
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

NOVEL COUNTERMEASURES AND TECHNIQUES FOR

DIFFERENTIAL POWER ANALYSIS

By

John Goodwin

A thesis submitted for the degree of Doctor of Philosophy

School of Electronics and Computer Science,

University of Southampton,

United Kingdom.

August, 2009

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Novel Countermeasures and Techniques for Differential Power Analysis

by John Goodwin

Research in the last few years has indicated that, despite modern algorithms being

secure against all published mathematical attacks and being far too complex to break by

brute force, secret key data can be gathered by monitoring the power consumption. This

is known as a power analysis attack, the most successful has been differential power

analysis (DPA). Several countermeasures have been proposed for preventing power

analysis attacks with varying degrees of efficacy. One thing all the countermeasures

have in common is their large cost in terms of performance and or cost. In this thesis

several modifications to the AES algorithm are proposed that seek to inherently secure

it against DPA and their effectiveness and cost are investigated.

Due to the statistical nature of DPA there is no set amount of power consumption

data that will always give the correct result for a given device, rather, a value for the

SNR and the number of power measurements involved in the attack will equate to a

probability of success. In this thesis a statistical model of the DPA attack is derived and

it is used to find a method for calculating the probability that a particular attack will be

successful.

A more benign use for DPA is also discussed. If the signature of a specific pattern

of register transitions can be detected in the power consumption of a device then

designers can add hardware whose sole purpose is to be detectable in a power trace and

act as a watermark to prove the presence of intellectual property.

Contents

Chapter 1 Introduction ... 1

1.1 Motivation .. 1

1.2 Objectives .. 2

1.3 Thesis Structure ... 3

Chapter 2 Background ... 5

2.1 Introduction .. 5

2.2 History of cryptography ... 6

2.2.1 Classical ciphers... 6

2.2.2 Development of Poly-alphabet Ciphers ... 8

2.2.3 Adoption of Poly-Alphabet Ciphers .. 9

2.2.4 World War 1 .. 11

2.2.5 Post World War 1 and the Development of the Enigma 12

2.2.6 Cracking Enigma ... 13

2.2.7 Modern Cryptography .. 17

2.2.7.1 Block Ciphers .. 18

2.2.7.2 Public Key.. 19

2.2.7.3 The Digital Revolution .. 20

2.2.7.4 Side Channel Attacks ... 22

2.2.8 Conclusion ... 23

Chapter 3 Block Ciphers .. 24

3.1 Introduction .. 24

3.2 Basic Concepts in Cryptography ... 24

3.2.1 Cryptographic Methods ... 24

3.2.1.1 Symmetric Key Algorithms ... 25

3.2.1.1.1 Block Ciphers ... 26

3.2.1.1.2 Stream Ciphers .. 26

3.2.1.2 Asymmetric Key Algorithms ... 26

3.2.1.3 Cryptographic Hash Functions .. 27

3.2.2 Cryptanalysis Methods... 27

3.3 Block Ciphers... 29

3.3.1 Confusion and diffusion ... 29

 iii

3.3.1.1 Quantifying Confusion and Diffusion 30

3.3.2 Block Cipher Structure .. 30

3.3.3 Cryptographic Modes of Operation ... 32

3.3.3.1 Electronic Code Book .. 32

3.3.3.2 Cipher Block Chaining .. 32

3.3.3.3 Cipher Feedback .. 33

3.3.3.4 Output Feedback .. 34

3.3.3.5 Counter... 34

3.3.3.6 Initialisation Vector ... 35

3.3.3.7 Summary of Modes of operation ... 35

3.4 Data Encryption Standard .. 36

3.4.1 Introduction .. 36

3.4.2 Structure of DES .. 36

3.4.3 Security of DES ... 38

3.4.3.1 Theoretical Attacks .. 38

3.4.3.2 Brute Force Attacks ... 39

3.4.3.3 Conclusion ... 40

3.5 Triple DES ... 40

3.5.1 Introduction .. 40

3.5.2 Structure of Triple DES ... 40

3.5.3 Security of Triple DES... 41

3.6 Advanced Encryption Standard ... 42

3.6.1 Introduction .. 42

3.6.2 Finite Field Mathematics ... 43

3.6.2.1 GF (28) and AES .. 44

3.6.3 Sub Bytes ... 45

3.6.4 Shift Rows .. 45

3.6.5 Mix Columns ... 45

3.6.6 Add Key ... 46

3.6.7 Key Expansion ... 47

3.6.8 Inverse Cipher .. 48

3.6.9 Implementing the Algorithm.. 49

3.6.9.1 Shift Rows.. 49

3.6.9.2 Sub Bytes ... 49

3.6.9.3 Add Key ... 52

 iv

3.6.9.4 Mix Columns ... 52

3.6.9.5 Multiplication... 52

3.6.9.6 Key Scheduler .. 53

3.6.9.7 Pipelining ... 54

3.6.10 Reported Performance of Hardware Implementations 55

3.6.11 Testing and Validation of AES .. 57

3.6.12 Security of AES ... 58

3.7 Conclusion ... 58

Chapter 4 Security of Algorithms .. 60

4.1 Introduction .. 60

4.2 Security of AES ... 61

4.2.1 The Square Attack.. 61

4.2.2 The Security of the Key Schedules .. 62

4.2.2.1 Analysis of AES Key Schedule ... 63

4.2.2.2 Improved AES Key Schedule .. 65

4.3 Power Analysis Attacks ... 67

4.3.1 Simple Power Analysis .. 67

4.3.2 Differential Power Analysis ... 68

4.3.2.1 Leakage Based Differential Power Analysis 69

4.3.2.2 Correlation as the Statistical Test in DPA 69

4.3.2.3 Choice of Target in Differential Power Analysis 71

4.3.3 Inferential Power Analysis ... 73

4.3.4 High-Order DPA .. 75

4.3.5 Mathematics of Differential Power Analysis 76

4.3.5.1 Statistics of Secret Leakage ... 77

4.3.5.2 Lower Bound for the Number of Traces Needed to Perform DPA

 80

4.3.5.3 S-Boxes and DPA .. 82

4.3.6 Signal Processing Techniques.. 86

4.3.7 Other Uses for Power Analysis .. 87

4.3.8 Countermeasures .. 88

4.3.8.1 Balanced Logic .. 88

4.3.8.1.1 Sense Amplifier Based Logic ... 89

4.3.8.1.2 Clock-less AES Design ... 90

4.3.8.1.3 Efficacy ... 91

 v

4.3.8.1.4 Efficiency .. 92

4.3.8.1.5 Conclusion .. 92

4.3.8.2 Hiding Intermediate Values ... 93

4.3.8.2.1 Duplication Method .. 93

4.3.8.2.2 Masking .. 94

4.3.8.2.3 Efficacy ... 95

4.3.8.2.4 Efficiency .. 95

4.3.8.2.5 Conclusion .. 97

4.3.8.3 Dynamic Voltage and Frequency Switching 98

4.3.8.3.1 Efficacy ... 98

4.3.8.3.2 Efficiency .. 99

4.3.8.3.3 Conclusion .. 99

4.3.8.4 High Order DPA Countermeasures ... 99

4.3.8.5 Summary of Power Analysis Countermeasures....................... 100

4.3.8.6 Conclusion ... 101

4.4 Conclusion ... 102

Chapter 5 Recording and Analysing Power Data and Benchmark DPA

Results 104

5.1 Introduction .. 104

5.2 AES Core ... 104

5.2.1 Modules.. 105

5.2.1.1 Sub Bytes ... 105

5.2.1.2 Mix Columns ... 105

5.2.1.3 Key Scheduler .. 106

5.2.2 Architectures .. 106

5.3 Performing a Correlation Attack .. 107

5.3.1 Simulation .. 107

5.3.1.1 FPGA Power Estimation .. 108

5.3.1.2 Matlab Simulations of the Consumption Model 109

5.3.2 Performing a Correlation Attack on an FPGA 111

5.3.3 DPA Software .. 113

5.4 Effects of the Position of the Target Register on Correlation Attacks 116

5.5 Conclusion ... 120

Chapter 6 The Statistics of Differential Power Analysis 122

6.1 Introduction .. 122

 vi

6.2 Statistical Model of DPA ... 123

6.2.1 Introduction .. 123

6.2.2 Statistical Model of DPA ... 124

6.2.2.1 Correlation with the Correct Key... 126

6.2.2.2 Correlation with the Incorrect Key .. 126

6.2.2.2.1 Mean ... 127

6.2.2.2.2 Standard Deviation ... 128

6.2.2.2.3 Correlation between the Correct and Error distributions .. 128

6.2.2.3 Summary of the Model .. 129

6.3 Predicting Success ... 130

6.3.1 Calculating the Other Variables ... 131

6.3.2 Testing the Formula ... 131

6.4 Relative DPA Susceptibility of Keys ... 132

6.5 Protecting Intellectual Property Using a DPA Detectable Watermark 134

6.5.1 Introduction .. 134

6.5.2 Power Consumption Watermarks .. 134

6.5.2.1 Adding a Watermark .. 134

6.5.2.2 Measuring Power Consumption... 134

6.5.3 Detecting the Watermark ... 135

6.5.3.1 Summary of method... 135

6.5.3.2 Experimental Results ... 136

6.5.3.3 Type I and II Errors ... 137

6.5.4 Calculating the Number of Traces if the Population Correlation is

Known ... 138

6.5.5 How much area should be given to the watermarking hardware? . 139

6.5.6 Conclusion ... 140

6.6 Conclusion ... 141

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 143

7.1 Introduction .. 143

7.2 AES Algorithm Alterations.. 144

7.2.1 Strengthened Key Schedule ... 144

7.2.1.1 Effects on the Efficiency of the Algorithm 145

7.2.1.2 Attack on a Simulated System ... 145

7.2.1.3 Conclusion ... 148

7.2.2 Addition of Initial Diffusion .. 148

 vii

7.2.2.1 Effects on the Efficiency of the Algorithm 150

7.2.2.2 Attack on a Simulated System ... 150

7.2.2.3 Conclusion ... 151

7.2.3 Perpetually Expanding Key Schedule .. 152

7.2.3.1 Effects on the Efficiency of the Algorithm 152

7.2.3.2 Attack on a Simulated System ... 154

7.2.3.3 Attack on a Physical System .. 155

7.2.3.4 Conclusion ... 156

7.2.4 Summary of Results ... 157

7.3 TDES.. 158

7.3.1.1 Attack on TDES ... 158

7.3.2 Modified TDES .. 159

7.3.3 Effect on Efficiency ... 160

7.3.4 Attack on a Simulated System ... 161

7.3.5 Conclusion ... 162

7.4 Application of Perpetual Key Schedule to Other Algorithms 162

7.4.1 Key Schedules of Modern Algorithms .. 163

7.4.1.1 MARS .. 163

7.4.1.1.1 Key schedule description .. 163

7.4.1.1.2 Analysis .. 164

7.4.1.2 RC6 .. 165

7.4.1.2.1 Key schedule description .. 165

7.4.1.2.2 Analysis .. 166

7.4.1.3 Serpent ... 166

7.4.1.3.1 Key schedule description .. 166

7.4.1.3.2 Analysis .. 167

7.4.1.4 MISTY 1 .. 168

7.4.1.4.1 Key schedule description .. 168

7.4.1.4.2 Analysis .. 168

7.4.1.5 Camellia ... 169

7.4.1.5.1 Key schedule description .. 169

7.4.1.5.2 Analysis .. 170

7.4.1.6 Hierocrypt-3 ... 170

7.4.1.6.1 Key schedule description .. 170

7.4.1.6.2 Analysis .. 171

 viii

7.4.1.7 ARIA .. 172

7.4.1.7.1 Key schedule description .. 172

7.4.1.7.2 Analysis .. 173

7.4.2 Application of Perpetual Key Schedule to Other Algorithms 173

7.4.2.1 Initialisation vs. Iterative ... 173

7.4.2.2 Reuse of Cryptographic Primitives .. 174

7.4.3 Conclusion ... 175

7.5 Case Study: ARIA.. 175

7.5.1 Design of Key Schedule... 176

7.5.2 Efficiency of Implementation .. 178

7.5.3 Countermeasure Efficacy ... 178

7.5.4 Conclusion ... 180

7.6 Improved Modified TDES ... 181

7.6.1 Design of Key Schedule... 181

7.6.2 Efficiency of Implementation .. 183

7.6.3 Countermeasure Efficacy ... 184

7.6.4 Conclusion ... 185

7.7 Conclusion ... 185

Chapter 8 Summary .. 187

Chapter 9 Conclusion and Future Work .. 192

9.1 Conclusion ... 192

9.2 Summary of Contributions ... 193

9.3 Future Work ... 194

9.3.1 A method for calculating the probability that a set of results from a

DPA attack gives the correct value. .. 194

9.3.2 A method for estimating the SNR of a system using only the results

from a relatively small set of DPA results .. 194

9.3.3 Improving the accuracy of DPA by tuning the power consumption

model to a particular device. ... 196

List of Figures

Figure 3-1: An example of an encrypted communication. .. 25

Figure 3-2: The structure of a Feistel cipher. ... 31

Figure 3-3: Block diagram of the ECB cryptographic mode of operation. 32

Figure 3-4: Block diagram of the CBC cryptographic mode of operation. 33

Figure 3-5: Block diagram of the CFB cryptographic mode of operation. 33

Figure 3-6: Block diagram of the OFB cryptographic mode of operation. 34

Figure 3-7: Block diagram of the CBC cryptographic mode of operation. 35

Figure 3-8: The overall structure of DES and its round function. 37

Figure 3-9 : The Structure of TDES for EEE Encryption (a), EDE Encryption (b) and

decryption (c). .. 41

Figure 3-10: The structure of the forward and inverse AES algorithm. 42

Figure 3-11: An example of a state. ... 43

Figure 3-12: An example multiplication in GF (28)... 44

Figure 3-13: The effect of the Shift Rows operation. .. 45

Figure 3-14: The matrices for the encryption and decryption versions of the Mix

Columns operation in hexadecimal. ... 46

Figure 3-15: An example of the Add Key operation in AES. .. 46

Figure 3-16: Examples of the key matrices for the three different key lengths in AES. 47

