the theory. For example, suppose we

wanted to put in a dilaton giving a linear Regge trajectory with a massless mode at the

bottom (inviting the interpretation as a trajectory with the pion at the bottom and then

a tower of excited states).

We take the Klein-Gordon equation with background dilaton Φ to be

∂a

(√−ggabeΦ∂bφ
)

= 0 . (E.1)

In AdS5 the metric is

ds2 =
r2

L2
dx2

4 + L2dr
2

r2
. (E.2)

Transforming to Ω2 = ω2L4 one has the Klein-Gordon equation with background dilaton

169



on this background

φ′′ + (5 ln r + Φ)′ φ′ +
Ω2

r4
φ = 0 . (E.3)

Changing variables to x = 1
r one has

φ′′ +

(

−3

x
+ Φ′

)

φ′ + Ω2φ = 0 . (E.4)

Now setting φ = uv with v = x
3
2 e−

Φ
2 one obtains the Schrödinger potential for the

problem

VS =
15

4x2
+

1

2
Φ′′ − 3

2x
Φ′ +

1

4
Φ′2 . (E.5)

One the half-space x ≥ 0 we want a quadratic potential with a constant subtracted

(assume if we’re on the half-space one loses the even modes... odd ones have a node at

end of the half-space) so it has a massless lowest mode (pion...) so VS = 1
2ω

2x2 − ω. So

we must solve

Φ′′ − 3

x
Φ′ +

1

2
Φ′2 = 2

(

− 15

4x2
+

1

2
ω2x2 − ω

)

. (E.6)

We can reduce to a linear equation using Φ = 2 ln y yielding

y′′ − 3

x
y′ =

(

− 15

4x2
+

1

2
ω2x2 − ω

)

y . (E.7)

Now put y = xpeqf where p2 − 4p + 15
4 = 0 and q = − ω√

8
x2. One obtains

f ′′ +

(

−
√

2ωx+
2p− 3

x

)

f ′ +

(

q′′ +
2p− 3

x
q′ + ω

)

f = 0 . (E.8)
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One of the roots of the quadratic for p is p = 3
2 - it seems obvious to choose this root.

Then changing variable to u = ω√
2
x2 the equation is

u
d2f

du2
+

(

1

2
− u

)

df

du
− 1 −

√
2

4
f = 0 . (E.9)

This is the confluent hypergeometric equation zf ′′ + (c− z)y′ − ay = 0 and one solution

is 1F1

(

1−
√

2
4 , 1

2 ; ω√
2
x2
)

. So the dilaton needed is

Φ = 3 lnx− ω√
2
x2 + 2 ln

(

1F1

(

1 −
√

2

4
,
1

2
;
ω√
2
x2

))

, (E.10)

or in terms of the original AdS r-coordinate (plotted in Fig.(E.1)),

Φ = −3 ln r − ω√
2

1

r2
+ 2 ln

(

1F1

(

1 −
√

2

4
,
1

2
;
ω√
2

1

r2

))

. (E.11)

Some far more sophisticated versions of this approach have been used in order to con-

struct models of the dual to real QCD in a bottom-up fashion [90]. These models fall

short of the brane models in that there is no understanding of what the UV degrees of

freedom are and also that they are not actually solutions to the supergravity equations.

There is a ‘hand of god’ keeping the background dilaton profile and geometry stable.
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Figure E.1: Plot of background dilaton required to give a linearly-spaced tower of glueball

states in AdS with the lowest state being massless. Here the spacing parameter ω has

been set to unity.
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