Figure 3-17: The constant RCON. ... 48

Figure 3-18: Example of the expansion of the first two columns of the first round key

of a 128-bit key. ... 48

Figure 3-19: An example Binary Decision Diagram and associated Truth Table. 50

Figure 3-20: Calculating the multiplicative inverse in GF (28) using GF (24). 51

Figure 3-21: The speed area trade-off for different s-boxes using a 1.8-µm technology.

[45] ... 51

 x

Figure 3-22: The Area-throughput trade-off for a 1.8-µm AES implementation. [45] . 55

Figure 4-1: Pseudo-code for the improved AES key schedule [30]. 65

Figure 4-2: Diagram showing the predictability and fullness of registers at different

points in AES. .. 72

Figure 4-3: The basic design of DDL AND and OR gates and their respective truth

tables. ... 89

Figure 4-4: A WDDL Flip-Flop with pre-charge inputs. [25] 90

Figure 5-1: Graph showing the correlation of the 256 key guesses for a correlation

attack on the power estimation of an AES FPGA with 1,000 traces. 109

Figure 5-2: Graph showing the correlation of the 256 key guesses for the Matlab model

of a correlation attack on AES. .. 110

Figure 5-3: Graph showing the correlation of the 65,536 key guesses for the Matlab

model of a correlation attack on 2 bytes of AES (2B 7E) with 1,000 traces. 111

Figure 5-4: Correlation for all possible key values for an attack on a single AES s-box

on an FPGA with 10,000 traces. .. 112

Figure 5-5: The correlation for all possible key values after 30,000 traces while

attacking the first byte of the first sub-key of AES before the s-box. 113

Figure 5-6: GUI for the program that controls the transferral of data between the

oscilloscope and the PC. .. 114

Figure 5-7: GUI for the DPA analysis program when attacking simulated power data.

.. 115

Figure 5-8: GUI for the DPA analysis program when attacking FPGA power data. .. 115

Figure 5-9: Graph showing the correlation of the 256 key guesses for the Matlab model

of a 1,000 trace correlation attack on AES targeting the algorithm after the S-Box.

.. 117

Figure 5-10: Correlation of the 256 key guesses for a 30,000 trace correlation attack on

an FPGA AES implementation, targeting the algorithm after the s-box. 117

Figure 5-11: Graph showing the correlation of the 65,536 key guesses for the Matlab

model of a post s-box correlation attack on 2 bytes of AES (2B 7E) with 1,000

traces. ... 118

 xi

Figure 5-12: Graphs showing the results of a correlation when the attack targets the

incorrect side of the s-box, the graph on the left targets post s-box and the graph

on the right targets pre s-box, in both cases the correct key, 43, is not represented

by the highest peak... 119

Figure 5-13: Correlation of all 256 key guesses for 3 different numbers of traces

arranged in descending order. .. 120

Figure 6-1: A graph showing the probability of successfully retrieving a key byte

against the number of traces taken in simulation calculating 16 and 32 bytes

concurrently. .. 123

Figure 6-2: Distribution of correlations from the correct key guess using different

numbers of traces. .. 126

Figure 6-3: The correlation of Correct and Error and the model curve versus

PercentSignal ... 129

Figure 6-4: The probability of successfully retrieving a key using DPA for the different

possible values of the key. ... 133

Figure 6-5 : A graph illustrating the effect of increasing the number of samples of the

ease of detecting a watermark .. 137

Figure 6-6: A graph illustrating the requirements for rejecting the null hypothesis at the

0.05 level 90% of the time when the population correlation is known................ 139

Figure 7-1: Graph showing the correlation after 1000 traces of the 256 key guesses for

a DPA attack on a Modelsim simulation of an FPGA running AES with a

strengthened key schedule targeting the first byte of the first round key before the

s-box. .. 146

Figure 7-2: Graph showing the correlation after 1000 traces of the 256 key guesses for

a DPA attack on a Modelsim simulation of an FPGA running AES with a

strengthened key schedule targeting the first byte of the first round key after the s-

box.. 146

Figure 7-3: Graph showing the correlation after 1000 traces of the 256 key guesses for

a DPA attack on a Modelsim simulation of an FPGA running AES with a

strengthened key schedule targeting the first byte of the second round key before

the s-box. .. 147

 xii

Figure 7-4: Graph showing the correlation after 1000 traces of the 256 key guesses for

a DPA attack on a Modelsim simulation of an FPGA running AES with a

strengthened key schedule targeting the first byte of the second round key after the

s-box. .. 148

Figure 7-5: Diagram showing the structure of the algorithm with extra initial diffusion.

.. 149

Figure 7-6: Graph of the correlation for each key guess when attacking the first byte of

the sub-key of AES with additional diffusion using the normal DPA algorithm. 150

Figure 7-7: Graph of the correlation for each key guess when attacking the first byte of

the sub-key of AES with additional diffusion using a DPA algorithm that assumes

the attacker known the other sub-key bytes in the column. 151

Figure 7-8: Graph of the correlation for each key guess when attacking the first byte of

the sub-key of AES with a perpetually expanding key schedule before the s-box

using the normal DPA algorithm with 4096 traces. ... 154

Figure 7-9: Graph of the correlation for each key guess when attacking the first byte of

the sub-key of AES with a perpetually expanding key schedule after the s-box

using the normal DPA algorithm with 4096 traces. ... 155

Figure 7-10: Graph of the correlation for each key guess when attacking the first byte

of the sub-key of AES with a perpetually expanding key schedule after the s-box

using the normal DPA algorithm with 45,000 traces. .. 156

Figure 7-11: The correlation for each key guess in the first key section in the first DES

block of TDES with 1,000 traces. .. 158

Figure 7-12: Correlation for all 64 key guesses for an attack on a Modelsim simulation

of a modified TDES system with 4,096 traces. ... 161

Figure 7-13: Pseudo-code for the key schedule of the MARS algorithm. 164

Figure 7-14: Pseudcode for the bit mixing of the key schedule of RC6. 165

Figure 7-15: The structure of the Heirocrypt-3 key schedule. 171

Figure 7-16: Graph showing the correlation of the 256 key guesses for a 1,000 trace

DPA attack on a Modelsim simulation of an FPGA running ARIA.................... 179

Figure 7-17 : Graph showing the correlation of the 256 key guesses for a 1,000 trace

DPA attack on a Modelsim simulation of an FPGA running ARIA.................... 180

 xiii

Figure 7-18 : The correlation for all 64 possible key values of the first 6-bit word of the

first round key for the second version of the modified TDES. 184

Figure 9-1 : The standard deviation of DPA results vs SNR for the results from Matlab

simulations and a model of the relationship. ... 195

 xiv

List of Tables

Table 3-1: The DES Expansion function. .. 37

Table 3-2: The DES Permutation function. ... 38

Table 3-3: The equations for a generic 8-bit by 4-bit GF (28) multiplier. 52

Table 3-4: The bits that must be XORed together to calculate each bit for the constant

multipliers. ... 53

Table 3-5: Reported ASIC implementation performances. ... 56

Table 3-6: Reported FPGA implementation results... 57

Table 4-1: AES key schedule Crypt-X statistical test results [30]................................. 64

Table 4-2: AES cipher Crypt-X statistical test results [30]. .. 64

Table 4-3: Crypt-X results for the new 128-bit key schedule [30]. 66

Table 4-4: Crypt-X results for 128-bit AES with new key schedule [30] 66

Table 4-5: Crypt-X results for normal AES [30]. .. 66

Table 4-6: A table comparing the area, speed and random bit requirements for masked

and unmasked implementations of the AES s-box [23]... 97

Table 4-7: Summary of DPA countermeasures. .. 101

Table 5-1: Details of the various s-box implementations. ... 105

Table 5-2: Details of the various Mix Columns implementations. 106

Table 5-3: Details of the various Key Scheduler implementations. 106

Table 5-4: The performance results from the various AES implementations. 107

Table 6-1: Summary of the simulation results. .. 136

Table 6-2: The number of samples required to detect a watermark using a given

percentage of the hardware with a 90% accuracy. ... 140

Table 7-1: A summary of the performance of different implementation s of modified

AES with a perpetually expanding key schedule. .. 153

Table 7-2: Summary of results for DPA attacks on Modelsim simulations of AES. .. 157

 xv

Table 7-3 : Arrangemet of keys for the Modified TDES. .. 160

Table 7-4 : Summary of speed and area requirements for the standard and modified

TDES when synthesised to a Virtex-E 1000.. 161

Table 7-5 definitions of the round keys for AIRA ... 177

Table 7-6 : Details of the area, clock-speed and throughput for the different versions of

ARIA: with and without decryption and DPA resistance 178

Table 7-7: The combination of intermediate keys that makes up the round keys for the

second version of the modified TDES. .. 183

Table 7-8: The area requirements, clock-speeds and throughputs of the three different

versions of TDES. .. 184

 xvi

Acknowledgements

There were lots of people who contributed to this thesis either directly or

indirectly. While they all deserve my thanks, I’m only going to single a few out here.

Firstly, my supervisor Peter Wilson provided me with near constant support and always

gave me considered feedback and replied promptly to my more panicked emails.

I’d like to thank everyone in the ESD lab, especially Karthik Baddam, who is one

of the few people other than me to care about DPA and with whom I had several

excellent discussions, and Julian Bailey who showed me I can concentrate on work,

even when someone is talking to me.

Finally, thanks to my parents for giving birth to me etc. and my sister, Ann

Brookes, whose extensive knowledge of statistics I frequently abused.

Declaration

I hereby declare that this thesis is my own work, unless stated otherwise.

John Goodwin

Definitions of Terms and Abbreviations

AES Advanced Encryption Standard

ANOVA Analysis of Variance

ASIC Application Specific Integrated Circuit

BDD Binary Decision Diagram

CBC Cipher Block Chaining

CDF Cumulative Density Function

CFB Cipher Feedback

Ciphertext The output of an encryption algorithm

Consumption Matrix A matrix containing the power consumption data across

a number of encryption blocks

CTR Counter

DDL Dynamic and Differential Logic

DES Data Encryption Standard

DFF D-Type Flip Flop

DPA Differential Power Analysis

DVFS Dynamic Voltage and Frequency Switching

ECB Electronic Code Book

EDE Encryption-Decryption-Encryption

FPGA Field Programmable Gate Array

HODPA High-Order Differential Power Analysis

ICA Independent Component Analysis

IPA Inferential Power Analysis

IV Initialisation Vector

KS Kolmogorov-Smirnov

 xix

LDPA Leakage-Based Differential Power Analysis

LUT Look Up Table

NIST National Institute of Standards and Technology

OFB Output Feedback

PDF Probability Density Function

Plaintext The data that requires encryption

PRBG Pseudo Random Bit Generator

Prediction Matrix A matrix of the predictions of the number of bit

transitions in a register across a number of plaintexts for

all possible values of a byte of the key.

PTE Power Trace Entropy

Round A single instance of the iterative transforms that makes

up most block ciphers.

Round Function The function (often made up of a series of others) that

forms the round

Round Key The key data that is added on a given round

SABL Sense Amplifier Based Logic

SAC Strict Avalanche Criterion

SDPA Sign-Based Differential Power Analysis

SNR Signal-to-Noise Ratio

SPN Substitution Permutation Network

TDES Triple Data Encryption Standard

Trace The power consumption data from a single encryption

TTE Time Trace Entropy

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WDDL Wave Dynamic Differential Logic

Chapter 1 Introduction

1.1 Motivation

This thesis investigates methods of attacks on secret-key cryptographic systems.

A current pervasive approach for symmetric encryption is the use of block ciphers and

specifically the Advanced Encryption Standard (AES) [1]. Research in the last few

years has indicated that despite modern algorithms being secure against all published

mathematical attacks and being far too complex to break by brute force, secret key

data can be gathered by monitoring the power consumption. This is known as a side-

channel attack as instead of attacking the cipher in a traditional manner it is cracked

using information extracted from the physical implementation of the cryptosystem.

When the side channel is the power consumption it is known as a power analysis

attack. In CMOS technology, when the value inside a register changes from 0 to 1 or

1 to 0 the power consumption is significantly higher than when the value remains

constant, this leads to a large data dependence in the power consumption. The most

effective power analysis attack is differential power analysis (DPA), it combines

power consumption information from several encryptions with predictions about the

transitions of register values and uses statistical evaluation to determine the most

likely value of the key [2]. DPA is powerful enough to successfully retrieve the key

from implementations of AES [3].

Several countermeasures have been proposed for preventing power analysis

attacks, these include balancing the logic there is always the same number of bit

transitions irrespective of the data that is being processed, masking data to hide

intermediate values and randomly changing the supply voltage and clock frequency of

the device [4-11]. The countermeasures have varying degrees of efficacy, but even the

most successful ones do not offer complete protection from the attack [5]. One thing

Chapter 1 Introduction 2

all the countermeasures have in common is their large cost in terms of performance

and or area, this is due to the fact that they all add additional hardware to try to defeat

power analysis. A better approach is needed. Rather than trying to protect the

implementations of cryptographic algorithms after the fact it would be preferable if

algorithms were designed in such a way as to already be immune from DPA.

1.2 Objectives

It was noted in the previous section that DPA can break even the most modern

algorithms and that the current techniques for protecting implementations from the

attack do not offer complete security, rather they simply reduce the correlation

between the data that is being processed and the power consumption. While this will

make it harder for an attacker to retrieve the key, if there is any correlation a

determined enough attacker, who collected enough power consumption data, could

exploit it. The exact relationship between the amount of power consumption data

required and the level of correlation between the data and the power consumption is

not known. This leads to two objectives: the derivation of the relationship between the

correlation and the level of information required to perform the attack, and the

development of a new type of countermeasure that defeats DPA. These are described

in more detail in the following two paragraphs.

Despite the fact that DPA was developed in 1998 and the mathematical

concepts that are employed in the attack are well developed there are still elements of

the attack that are poorly understood. It is clear that the greater the dependence of the

power consumption on the processed data the lower the amount of power

consumption data that must be recorded in order to attack the cryptographic device.

There is no quantitative relationship, however, therefore it is not possible to calculate

the effect of halving the correlation between the processed data and the power

consumption. This is one of the aims of this thesis. It will allow the evaluation of the

effects of a particular countermeasure on the effort involved in performing DPA and

enable designers to tailor the amount of noise in a design to the particular security

constraints of the system that they are creating.

The only countermeasures to DPA that have been proposed so far are ad hoc

modifications to cryptographic implementations that are costly in terms of the

design’s speed and area requirements. Only partial protection from DPA is gained for

Chapter 1 Introduction 3

the significant price that is paid. The main goal of this thesis is to develop a

modification to the AES algorithm that will protect it completely from DPA while

still allowing efficient implementation. It will then be possible to apply the technique

to other existing algorithms and, most importantly, new algorithms can be designed to

be immune from DPA.

1.3 Thesis Structure

This thesis is divided into 9 chapters. Chapters 2-4 deal with the background

material and chapters 5-7 cover the original work. Chapter 8 summarises the thesis

and Chapter 9 concludes and suggests some further work that can be done on the

topic.

Chapter 2 gives an overview of the history of cryptography and cryptanalysis.

Chapter 3 introduces the basic concepts and techniques in cryptography and the

goes on to explain block ciphers in greater detail. Three important block ciphers: the

Data Encryption Standard (DES), Triple DES (TDES) and the Advanced Encryption

Standard (AES) are described in detail including security concerns surrounding their

use.

Chapter 4 deals with attacks on block ciphers. This includes both the perceived

weaknesses of the AES algorithm and power analysis attacks, specifically DPA.

Various different approaches for the attacks are described, as are some

countermeasures. The effectiveness of the attacks and countermeasures are discussed

using published results of the application of power analysis to real cryptographic

systems.

Chapter 5 describes the systems that were developed in the course of this

research to investigate DPA. First the attack was performed in simulation using

Modelsim with a post-synthesis VHDL design of AES, and Matlab with a

mathematical model of the power consumption of a general crypto-device. Also an

oscilloscope was used to record the power consumption of an FPGA configured to

perform AES. These systems were used to investigate the basic properties of DPA

such as the effect of what part of the algorithm was being targeted by the attack.

Chapter 6 gives a detailed analysis of the statistical properties of DPA and

develops a model of the attack. Using this model, a method was developed to

Chapter 1 Introduction 4

determine the probability that a particular DPA attack will be successful given the

number of power traces available to an attacker and the signal-to-noise ratio (SNR) of

the crypto device being attacked. Also, another use for DPA is proposed, using a

pseudo-random number generator to add a pattern to the power consumption of a

design to act like a watermark that will allow the identification of intellectual property

within a larger system.

In Chapter 7 a number of modifications were made to the AES algorithm with

the hope of rendering it impervious to DPA. The most successful of these techniques,

using the key schedule to change the round keys for each block, was then applied to

TDES. While it did still protect it from DPA, an implementation of the new algorithm

used significantly more resources and was slower. The structure of the key schedules

of a selection of modern algorithms were analysed for their suitability for

implementing the technique efficiently, and the important properties were identified.

The algorithm ARIA has these properties and so an implementation of the modified

algorithm was made. It performed well in terms of both protection from DPA and

implementational efficiency.

Chapter 2 Background

2.1 Introduction

Since the invention of writing, people have sought to keep the nature of their

most sensitive messages secret from their enemies. Failure to do so has led to lost

battles, revealed secrets and the fall of monarchs. Cryptography is a constant battle

between code makers and code breakers. Codes are developed and then techniques are

developed to crack them, when it has become clear that a code is no longer secure

new methods must be found to restore the protection that was offered previously.

These new codes are inevitably eventually broken by increases in computing power,

knowledge of mathematics, or the sheer determination of attackers.

Historically cryptography has been purely the domain of generals and statesmen

– and Casanova1 – but in the digital age cryptography has become ubiquitous and an

important tool for everyone to send data electronically. Members of the public use

modern encryption techniques, albeit sometimes unknowingly, every time they

1"Shall I tell you the key?"

"Pray do so."

 I gave her the word, which belonged to no language that I know of, and the marchioness was

quite thunderstruck.

"This is too amazing," said she; "I thought myself the sole possessor of that mysterious word--I

had never written it down, laying it up in my memory--and I am sure I have never told anyone of it."

I might have informed her that the calculation which enabled me to decipher the manuscript

furnished me also with the key, but the whim took me to tell her that a spirit had revealed it to me. This

foolish tale completed my mastery over this truly learned and sensible woman on everything but her

hobby. This false confidence gave me an immense ascendancy over Madame d'Urfe, and I often abused

my power over her.[12] J. Casanova, "The Complete Memoirs of Casanova," Globusz Publishing,

New.

Chapter 2 Background 6

withdraw money from a cash machine, make a mobile phone call, or even watch a

DVD.

2.2 History of cryptography

2.2.1 Classical ciphers

There were two main types of cipher that existed in the ancient world, the

transposition cipher and the substitution cipher. Transposition ciphers hide the

meaning of a message by rearranging the characters in it, turning it into a large

difficult anagram. Substitution ciphers change letters for other letters or symbols

making the message unintelligible unless the reader knows how the letters have been

changed.

The first military cryptographic device encoded and decoded messages using

transposition, it was the Spartan Scytale which dates back to the 5th century BC [13].

A Scytale is a wooden rod of fixed diameter, a strip of leather or parchment is wound

around it and the message is written across the length of the rod so that each

successive letter appears on a different section of the parchment. When unwound and

read down the length of the parchment the letters are mixed and can only be read by

wrapping the parchment around a stick of similar diameter.

The first recorded use of substitution ciphers dates back to 600-500 BC.

Invented by Hebrew scholars, it is called the Atbash cipher and substitutes the first

letter of the alphabet for the last, the second for the penultimate and so on. It is used in

Jewish mysticism and in some bible passages, its main purpose is probably to create

an air of mystery rather than actual concealment.

The Caesar Cipher is named after Julius Caesar as he is reported to have used it

when sending important military communications by Suetonius, a biographer of the

first 12 emperors of Rome who was also Emperor Hadrian’s personal secretary. It is a

very simple substitution cipher, the alphabet is shifted a number of letters in a

particular direction, for example if it was used on our alphabet and shifted two places

to the right then ‘a’ would become ‘c’, ‘b’ would become ‘d’ and so on until ‘z’

became ‘b’.

Chapter 2 Background 7

The weakness with these ciphers is that if the attacker knows the type of cipher

it is then it becomes very easy to crack, with Atbash, there is only one possible set of

substitutions, and with the Caesar cipher there are only 26. A slightly more complex

substitution cipher is one where the letters are randomly substituted for others rather

than in order. This would give a total of 26! (4*1026) possible combinations. Even

with this large number of combinations substitution ciphers are still not particularly

secure as the distribution of letters in the plaintext is unhidden, this leaves it

vulnerable to frequency analysis. This looks at the frequency of letters in the

ciphertext and compares them to the frequencies of various letters in the language that

the plaintext is written in. For example, if a ciphertext contains a large number of ‘w’s

then trying the substitution ‘e’ = ‘w’ is a reasonable place to start. The first known

record of this technique is by the 9th century Arabic scholar Abu Yusuf Yaqub ibn

Ishaq al-Sabbah Al-Kindi.

Probably the most famous historical demonstration of the weakness of

substitution ciphers is the Babington plot. In 1568 Mary Queen of Scots fled Scotland

after a failed attempt to regain the crown of Scotland from her half-brother. She

sought refuge in England on her way to France, unfortunately for her she had

misjudged the mood of her cousin Queen Elizabeth, who imprisoned her. She

remained confined in a series of castles and manors and in 1586 after 18 years in

prison she was allowed to neither send nor receive letters. Then suddenly, a large

parcel of correspondence arrived in her possession. They were smuggled into her

prison by Gilbert Gifford who had placed them in a hollow bung inside a barrel of

beer. It was through this channel of communication that she was approached by

Anthony Babington, a charming and charismatic Catholic who hated the current

protestant rule and wanted to see a Catholic monarch on the throne of England. He

and six other conspirators informed Mary of a plan to assassinate Queen Elizabeth

and free her from her prison. Unfortunately for Babington and his co-conspirators

Gifford was a double-agent working for Elizabeth’s spymaster Francis Walsingham.

Babington was rightly cautious and had not only hidden his messages, but also

encrypted them. His cipher had substitutions for all the letters, 35 extra symbols for

common phrases, four nulls to confuse any potential attacker and one symbol that

meant that the following letter was double. The messages were delivered to

Walsingham by Gifford who had them copied and replaced and over the course of the

Chapter 2 Background 8

correspondence between Mary and Babington the cipher was broken by his code-

breaker Thomas Phelipes. Even when Walsingham had enough evidence to arrest

Babington he waited, he wanted Mary to implicate herself so she too could be

executed. When she sent a message to Babington endorsing the plot Walsingham

knew he had her, he just had one more thing to do before he sprung his trap. He had

Phelipes, also an expert forger, add a post-script to the message, encrypted in the

same cipher, asking for the identities of Babington’s co-conspirators. Now

Walsingham had everything he wanted he arrested everyone involved, Babington and

his accomplices were hung, drawn and quartered, and on the 8th of February 1587

Mary Queen of Scots was beheaded.

This is a clear example of how once an attacker has the key to a cipher the

system is completely broken, they can both read any messages and, if they also have

appropriate access to the channel of communication, can forge messages. This leaves

the system completely vulnerable.

2.2.2 Development of Poly-alphabet Ciphers

Frequency analysis was such a successful technique against substitution ciphers

that cryptographers had to develop new techniques to counter this. The next most

significant group of ciphers that was developed were poly-alphabet ciphers. These use

more than one set of substitutions to encrypt different letters in the message. The basis

for these was work done by Leon Battista Alberti, a Florentine polymath, in the

1460s. He wrote an essay on cryptography after a casual conversation with his friend

Leonardo Dato, the pontifical secretary, in the Vatican gardens. Alberti proposed

using two substitution ciphers on alternating letters in a message but failed to develop

the concept into a fully formed cryptographic system. His idea was developed by

Johannes Trithemius, Giovanni Porta and finally Blaise de Vigenère. Vigenère was

born in 1523, a French diplomat, his initial interest in cryptography was purely

professional and he had read the work by Alberti, Trithemius and Porta while on a

two year diplomatic mission in Rome. In 1562 he decided he had earnt enough money

to retire and dedicate his life to study. It was then that he developed a powerful new

cipher.

The Vigenère cipher consists of 26 alphabets each shifted by an increasing

number of letters. The key is a code word or phrase repeated over and over until it has

Chapter 2 Background 9

the same number of letters as the message. Each letter of the message is then

substituted using the corresponding letter from the alphabet starting with the current

letter in the key. In 1586, ironically the same year as Mary Queen of Scots was

plotting with Babington, Vigenère published Traicte des Chiffres where he detailed

his cipher. Even if Babington had have read Vigenère’s work it is possible that he still

would not have used it as the new, more secure, system was largely overlooked for

another 200 years.

2.2.3 Adoption of Poly-Alphabet Ciphers

The main complaint against poly-alphabet ciphers was that they were more

complicated to encode and decode and hence more prone to errors. In order to

compromise between the security of polyalphabet ciphers and the simplicity of mono-

alphabet ones a series of other techniques were developed to defeat frequency

analysis.

Homophonic ciphers are those that use more than one symbol to encode each

letter. The number of symbols for a given letter is related to the frequency of that

letter in the language that the message is written in, each time the letter is then

encoded a random symbol from the set is chosen and used. This would mask the

frequencies of the letters. For example, in English, ‘e’ accounts for approximately

13% of the letters in a given block of text and ‘g’ for about 2%, so the cipher could

have two symbols for ‘g’ and 13 for ‘e’. The weakness in this system is that pairs of

letter are not used homogenously, for example ‘q’ is almost always followed by ‘u’.

This creates another potential avenue of attack for a cryptanalysts.

In 1626 Antoine and Bonaventure Rossignol, a father and son team, were able

to quickly decode a message that was captured by the French army. After it was

revealed that their secret message had been read the opposing force surrendered to the

French. The Rossigols were appointed senior positions in the court of Louis XIII, they

also worked for Louis XIV, who was so impressed he moved their office next to his

own apartment. They were so successful the word Rossignol became slang for a lock

picking device. Using their knowledge of cryptanalysis they developed the so called

Great Cipher. After their deaths the cipher was no longer used and the details were

soon lost. There were lots of historical documents, especially Louis XIV’s personal

documents, which were only written in this encoded form, they remained unread for

Chapter 2 Background 10

hundreds of years. In 1890 some of these documents were passed onto the French

army’s cryptography department where Etienne Bazeries spent three years trying to

decode them. After going down several dead ends he discovered that each symbol in

the code represented a syllable, with other little tricks, such as the symbol that meant

ignore the previous symbol, added to fool would be attackers. The newly deciphered

documents were a historical boon, one of them even identifying the Man in the Iron

Mask as General Bulonde, a French general who had disgraced himself through

cowardice.

By the 1700s cryptanalysis in Europe had become an industrial process with

teams of cryptanalysts working to decode copies of supposedly secret messages that

were being sent to embassies. It became clear that extra security was required and the

Vigenère cipher was finally adopted for widespread use.

Vigenère’s cipher remained unbroken for nearly 300 years until an argument

between Charles Babbage and the Bristol dentist John Hall Brock Thwaite, who,

claiming he had invented a new cipher when really he had just re-invented Vigenère’s

one, inspired the eccentric English polymath to turn his mind to code-breaking.

Babbage’s main breakthrough came when realising that with a finite length key

repeated blocks of plaintext could only be encrypted in a finite number of ways, and

so could repeat in the ciphertext as well. By looking at two repeated blocks in a

message it would be possible to determine the maximum length for the key, and all

the possible lengths would be factors of that value. By looking for several repeated

blocks of characters one would probably be able to find a unique value for the key-

length. After this has been determined the cipher becomes a group of n mono-alphabet

ciphers that are now susceptible to frequency analysis. Once the frequencies of the

letters in the n different streams have been noted peaks in the frequencies of letters

can be matched and the key can be determined. Although Babbage cracked the

Vigenère cipher in 1854 he didn’t publish his findings and they were only discovered

when scholars were examining his notes, credit sometimes goes to Friedrich Kasiski,

a Prussian infantry officer and cryptographer, who independently cracked the

Vigenère cipher and published his findings in 1863.

Chapter 2 Background 11

2.2.4 World War 1

The invention of the radio created a communication revolution. Previously all

communication had to be done over fixed lines which had to be laid before any

communication could occur so could not be used to communicate with mobile units

such as warships. The advantage of fixed line communication is that it is a lot harder

for someone to eavesdrop on communication as they also need physical access to the

line whereas radio transmissions can be listened to by anyone in range with a suitably

tuned receiver. This meant that encryption became more important than ever for

military communications.

Most of the codes developed for use during World War 1 (WW1) were based on

ciphers from the previous century that had already been cracked. While they had been

improved there was nothing radically different and they posed little challenge for the

cryptanalysts at the time. This fact and the massive increase in intercepted

communications that radio transmission allowed meant that cryptanalysis paid a very

important part in WW1. Probably the most significant example of its use was the

deciphering of the Zimmerman Telegram.

Initially America did not join the war in Europe, their president, Woodrow

Wilson thought that the conflict could only be resolved through diplomacy and that

America could best serve the world by acting as mediator to any talks that may occur.

However, this was threatened when a German U-boat sunk the Lusitania, 1198 people

were killed including 128 American civilians. Germany agreed to surface their U-

boats before attacking so as to reduce the risk of accidentally attacking civilian ships.

By 1917 the war was not going well for Germany, they realised that if they

reinstituted the policy of unrestricted U-boat warfare then Britain would soon starve

and have to surrender, worried that this would bring America into the war they

hatched a plan to keep them occupied until their enemies could be defeated. The plan

was to convince Mexico to declare war on the USA and an encrypted telegram was

sent to the German ambassador in America with instructions to forward details of the

plan on to the ambassador in Mexico.

On the first day of WW1 the British ship Telconia sailed under cover of

darkness to near the German coast and cut Germany’s transatlantic cables. In order to

carry out their plan they had to send a message to their Mexican embassy via the

Chapter 2 Background 12

American embassy over cables that passed through Britain. Britain intercepted this

message and decoded it in Room 40, their cryptographic department, named after the

office that it originally occupied. After decoding the message the British cryptanalysts

passed it onto Admiral Sir William Hall. Hall realised the significance, he knew that if

Germany were to reinitiate the full force of their U-boat campaign it would not be

long before Britain would be forced out of the war. As Britain was reluctant to let the

Germans know that they could read their secret messages and there was a chance that

the U-boat attacks would bring the Americans into the war anyway Hall initially did

nothing. On the 3rd of February, Wilson announced that American would remain

neutral in spite of the renewed German policy and Britain was forced to act. In order

to hide their code-breaking activities Britain sent an agent to the German embassy in

Mexico to steal a copy of the forwarded telegraph and handed it to the Americans. On

the 6th April America declared war on Germany and cryptanalysis had changed the

course of WW1.

2.2.5 Post World War 1 and the Development of the Enigma

In 1918 Arthur Scherbus and Richard Ritter started an engineering company

that developed lots of things, from turbines to heated pillows. Probably their most

famous invention was the Enigma machine that was used to encrypt German Military

communications during World War 2 (WW2). One of the reasons people were

reluctant to use the Vigenère cipher was its complexity, this made its use error prone.

After it was broken it became clear that even more complicated ciphers had to be

developed, these would be even harder for people to use and particularly impractical

in the chaos of a battlefield. Scherbus had created a machine that used mechanical and

electric signals to automate the encipherment of a message, thus eliminating human

error. The Enigma machine consisted of a keyboard, a plug-board, a series of

scramblers, a reflector and a series of output lamps. When a button was pressed on the

keyboard, corresponding to an input character, an electrical signal travelled through a

complex path until it reached the output lamp signifying a different letter, this

represented the enciphered character. The path the electrical signal took, and hence

the output character was determined by the settings of the scramblers and the plug-

board. The plug-board could be used to swap letters, by connecting cables between

the various plugs, each representing a different letter, they were swapped. For

Chapter 2 Background 13

example if the letters ‘a’ and ‘p’ were connected on the plug-board then when ‘a’ was

pressed on the keyboard it would be the same as pressing ‘p’ on the keyboard when

there were no plug-board connections. The scramblers were cylinders with a series of

different mappings between the letters. A large part of the security of the enigma was

due to the fact that each time a letter was pressed the scramblers would rotate one

letter so if the same letter was pressed twice it would lead to a different output letter,

and Enigma behaved like a polyalphabet cipher. The scramblers can also be removed

so they can go in any order. The reflector sent the electrical signal back through the

scramblers to the output. This had no cryptographic significance, but was there to

make encryption the same as decryption. If the letter ‘r’ was entered and the electrical

signal weaved its way through the plug-board cables and the scramblers via the

reflector to the letter ‘h’ then someone trying to decode the message could press ‘h’

on their machine with the same settings and the electrical signal would do the reverse

path and light the lamp for ‘r’. The entire machine was 34 * 28 * 15 cm, but weighed

a hefty 12 kg.

Scherbus initially had trouble finding anyone to buy Enigma machines, they

costs the equivalent of £20,000 in today’s money, and most businesses said that they

could not afford it. The German military was unaware of the damage enemy

cryptanalysts had done to their war effort and so were initially not interested.

Fortunately for Scherbus, in 1923 Winston Churchill published The World Crisis

detailing an early German cryptographic failure, and later that year the Royal Navy

published their official history of the WW1. The German military realised what their

weak ciphers had cost them and started ordering Enigma machines. In 1925 they went

into mass production.

2.2.6 Cracking Enigma

Until 1925 the rest of Europe were still receiving a large amount of intelligence

from Germany via decrypted transmissions. After the German adoption of the Enigma

machine this rapidly stopped. Previously British and French cryptanalysis had been

tenacious in their efforts to decipher previously unbreakable codes, but when faced

with Enigma they quickly gave up. After WW1 Germany’s military was had been

largely neutralised and the country was in ruins. The French no longer feared her

might. On the other side of Germany, her neighbours weren’t as complacent. In 1925

Chapter 2 Background 14

Poland was caught between a strengthened Germany and Russia, a nation bent on

spreading communism. Faced with these threats Poland was desperate for intelligence

and had a very strong cryptanalysis department called Biuro Szyfrów. There was little

that they could do without first understanding the workings of the cipher.

On the 8th of November they got their first break. A German working in the

department responsible for secure communication, Hans-Thilo Schmidt, sold the

plans to the Enigma machine to a French agent for 20,000 Marks. The French were

not particularly interested in their new found knowledge, they assumed that even if

they understood how the Enigma worked they would still not be able to work out a

way to break the cipher. They did however have a decade old treaty of military

cooperation with Poland, who had expressed interest in anything to do with Enigma.

Thinking it of little practical value the French gave the information to Poland. Using

this information the Biuro was able to create a replica of the Enigma machine to

study. As well as details of the Enigma machine the French intelligence contained the

protocol that the Germans were using. Codebooks were distributed amongst the

German radio operators. The books contained a month’s worth of plug-board settings

and scrambler arrangement and orientations, one for each day, called day-keys. To

make the system more secure messages were encrypted with different scrambler

orientation settings. This was called the message-key and was encrypted twice with

the day-key and transmitted at the start of the message. This was done to ensure that

the message-key was received correctly and the message could be decoded without

error, but it introduced an insecurity into the system as the attacker knew that the 1st

plaintext character of the message was the same as the 4th although the ciphertext

characters would be different. The difference between them would be determined by

the scrambler settings.

This was studied by the Polish cryptanalyst Marian Rejewski. He had at his

disposal hundreds of messages every day, the first six characters of each of which

would be encrypted using the same settings. Although he did not know the plaintext

characters he studied the way they changed, finding they formed chains with varying

numbers of links. For example, if the first character of one message was ‘L’ and the

fourth was ‘W’, in another message the first would be ‘W’ and the forth ‘G’ and then

in a third ‘G’ would change back to ‘L’, forming a chain with three links. Rejewski

realised that properties of these chains would be affected only by the scramblers and

Chapter 2 Background 15

not by the plug-board settings, they would only change the values individual letters in

the chain. This meant that the chains could act as a fingerprint for the different

scrambler settings. He spent a year cataloguing the chain lengths for all of the 105,456

possible scrambler arrangements, from this he would be able to determine the

scrambler settings of the day-key, he could then use this to try and decrypt a message

key and use that to decrypt a message, if the plug-board settings did not affect any of

the letters in the message-key it would be possible to mostly decrypt the message. The

plug-board setting could then be determined by looking at the generated message and

changing letters until it made sense. Using this technique Rejewski could retrieve a

day-key and read all of that day’s messages.

When the Germans adapted the way they transmitted messages it made

Rejewski’s catalogue of chains obsolete. Instead of painstakingly recreating it he

developed a mechanical device, based on an enigma machine, which was capable of

trying lots of different scrambler settings until it spotted the correct one. As the

scramblers could be arranged in six different ways six of the so called bombes were

required. In December 1938 the Germans augmented the security of Enigma,

increasing the number of different scramblers to five and the number of plug-board

cables to ten. This vastly increased the number of possible plug-board permutations

and increased the number of bombes required by a factor of ten. The cost of

manufacturing the new bombes was beyond the resources of the Polish cryptographic

department, and in 1939 the flow of German intelligence into Poland dried up.

Sensing an imminent German invasion the Polish were willing to share their

cryptanalysis breakthroughs with their allies. On the 24th of July senior cryptanalysts

from France and Britain arrived in Poland where they were informed, to their surprise,

of the Polish successes in reading secure German messages. Spare Enigma machines

and blueprints for the bombes were shipped to London and Paris where the Polish

work could continue. On the 1st of September Hitler invaded Poland and WW2 had

begun.

In Britain the responsibility for breaking German codes had moved from Room

40 to Bletchley Park, a large Victorian mansion in Buckinghamshire. The British

cryptanalysts quickly mastered the polish techniques and with greater resources had

created the bombes necessary to break the encryption. The Polish technique hinged on

the fact that the Germans always transmitted the message-key twice at the start of the

Chapter 2 Background 16

message, this repetition was the weakness that allowed the cryptanalysts to peer inside

the Enigma code. Some cryptanalysts at Bletchley Park were responsible for

continuing the research into weaknesses in the code, in case the Germans

strengthened their transmission protocol and stopped sending the key twice. One of

the researchers was Alan Turing, he realised that there was another potential avenue

for attack due to the fact that Enigma was being used by the military. The military

thrive on routine, the contents of some parts of the messages would be predictable, for

example, a weather report would be transmitted shortly after 6 am every day. The

section of plaintext that was known to the attackers was referred to as a crib. Using

these cribs Turing developed a new technique for decoding Enigma messages. He also

studied chains in encipherment of various letters, for example if a ‘w’ was ciphered as

an ‘e’ and the next plaintext letter was ‘e’ that had been changed to a ‘t’ and later on

in the message there was a plaintext ‘t’ that was converted to a ‘w’, this was the type

of chain Turing was interested in. Turing imagined a machine that was a series of

Enigma machines in parallel. Details of a chain would be entered into it by connecting

the output of the first one to the input of the second and so on. In between the input of

the first and the output of the third there was a lamp. The scrambler settings on the

three machines would rotate. The lamp would only light when the circuit was

complete, this would only happen when the scrambler settings were correct for all

three machines. Again the study of these chains allowed the cryptanalysts to divorce

the plug-board settings from the scramblers. This is because the plug-board settings

are constant, although in the example chain above it is not known what letter the first

‘w’ is converted to by the plug-board, it is known that when the ‘t’ is converted to a

‘w’ the signal has travelled through the plug-board cable twice, cancelling out the

effect. While the plug-board contributes the majority of the different combinations of

settings an Enigma machine can have, it is only a mono-alphabetic substitution, and,

as there were only ten plug-board cables, an incomplete one at that. By decoding the

original message with the scrambler settings the plug-board settings can soon be

determined. Turing’s decoding machine was built; it arrived on the 14th of March

1940 but was a lot slower than anticipated. The design was refined and a new one was

ordered, but it was going to take four months to build. On the 10th of March 1940 the

Germans changed their key transmission protocol so that the key was only sent once

and the decoded Enigma messages dried up until the 8th of August when the new

Chapter 2 Background 17

machine arrived. This fulfilled all of Turing’s hopes and messages could be decoded

for the rest of the war.

The information that was gained by cracking the Enigma code was of crucial

value to the wartime effort of the allies. Lessons can be learnt for both cryptanalysts

and the users of cryptographic algorithms. The Polish code-breakers, motivated by

desperation, never gave up hope that Enigma could be broken, and through their

tenacity found a technique that could retrieve German Keys. The real weakness in the

enigma code wasn’t the code itself but the way it was used. The first method of

breaking it used the fact that the message-key was enciphered twice and the second

method relied on knowing sections of the plaintext. While the cipher isn’t secure by

today’s standards, as it is important to assume that an attacker may have access to

plaintexts as well as ciphertexts, any code can be made much weaker by using it

improperly. It is important to minimise any additional information that is leaked to

any potential attacker.

2.2.7 Modern Cryptography

In 1949 Communication Theory of Secrecy Systems was published in the Bell

Labs Technical Journal by Claude Shannon [14]. It established the mathematical basis

for modern cryptography and developed two metrics for measuring the security of a

cipher, confusion and diffusion. Confusion is related to the relationship between the

key and the ciphertext, this will be very complicated in a cipher with good levels of

confusion. Substitution, generally performed by so called s-boxes, is a key component

in ensuring confusion. Diffusion is the effect the plaintext has on the ciphertext, it is

related to the avalanche effect, a term first used by Horst Feistel [15], which describes

how changing one bit at the input causes an avalanche of changes through to the

output. It was developed into the Strict Avalanche Criterion, which states that, for

optimal diffusion, changing one bit in the plaintext should change on average half of

the bits of the ciphertext. Diffusion is mostly associated with transposition operations

in ciphers. Now that the mathematical theory behind encryption had been formalised

ciphers could be designed in a rigorous way as opposed to the ad hoc methods that

had previously been used.

Chapter 2 Background 18

2.2.7.1 Block Ciphers

As computing developed the price of computers steadily reduced. By the 1970s

companies were able to afford computers and they became an important part of

business. Businesses would often have to send and receive secure messages, these

would have to be encrypted and so businesses would develop their own encryption

schemes. This posed no problems if the secure data had to be sent between different

offices of the same company, but it would be problematic if data had to be sent

between different companies as the algorithms would not be compatible. To address

this problem the US government decided to create a standard encryption algorithm

that could be used by everyone. The new Data Encryption Standard (DES) was based

on the algorithm Lucifer which was developed by Horst Feistel [15], an engineer

working for IBM. The NSA examined the algorithm to ensure that it was secure and

made a couple of changes. They reduced the key length from 64 bits to 56. This

meddling lead to speculation that the NSA had deliberately weakened the cipher in

order for them, and only them, to be able to decrypt it.

As DES was so widely used the security of the algorithm was heavily

researched. The first attack to be proposed was Differential Cryptanalysis, which uses

several different, but related, plaintexts to gain information about the key. When it

was published in 1990 it was discovered that the chosen s-boxes had strengthened the

cipher against this attack. Differential cryptanalysis was known to IBM researchers in

1974 but as it is a powerful attack that can be applied to lots of different ciphers the

NSA asked them to keep it secret. Although the cipher was resilient against this form

of attack, an attacker with access to 247 chosen plaintexts can still break DES. In 1992

Linear Cryptanalysis was developed [16], this involved generating linear

approximations to sections of the cipher with either a high or a low probability of

correctness. DES can be broken with 243 known plaintexts [17].

While in the strictest of senses this means that the security of DES has been

compromised, the attacks are still not feasible, requiring unrealistically large amounts

of known or chosen plaintexts. The death knell for DES came in 1997 when RSA

Security ran a competition to crack DES as a demonstration that with modern

computers the 56-bit key no longer provided adequate security. The competition was

won by a distributed computing project called the DESCHALL Project who managed

Chapter 2 Background 19

to retrieve the key in 96 days. This has since been improved and DES can now be

cracked in an average of 7.2 days [18].

It was clear that a new stronger encryption standard was required and in 1997

the National Institute of Standards and Technology (NIST) started the search for a

new algorithm that would be dubbed the Advanced Encryption Standard (AES). In

2001 the new algorithm was chosen, it was Rijndael, developed by Vincent Rijmen

and Joan Daemen. There are currently no successful mathematical attacks on AES,

although it is vulnerable to side channel attacks.

2.2.7.2 Public Key

In order for secure communication to work both parties need to have access to

the key. Transferring this in a secure way can be problematic. In the 1970s couriers

were used to transfer keys to recipient of the secure data so it could be deciphered.

While this is more secure than having a courier carry sensitive documents as a

potential attacker needs to get both the key from the courier and intercept the

encrypted transmission it is still less than ideal. In 1976 Whitfiel Diffe, Martin

Hellman and Ralph Merkle developed Diffie-Hellman key exchange. This technique is

best explained by an analogy. Alice and Bob want to get married and Alice needs to

send her wedding ring to Bob. She can only send it through the post, but she does not

trust her postman not to steal it. She locks the ring in a box and sends the box to Bob,

he unfortunately does not have the key and Alice can’t post it to him for fear of the

postman getting it. Bob puts his own padlock on the box and sends it back to Alice

who then unlocks her padlock and sends it back to Bob. The ring is now only

protected by Bob’s padlock to which he has the key. In this analogy the ring is the key

to a block cipher and the padlocks are special encryption algorithms. The biggest

problem in developing this scheme was finding a way to encrypt the data where

encryption and decryption was commutative, that is to say that it doesn’t matter that

the second encryption is performed before the first decryption. This was overcome by

the use of discrete logarithms.

This form of key exchange does have some problems; it requires three transfers

of data between the two parties which is not always convenient, if communicating

from vastly different time zones, for example. In 1975, while developing the idea for

key exchange, Diffie also published his idea for asymmetric key algorithms. These are

Chapter 2 Background 20

group of algorithms where encryption and decryption are performed using different

keys, the encryption key can be freely distributed so it is called the public key, it can

be used by anyone to send secure data to the holder of the decryption or private key.

In this way there needs to be no secure transfer of keys. Although Diffie described the

concept of public key encryption he could not find any mathematical functions with

suitable properties. It was left to Ron Rivest, Adi Shamir and Leonard Adleman to

develop a working system which was patented in 1977. Rivest, Shamir and Adleman

created the company RSA Security to commercialise the research.

Cryptography is a world of secrets, just like the invention of the computer at

Bletchley park, British cryptanalysts were busy researching public key encryption and

secure key exchange. In the late 60s Peter Ellis was working at GCHQ on the problem

of key exchange, like Diffie, he came up with the idea of separate keys for encryption

and decryption, but was unable to think up any suitable function. Then in 1973 a new

mathematician joined, Clifford Cocks. He had been previously working in number

theory and recognised the potential of prime numbers and factorisation to solve the

problem. Unfortunately in the early 70s computers were still quite primitive and the

amount of processing power required to implement the system was a stumbling block.

In 1974 Cocks was explaining his idea to his old school and university friend

Malcolm Williamson, who had also started working at GCHQ. He was suspicious of

the idea and studied it in detail intent on finding a flaw. Instead, in 1975, he

discovered the Diffie-Helman key exchange. GCHQ scientists had discovered all of

the principles of public key encryption before anyone else, but as they were sworn to

secrecy this was not revealed until 1997 when Cocks was allowed to give a brief

history of GCHQ’s contribution to public key encryption while presenting some

unclassified research he had performed on RSA at a conference.

2.2.7.3 The Digital Revolution

In the 1970s Phil Zimmerman was deeply concerned about the threat of nuclear

war and became an anti-nuclear political activist. In the 80s tensions between the US

and the USSR calmed and Zimmerman’s focus changed to another political cause, the

public’s right for privacy. Hundreds of millions of emails are sent every day and if

they are unencrypted then they are particularly vulnerable to eavesdropping. At the

time there was no software available for members of the public to use to encrypt their

email. Zimmerman spent years developing Pretty Good Privacy (PGP) a system

Chapter 2 Background 21

designed to do just that. At the heart of the software was the public key algorithm

RSA which is a lot more computationally intensive than a symmetric key system with

an equivalent level of security. To get round the problem of the software being

prohibitively slow on the personal computers of the average user PGP only uses RSA

to encrypt the key for a much faster symmetric key system which encrypts the

message. By 1991 Zimmerman had a fairly polished product, but there were

problems. He was worried that Congress were going to try an ban products like PGP

in order to ensure that law enforcers could read criminals email, so in June he asked a

friend to upload it to a Usenet bulletin board.

Zimmerman had released his software and it was being used exactly for the

purposes that he had intended, human rights groups all over the world were using

PGP to protect their communications. Unfortunately his problems were not over yet.

PGP used the RSA algorithm which was protected by a patent for which he did not

have a licence. More seriously, Zimmerman’s work had attracted the attention of the

FBI. The US had export controls on cryptographic systems and systems with more

than 40 bits were considered munitions, in 1993 Zimmerman became the target of an

investigation into exporting munitions without a licence. Zimmerman found an

interesting loop-hole to the export controls, he published the source code in a book

and as the export of books is protected by the First Amendment all someone had to do

was scan the book with OCR software and compile the program. In 1996 after three

years of investigation the case was dropped. Zimmerman also managed to reach an

agreement with RSA Inc. PGP was finally a legitimate program.

In the 90s the whole cryptographic climate was changing, the internet was

starting to develop allowing for the development of ecommerce. In order for this to be

successful customers had to have faith in security of the new medium. In 1995 Hal

Finney set a challenge to break the 40-bit RC4 encryption that came with the

international version of the Netscape browser. This was completed in less than two

weeks, a worrying achievement for anyone buying anything over the internet. The

government control on encryption had another economically damaging side-effect, the

weakness of the Content Scrambling System (CSS). CSS is the encryption system

used to protect the content of DVDs, it was developed in 1996 and in order for DVD

players to be freely exportable was restricted to 40 bits. This allowed the copy

protection to be easily cracked, and the free sharing of thousands of movies over the

Chapter 2 Background 22

internet, allegedly costing movie studios millions of dollars in lost profits. Due to the

changing climate and the sense that strong encryption was needed domestically the

export restrictions were dropped in 1996, paving the way for people all over the world

to adopt secure ciphers to protect their secrets.

2.2.7.4 Side Channel Attacks

It has long been known that the various emissions that real devices make during

their operation can reveal secret information. The purpose NSA’s TEMPEST

program, started in the 1960s, was to ensure that electronic emissions that escaped

from a device would not reveal sensitive information about its operation. It wasn’t

until the mid 90s that the information gathered through side channels was used to

break encryption systems.

In 1996 Paul Kocher developed a radical new type of attack. All previous

cryptanalysis had relied on weaknesses in the cipher, exposing patterns in the

ciphertext that could be exploited. The new method used information gained through

a side channels to determine the internal state of the device performing the encryption.

The first side channel attack was timing analysis, it exploits the fact that operations

take a certain amount of time to perform and so information can be gained by timing

how long it takes a device to respond to a query [19]. Then in 1999 he extended the

idea to power consumption [2]. In modern transistor technology more power is

consumed when a value changes from ‘0’ to ‘1’ or ‘1’ to ‘0’ than if it stays the same,

by measuring the power consumption information can be gathered about the state of

registers inside a crypto-device. Some information can be gained by examining the

power trace, the power consumption data for one encryption, and looking for

significant features, this is called Simple Power Analysis. A much more powerful

technique is Differential Power Analysis, this combines information from several

encryptions with the same key and with enough power traces can retrieve the

complete key, even from a state of the art algorithm such as AES [3].

Since the demonstration of the general technique a number of side channels

have been proposed, from emitted EM radiation [20] to the acoustic noise a processor

emits [21]. Although several countermeasures have been proposed [9, 22-25] none

work with complete efficacy and how to protect algorithms against side channel

attacks is still an open problem.

Chapter 2 Background 23

2.2.8 Conclusion

Over the last 30 years cryptography has become increasingly pervasive in

modern life. Ciphers no longer just protect state secrets and military plans but trade

secrets, finances and privacy. Cryptographic hardware has been transformed from

large cumbersome devices to small sections of existing chips or programs that are

constantly carried. Since their development block ciphers have provided an efficient

and conceptually simple way of generating the complex transforms that implement

the principles of secure communication outlined in Shannon’s seminal 1949 paper.

The advantages of block ciphers are such that they have become by far the most

common type of cipher in use today.

While the increase in public use of cryptography is beneficial, as the general

public are able to protect their secrets and ensure their privacy with secure encryption.

There is another side to the coin, cryptanalysis is becoming increasingly more

important to criminals. Additionally, the increase in mobile cryptography has made

ciphers increasingly vulnerable to attacks like Differential Power Analysis, which

requires physical access to the device and does not rely on a mathematical weakness

in the algorithm. The ability to successfully protect secrets has always been, and will

continue to be of very high importance to society.

Chapter 3 Block Ciphers

3.1 Introduction

Block ciphers have been an important area of cryptography since their

development in the 1970s. They work on a fixed size block of data and use the secret

key to transform the unencrypted data, or plaintext, into its encrypted form, or

ciphertext. In the 1970s a standard block cipher was developed by the US called Data

Encryption Standard (DES). This reigned supreme for over two decades until

increases in computing power rendered its security questionable. A modification to

increase the effort an attacker must use to crack it by chaining three DES blocks

together was developed and given the apt name Triple DES (TDES). Finally, in 2001,

after the submission and lengthy evaluation of algorithms from the public, they were

both superseded by the Advanced Encryption Standard (AES), which remains the

accepted algorithm today.

In section 3.2 the basic concepts in modern cryptography are introduced.

Section 3.3 examines the basics of block ciphers in more detail. Sections 3.4 - 3.6

describe the three most important block ciphers of the last 40 years, DES, TDES and

AES.

3.2 Basic Concepts in Cryptography

3.2.1 Cryptographic Methods

Cryptographic algorithms seek to make data unreadable by everyone except a

trusted subset of the population. To achieve this, the data is put through a

transformation, the output of which is determined not only by the original data, but

Chapter 3 Block Ciphers 25

also by a secret key. The data can then only be decoded by someone who has the

relevant key to unlock it.

Figure 3-1 shows an example of a complete cryptographic system. Alice wants

to send a message to Bob without Eve (or anybody else) being able to read it. She

takes her unencrypted message, known as a plaintext, and encrypts it with a secret

key; the enciphered message is called a ciphertext. She can then send this message to

Bob, who can read it as he also has the secret key. Although Eve is able to intercept

the message she cannot make sense of it as she does not have the key.

Figure 3-1: An example of an encrypted communication.

There are two main types of cryptographic algorithm, symmetric and

asymmetric key. Symmetric key algorithms have symmetry in the sense that the same

key is used for both encryption and decryption. In order to use a symmetric algorithm

all parties involved in the communication must have the key.

Asymmetric key algorithms, also known as public key ciphers, use a different

key for encryption and decryption. The key used to encrypt the data is called the

public key and can be freely distributed. Only the private key, which is kept secret,

can decrypt the message.

Additionally there are also cryptographic hash functions. These are one-way

functions that return a fixed length output and do not have a key. Once the data has

been put through them it cannot be retrieved. They are used for a variety of purposes

such as password verification and checking the integrity of a message.

3.2.1.1 Symmetric Key Algorithms

There are two main types of symmetric algorithms, block ciphers and stream

ciphers and they are discussed in the following two subsections.

Chapter 3 Block Ciphers 26

3.2.1.1.1 Block Ciphers

Block ciphers are symmetric algorithms that act on fixed length groups of bits

called blocks, modern algorithms typically have block sizes of around 128 bits. Block

ciphers are key dependent, bijective transforms, meaning each plaintext maps

uniquely to exactly one ciphertext and the particular mapping is determined by the

key (and the cipher being used). The specific transform is controlled by the secret key.

Decryption is similar, application of the secret key and the inverse cipher reveals the

original data. Block ciphers are discussed in more detail in section 3.3.

3.2.1.1.2 Stream Ciphers

Stream ciphers work on smaller blocks, typically bits or bytes, and the

transform for successive blocks does not remain fixed throughout the entire

encryption. The difference between block and stream ciphers is not always that

distinct. Block ciphers can be modified to act as stream ciphers, although bespoke

stream ciphers are generally faster and less complex than block ciphers.

3.2.1.2 Asymmetric Key Algorithms

Asymmetric public key cryptography uses two different keys. The encryption,

or public, key may be freely given to anyone, while the decryption, or private, key is

kept secret. The keys are related mathematically, but it is not feasible to determine the

private key from the public key.

The two main applications of public key cryptography are:

• Public Key Encryption: used to ensure the confidentiality of communication

to the owner of the keys. Messages are encrypted with the public key, they

then cannot be decrypted by anyone unless they possess the corresponding

private key.

• Digital Signatures: used to verify the identity of the sender and the

authenticity of the message. Messages are signed with the sender's private key,

they can be verified by anyone who has access to the sender's public key

Probably the most well known system is PGP which was developed by Philip

Zimmerman in 1991and released free of charge on Usenet. It allows both the

encryption and signing of messages.

Chapter 3 Block Ciphers 27

3.2.1.3 Cryptographic Hash Functions

A cryptographic hash function, h, takes an arbitrarily sized message, m, and

creates a fixed length message digest, h (m), that appears random. Cryptographic hash

functions have other required properties:

• Given h (m) it must be difficult to find m.

• Given h (m) it must be difficult to find m2 such that h (m2) = h (m).

• It must be difficult to find m1 and m2 such that h (m2) = h (m1).

Hash functions are one of the most versatile cryptographic primitive and have

several different applications:

• Commitment scheme: By concatenating a message with a random

nonce, a value used to ensure uniqueness of output, and taking its hash a

user can commit to a message while still keeping it hidden. By later

revealing the nonce to another user it can be shown that the original user

did commit to the message.

• Message integrity: Comparing the hash of a received message to a hash

that was sent verifies that the message was received correctly.

• Digital signature: In order to increase performance most digital

signature algorithms only sign the message digest rather than the entire

message.

• Password verification: When a password is entered the hash of the

entry is taken and compared to the hash of the actual password. Thus the

actual password does not need to be stored as that would be insecure.

3.2.2 Cryptanalysis Methods

If data is worth protecting then it will be of some value, therefore code-breaking

is as old as codes themselves. This section briefly introduces some techniques to

break cryptographic algorithms. Different cryptanalysis methods assume that the

attacker has different levels of knowledge or access to the cipher:

• Ciphertext-only: the attacker has a list of ciphertexts.

• Known-plaintext: a set of ciphertexts linked to corresponding plaintexts.

Chapter 3 Block Ciphers 28

• Chosen-plaintext/-ciphertext: a set of ciphertexts (plaintexts) linked to

corresponding plaintexts (ciphertexts) chosen by the attacker.

• Related-key attack: like a chosen-plaintext, except the attacker can obtain

ciphertexts encrypted with different keys. The relationship between the keys is

known e.g. one bit difference, although the actual values are not.

Classical cryptanalysis mostly involved looking at the frequencies of various

letters in ciphertext and comparing those to the frequencies of letters in the plaintext

language. As cryptographic algorithms got more advanced this was no longer

possible, so new techniques had to be created. There are several general attacks on

block ciphers, such as differential cryptanalysis, a chosen plaintext attack that uses

differentials, pairs of plaintexts related by a constant difference, to detect patterns in

statistical distribution [26], and linear cryptanalysis, which involves generating linear

approximations to sections of the cipher that have either a high or low probability of

being correct [16]. It is also possible to exploit specific weaknesses in algorithms by

designing bespoke attacks, for example the Davies attack [27], which makes use of

the fact that adjacent s-boxes, non-linear functions that take a number of bits as input

whose output is determined by the value of the input, in the Data Encryption

Standard (DES) share some input bits.

The simplest form of attack is to simply go through all possible keys until the

correct one is discovered. This is called a brute force attack. With current levels of

computing power it is possible to attack outdated encryption algorithms like the block

cipher DES [28, 29], which has a key length of 56 bits, giving a total of 7.2 * 1016

possible key values. Modern block ciphers, like AES generally use between 128 and

256 bit keys, giving between 3.4 * 1038 and 1.2 * 1077 possible key values. This

means it is not currently feasible to perform brute force attacks on modern block

ciphers.

Another type of attack relies not on information derived from the algorithm, but

instead information that is leaked from the physical implementation. Real world

systems are not simple black boxes where the input goes in one end and the output

comes out the other, but rather are complicated devices that consume power and emit

electromagnetic radiation and take varying amounts of time to perform different

Chapter 3 Block Ciphers 29

calculations. All of these things can leak information about what is going on inside

the device and attacks that exploit this are known as side channel attacks.

The majority of the work presented here is related to side channel attacks,

specifically Differential Power Analysis (DPA). Power analysis uses the fact that the

power consumption has a high dependence on the data that is being processed. DPA

combines the power consumption data from several encryptions using different

plaintexts and uses statistical techniques to determine the most probable value for the

key. Power analysis in general and DPA in particular are discussed in more detail in

sections 4.3 and 4.3.2 respectively.

3.3 Block Ciphers

Block ciphers are a bijective transform that take the plaintext as an input and

convert it into the ciphertext. In order to be secure this transform need to have certain

mathematical properties. Section 3.3.1 introduces the most important properties

required for security: confusion and diffusion. While the mathematical properties are

clearly very important, knowing them and implementing a cipher that satisfies them

are very different things. Section 3.3.2 describes the structures that make up the

majority of modern block ciphers. Section 3.3.3 gives details on the various ways that

a block cipher can be used to encrypt a set of data that is larger than a single block.

3.3.1 Confusion and diffusion

In order for a block cipher to be secure against statistical attacks it must

effectively deal with the redundancy in the plaintext data. In 1949 Claude Shannon

published a seminal paper that is the mathematical basis for modern cryptography

[14]. In this he defined two concepts, diffusion and confusion.

Diffusion means that redundancy in the plaintext and key are dissipated in the

ciphertext; the influence of the value of a single input bit will be diffused over several

ciphertext bits and hence it will be difficult for an attacker to gain knowledge about

the plaintext from the ciphertext. Diffusion is characterised by the Avalanche Effect

and the Strict Avalanche Criterion (SAC), terms first used by Horst Feistel. The

Avalanche Effect results in a significant change in the output bits, ideally one half of

the bits change when a single input bit is complemented. The SAC is an extension of

Chapter 3 Block Ciphers 30

this and it is satisfied if a change in each of the input bits changes each of the output

bits with a probability of 0.5. This means that the ciphertext will appear to change

randomly between related messages, hiding message relationships which could be

used by an attacker. Operations that transpose bits increase the level of diffusion.

Confusion refers to making the relationship between the inputs and the

ciphertext as complex as possible, this is to ensure that it is difficult for an attacker to

discern information about the inputs from the ciphertexts. Ideally it would be

impossible for an attacker to distinguish a series of ciphertexts from a random bit-

stream. Confusion is ensured by using s-boxes, these are look up tables that

implement highly non-linear transformations.

3.3.1.1 Quantifying Confusion and Diffusion

Diffusion is the distribution of the effect of the value of the plaintext in the

ciphertext, in the ideal situation a change in any bit of the plaintext would affect each

bit of the ciphertext with a probability of 0.5. This can be determined by calculating

the ciphertexts for a large number of random plaintexts and counting the number of

ciphertext bits that are affected by changing one bit of the plaintext. The distribution

of the number of affected bits can then be compared to the theoretical distribution of

the ideal case using the Kolmogorov-Smirnov (KS) test [30]. The KS test is a

statistical test used specifically to test the equivalence of two probability distributions

using a finite number of samples. This is then repeated for each bit of the plaintext

and then the entire process is repeated for the key.

Determining whether or not sufficient levels of confusion have been reached in

a cryptographic algorithm can be achieved by testing for statistical randomness. A

simple frequency test, checking that there is an approximately equal number of 1s and

0s, can give an indication whether or not a cipher provides adequate confusion [30].

3.3.2 Block Cipher Structure

Although block ciphers represent a very complicated transformation most are

composed of repeating iterations of simpler functions. By combining simple

operations that mix in key data or increase either confusion or diffusion and having

several iterations of sequences of these blocks, commonly referred to as rounds, a

secure cipher can be built up out of small, easily implementable blocks. When taken

Chapter 3 Block Ciphers 31

as a whole, the combination of simple operations that forms a round is called the

round function. Two popular schemes for designing block ciphers are Substitution-

Permutation Networks (SPN) and Feistel ciphers.

As the name implies, Substitution-Permutation Networks based ciphers are

mainly made up of operations that either substitute values, or permute bits. During

substitution the data is separated into smaller blocks and the values in these blocks are

substituted for others, typically using a non-linear s-box, this increases the confusion.

Permutation works across several blocks and mixes the data, swapping bits or

combining values so the influence of data from one part of the plaintext is diffused

through the whole ciphertext. An example of an algorithm based on SPN is AES.

Using an SPN approach it is easy to design ciphers with sufficient levels of confusion

and diffusion to be secure using a fairly simple set of cryptographic primitives.

Figure 3-2: The structure of a Feistel cipher.

Feistel networks were first used in the cipher Lucifer, developed at IBM by Don

Coppersmith and the eponymous Horst Feistel. They are a subset of SPN so are also

made up of a series of simple functions repeated in rounds. The plaintext is split into

two equal halves. The round function is applied to the right hand half which is then

XORed with the left hand side and it becomes the new right hand side, the original

Chapter 3 Block Ciphers 32

right hand side becomes the left. This is shown in Figure 3-2. An advantage of Feistel

networks is that encryption and decryption is very similar, often requiring little more

than a reversal of the key schedule. An example of an algorithm based on a Feistel

structure is DES.

3.3.3 Cryptographic Modes of Operation

Block ciphers only work on fixed length blocks of data, but the actual data that

needs to be encrypted can be of any arbitrary length. Several different modes of

operation for block ciphers have been devised. The most common ones are described

in this section, they are: Electronic Code Book, Cipher Block Chaining, Cipher

Feedback, Output Feedback and Counter.

3.3.3.1 Electronic Code Book

The simplest mode is called Electronic Code Book (ECB), the input data is

separated into blocks and each is encrypted individually. A block diagram is shown in

Figure 3-3. Plaintexts with the same value will always give the same ciphertext, this

means that patterns in the data can still be seen in the encrypted data. Also this

method is susceptible to the replay attack, a network attack where an attacker repeats

valid data that was gained from eavesdropping on a previous session.

Figure 3-3: Block diagram of the ECB cryptographic mode of operation.

3.3.3.2 Cipher Block Chaining

In Cipher Block Chaining (CBC) the plaintext is XORed with the previous

ciphertext before encrypting it; the first plaintext is XORed with an initialisation

vector, see section 3.3.3.6. A block diagram is shown in Figure 3-4. Each ciphertext

is now dependent on all previous plaintexts so 1 bit error in the plaintext corrupts all

following ciphertexts, one bit error in the ciphertext corrupts the corresponding

Chapter 3 Block Ciphers 33

plaintext block and flips the corresponding bit in the next block. Encryption must be

done sequentially as the output from each block is needed at the input to the next, but

as the converse is true, i.e. the only data required from the previous block is the input

and it is only needed to convert the output of the decryption to the actual plaintext,

decryption can be parallelised.

Figure 3-4: Block diagram of the CBC cryptographic mode of operation.

3.3.3.3 Cipher Feedback

 In Cipher Feedback (CFB) an initialisation vector is encrypted, the plaintext is

then XORed with the output from the encryption to form the ciphertext, this

ciphertext is then encrypted and XORed with the next plaintext and so on, a block

diagram is shown in Figure 3-5. 1 bit error in the plaintext corrupts the entire cipher

stream; 1 bit error in a ciphertext flips the corresponding bit in the corresponding

plaintext and the entire next block. Encryption must be done sequentially, but

decryption can be parallelised. It is important to realise that as the plaintext interacts

with the output of the block cipher in both the encryption and the decryption forms

the block cipher is used in encryption mode.

Figure 3-5: Block diagram of the CFB cryptographic mode of operation.

Chapter 3 Block Ciphers 34

3.3.3.4 Output Feedback

Output Feedback (OFB) is similar to CFB, an initialisation vector is encrypted

and is XORed with the plaintext data to form the ciphertext, the difference is that the

output of the encryption is fed back before the plaintext is added. A block diagram is

shown in Figure 3-6. Neither encryption nor decryption using OFB can be

parallelised, but unlike CFB and CBC modes errors do not propagate and will only

affect the bits in question. As in CFB, both encryption and decryption use block

ciphers in their encryption mode, in fact the encryption and decryption modes are

exactly the same, simplifying any implementation. It is very important to not use the

same initialisation vector with the same key; this will result in an identical random

bit-stream and will leak a lot of information about the plaintexts. Another possible

insecurity with OFB is that if the output of the block cipher happens to give the same

value as the initialisation vector then the random bit-stream will repeat. The

probability of this happening is related to the number of plaintexts that are encrypted

with the same key and so this problem can be mitigated by changing the key

regularly.

Figure 3-6: Block diagram of the OFB cryptographic mode of operation.

3.3.3.5 Counter

Counter mode (CTR) is similar to CFB and OFB in the sense that it uses the

output of a block cipher to generate a random bit-stream that is then XORed with the

plaintext to form the ciphertext. The input to the block cipher is a unique number,

called a nonce, a contraction of number used once, concatenated with a counter. It is

important not to use the same key / nonce combination as it will leak information

about the plaintext.

Chapter 3 Block Ciphers 35

Block Cipher
Encryption

Key

Plaintext

Ciphertext

IV

0xf634...

Counter

0000000

Block Cipher

Encryption

Key

Plaintext

Ciphertext

IV

0xf634...

Counter

0000001

Block Cipher

Encryption

Key

Ciphertext

Plaintext

IV

0xf634...

Counter

0000000

Block Cipher

Encryption

Key

Ciphertext

Plaintext

IV

0xf634...

CTR
Encryption Decryption

Figure 3-7: Block diagram of the CBC cryptographic mode of operation.

3.3.3.6 Initialisation Vector

The choice of initialisation vector (IV) can have a significant impact on the

security of an encrypted message. If the same IV is used across several messages and

those messages start with the same block, the first block of ciphertext will be the

same, this will reveal information to any potential attacker. A random block of data

can be generated and used as the IV, this will require the encryption algorithm to have

access to a source of randomness, and also, in order to perform the decryption the IV

must be known. If it is random then it must be sent along with the message, this

increases the size of the ciphertext by 1 block. If there are a large number of relatively

short messages this can form a significant overhead.

A better method is to use a cryptographic nonce (a number used only once) to

generate the IV, typically this takes the form of a message counter. The nonce must

also be sent with the message, this still creates an overhead, but it can be much shorter

than a block. It is converted into an entire block by encrypting it with padding.

3.3.3.7 Summary of Modes of operation

As the ciphertext of a constant plaintext is always the same with ECB it can leak

some information about the data, additionally it is susceptible to a replay attack and it

is generally suggested that it not be used [31]. OFB is very similar to CFB, it does

have a number of advantages though, errors do not propagate, and both encryption

and decryption are exactly the same, significantly simplifying an implementation, this

more than makes up for the fact that the decryption cannot be parallelised. CTR, in

turn, is preferable to OFB as the random bit-stream generated using CTR will not

repeat unless the same nonce, counter and key are re-used; no matter how many times

Chapter 3 Block Ciphers 36

the encryption is performed. There are also a number of advantages to using CTR

over CBC. CTR does not require padding, it can be parallelised arbitrarily and it has a

simpler structure. The advantage of CBC is that it is more robust and leaks less

information if it is not setup securely.

3.4 Data Encryption Standard

3.4.1 Introduction

The Data Encryption Standard (DES) was developed in the early 1970s by

cryptographers at IBM, it is a Feistel cipher based on Lucifer. The National Bureau of

Standards (renamed to the National Institute of Standards and Technology (NIST) in

1988) identified a need for an encryption standard to protect unclassified but sensitive

government information. After consulting the NSA they solicited proposals for a

cipher on 15th May 1973, none of the algorithms were suitable, IBM made their

submission after the second request was issued on 27th August 1974. DES uses a 56-

bit key and works on 64-bit blocks of data [32].

3.4.2 Structure of DES

 As DES is a Feistel cipher the structure is very much like that shown in Figure

3-2, the only difference is there is an initial permutation that re-orders the bits and a

final permutation that performs the inverse.

The round function for DES is shown in Figure 3-8. The first stage is the

expansion operation that converts the 32-bit half block into 48 bits. This is achieved

by duplicating some bits, each 4-bit block of the input provides the middle 4 bits in a

6-bit block of the output, the 2 remaining bits at the edge of the block come from the

bits at the edge of the adjacent 4 bit input blocks. This is shown in detail in Table 3-1.

The expanded data is then mixed with the key and divided into 8 6-bit blocks which

are each put through a different s-box with 4-bit outputs. The 8 4-bit blocks are then

re-arranged by a fixed permutation, as shown in Table 3-2. There are a total of 16

rounds in DES

Chapter 3 Block Ciphers 37

Figure 3-8: The overall structure of DES and its round function.

The 56-bit key is expanded into 16 48-bit blocks, a total of 768 bits. This is

achieved by separating the initial 56 bits into two halves, each 28-bit half is then

rotated left by either 1 or 2 bits depending on the round, 24 bits are then selected from

each half by a fixed permutation. The process is repeated for each round.

Output Bit Input Bit Output Input Output Input Output Input

0 31 12 7 24 15 36 23

1 0 13 8 25 16 37 24

2 1 14 9 26 17 38 25

3 2 15 10 27 18 39 26

4 3 16 11 28 19 40 27

5 4 17 12 29 20 41 28

6 3 18 11 30 19 42 27

7 4 19 12 31 20 43 28

8 5 20 13 32 21 44 29

9 6 21 14 33 22 45 30

10 7 22 15 34 23 46 31

11 8 23 16 35 24 47 1

Table 3-1: The DES Expansion function.

Chapter 3 Block Ciphers 38

The inverse of the cipher is very similar, the final permutation is applied first,

after that the algorithm is exactly the same except the round keys are provided in the

reverse order, finally the initial permutation is applied to the data [33].

Output Bit Input Bit Output Input Output Input Output Input

0 15 8 0 16 1 24 18

1 6 9 14 17 7 25 12

2 19 10 22 18 23 26 29

3 20 11 25 19 13 27 5

4 28 12 4 20 31 28 21

5 11 13 17 21 26 29 10

6 27 14 30 22 2 30 3

7 16 15 9 23 8 31 24

Table 3-2: The DES Permutation function.

3.4.3 Security of DES

There have been a few attacks that can reduce the complexity of attacking full

round DES to lower than that of a brute force attack, although generally not by much,

and often they involve collecting large numbers of known or chosen plaintexts. These

attacks are discussed briefly in section 3.4.3.1. DES is no longer considered secure as

the key length is not long enough to make brute force attacks infeasible with current

levels of processing power available.

3.4.3.1 Theoretical Attacks

There have been several attacks published on DES. Differential cryptanalysis is

a chosen plaintext attack that uses differentials, pairs of plaintexts related by a

constant difference, to detect patterns in statistical distribution. It was known to IBM

in 1974 and resistance to this type of attack was one of the design goals of the

algorithm [34]. When applied to DES differential cryptanalysis requires 247 chosen

plaintexts.

Linear cryptanalysis was developed by Matsui in 1992 [16]. It involves

generating linear approximations to sections of the cipher that have either a high or

low probability of being correct. If bits were chosen at random there would be an

Chapter 3 Block Ciphers 39

expected probability of ½. It is the deviation from this that provides the cryptanalyst

with information. To attack DES using a linear cryptanalysis approach requires 243

known plaintexts [17].

The Davies attack is a statistical attack designed specifically for DES, it was

developed by Davies in 1987 [27]. It is a known plaintext attack that exploits the fact

that each adjacent s-box shares two input bits that are XORed with different key bits.

After collecting enough known plaintext / ciphertext pairs some bits of the key can be

calculated. This reduces the complexity of a brute force attack. There is a trade-off

between the number of plaintexts, the number of key bits recovered and the

probability of success. With 252 plaintexts 24 key bits can be recovered 53% of the

time.

3.4.3.2 Brute Force Attacks

DES only uses a 56-bit key; this gives 7.2*1016 possible combinations. In the

1970s this was adequate for brute force to be infeasible. Computers are currently fast

enough for this to no longer be true. To highlight this fact RSA Security created a

series of contests called the DES Challenges. The first one was in 1997 and was

solved by the DESCHALL Project in 96 days, a distributed computing project

designed to crack DES. DES Challenge II-1 was solved in 41 days in 1998 by

distributed.net, a worldwide distributed computing project that uses the idle time of

lots of machines to solve large, computationally intensive problems. DES Challenge

II-2 was solved in just 56 hours using Deep Crack, a custom built machine made by

the Electronic Frontier Foundation. DES Challenge III was solved as a joint effort

between Deep Crack and distributed.net in 22 hours and 15 minutes [29]. Additionally

in 2006 the universities of Bochum and Kiel developed COPACOBANA, this

retrieves DES keys in an average of 7.2 days and all keys can be tested in 14.4 days

[28]. The aim was to get the best cost to performance ratio, as such it is built entirely

from off the shelf components. It uses 120 FPGAs (Xilinx Spartan3-1000) and can be

built for less than $10,000 [18].

Clearly DES does not provide adequate security against brute force attacks by

modern computers and DES is no longer considered secure. In order to increase the

security against brute force attacks without having to change to a completely different

algorithm a variant of DES was developed called Triple DES, which is discussed in

Chapter 3 Block Ciphers 40

section 3.5. In 1997 NIST announced the development of a new standard. It was

published in 2002 and is called the Advanced Encryption Standard; it is discussed in

section 3.6.

3.4.3.3 Conclusion

Even though they have a lower theoretical complexity than a brute for attack,

the three attacks discussed in section 3.4.3.1 all require a large number of known

plaintexts. Linear cryptanalysis requires 243, differential cryptanalysis requires 247,

and the Davies attack requires 252 just to retrieve 24 key bits 53% of the time, these

numbers of plaintexts are not realistic for a real attacker. However, in the strictest

sense the algorithm can be described as being broken. Also, the relatively small size

of the key compared to the availability of modern processing power enables brute

force attacks to be successful in an average of 2 weeks. DES can therefore no longer

be considered secure.

3.5 Triple DES

3.5.1 Introduction

Triple DES (TDES) is a derivative of DES that is essentially 3 DES blocks in a

row. It was developed as a way to increase the size of the key space provided by DES

when it was realised that 56 bits was not enough to ensure security against brute-force

attacks with the levels of computing power that had been developed. As it is derived

from DES the security of a system can be vastly improved while not having to change

the underlying algorithm. TDES is slowly being replaced by the current standard

algorithm AES. A notable exception is within the electronic payments industry, which

still makes extensive use of TDES.

3.5.2 Structure of Triple DES

The simplest form TDES can take is simply the linking of 3 DES encryption

blocks, this is commonly known as EEE, as all steps are encryptions. Generally, in

order to make TDES systems more backwards compatible with DES ones, an EDE

structure is used, this is one where the 2nd DES block is in decryption mode, so that if

all blocks are given the same key the output is the same as that of a single DES block.

The structure of EEE and EDE are given in Figure 3-9 a. and b. It is important to note

Chapter 3 Block Ciphers 41

than when decrypting not only does the operation of each block have to change, but

also k1 and k3 must be swapped, the structure of EDE decryption is given in Figure

3-9 c. Additionally there are 2 other variants of TDES, a 2-key version where k1 = k3

and a 3-key version where k1, k2 and k3 all have different values.

Figure 3-9 : The Structure of TDES for EEE Encryption (a), EDE Encryption (b) and

decryption (c).

3.5.3 Security of Triple DES

When trying to increase the key space of an algorithm by using more than one

independent key and performing a number of encryption algorithms it might be

assumed that the security would square each time the number of encryptions doubled,

as an exhaustive search of all possible keys would take 22n attempts for each key n

bits long. In 1977 Diffie and Hellman showed that this wasn’t true by developing the

Meet-in-the-Middle Attack [35]. It is a known plaintext attack where the attacker

calculates one encryption of the plaintext for all possible n keys and stores the results.

Then the attacker calculates one decryption of the ciphertext for each key in turn, if

the result is also in the previous list of results then it is likely that the correct keys

have been found, this can then be verified with another plaintext / ciphertext pair. For

this reason double DES would not increase the security from 22n, but to 2n+1.

DES Enc.

DES Enc.

DES Dec.

Plaintext

Ciphertext

K1

K2

K3

DES Enc.

DES Enc.

DES Enc.

Plaintext

Ciphertext

K1

K2

K3

DES Dec.

DES Dec.

DES Enc.

Plaintext

Ciphertext

K3

K2

K1

a. EEE Encryption b. EDE Encryption c. EDE Decryption

Chapter 3 Block Ciphers 42

3-key TDES has a key size of 168 bits, but due to the Meet-in-the-Middle

Attack the effective security it provides is only 112 bits. 2-key TDES is susceptible to

certain chosen-plaintext [36] or known-plaintext attacks [37] and thus it is officially

designated to have only 80-bits of security.

In 1998 Lucks improved the Meet-in-the-Middle attack on triple encryption

algorithms in general and TDES in particular [38]. His version requires around 232

known plaintexts, 290 single DES encryptions, and 288 memory.

3.6 Advanced Encryption Standard

3.6.1 Introduction

Figure 3-10: The structure of the forward and inverse AES algorithm.

In January 1997 the National Institute of Standards and Technology (NIST)

body announced the initiation of the Advanced Encryption Standard (AES)

development effort, to create a new standard for a block cipher that would provide

secure encryption well into the next century. In September of that year NIST officially

announced a call for algorithms to be submitted by the public and evaluated for their

appropriateness. NIST stipulated that the algorithm had to work on a 128-bit block

size and support key-lengths of 128, 192 and 256 bits. In October 2001 the algorithm

Chapter 3 Block Ciphers 43

Rijndael, developed by Vincent Rijmen and Joan Daemen [1], was selected to be AES

and the standard was published in November 2002 [39]. The structure of AES is

shown in Figure 3-10:

The 128-bit input is split into a 4*4 matrix of 8 bits called a state, an example is

given in Figure 3-11 and it is put through a number of rounds of operations designed

to encrypt the data, the number of rounds being determined by the size of the key, 10

for 128, 12 for 192 and 14 for 256.

Figure 3-11: An example of a state.

Each round consists of a number of operations; Sub Bytes, Shift Rows Mix

Columns and Add Key, all of the manipulation in these operations are performed in

the finite field GF (28). GF (28) mathematics is explained in section 3.6.2 and the

operations are described in detail in sections 3.6.3 - 3.6.7.

3.6.2 Finite Field Mathematics

A finite field is a field, an algebraic construct in which addition, subtraction,

multiplication and division can be performed, in which there is a finite number of

elements. The order of a field, the number of elements in it, is of the form pn where p

is a prime number called the characteristic and n is a positive integer. There is more

than one forms of notation for finite fields, for example. , the notation used in this

document is GF (pn). In this notation GF stands for Galois Field, an alternative name

for finite fields named after Évariste Galois who discovered them shortly before his

death in a duel in 1832 aged 20 [40]. AES makes use of finite field mathematics, and

as previously stated all the normal arithmetic operations can be performed on finite

fields. The next section details the specific finite field that is used in AES, explains

how it is used and gives examples of its manipulation.

Chapter 3 Block Ciphers 44

3.6.2.1 GF (2
8
) and AES

When performing mathematical operations in AES the data is interpreted as

being in the finite field GF (28). In the normal representation of numbers in binary

notation the i
th

 bit of number represents 2i and the resultant values from all the

individual bits are summed to give the total. In GF (28) the number represents a

polynomial where the ith
 bit represents bix

i where b is a modulo-2 coefficient and i can

range from 0 to 7. An example is given in equation (3-1) with its hexadecimal and

binary equivalents; it represents the hexadecimal number A7.

 x
7 + x5 + x2 + x +1 = 0xA7 = 10100111 (3-1)

When performing addition the coefficients are added, as it is modulo 2 this is

equivalent to an exclusive or (XOR), an example is given in lines 2 – 4 of the example

in Figure 3-12. When performing multiplication each term in one operand is

multiplied by each term in the other by adding the indices and multiplying the

coefficients. Coefficients with the same index are then summed modulo-2. The new

polynomial might have an order greater than 7; if this is the case then it could not be

represented in 1 byte and the order needs to be reduced. This is achieved by

representing all results modulo an irreducible polynomial of degree 8. A polynomial

is irreducible if its only divisors are one and itself. The irreducible polynomial for

AES is shown in equation (3-2).

 x
8 + x4 + x3 + x +1 = 0x011B (3-2)

An example multiplication between the values 0x18 and 0x09 is shown below

in Figure 3-12.

1. (x5 + x3) * (x3 + x) Initial multiplication

2. (x5+3 + x5+1) + (x3+3 + x3+1) Multiply out brackets

3. x
8 + x6 + x6 + x4

4. x
8 + x4 Addition is XOR so x6 cancels

5. (x8 + x4) + (x8 + x4 + x3 + x + 1) Result has order greater than 8

6. x
3 + x + 1 Result is reduced by the irreducible

polynomial

Figure 3-12: An example multiplication in GF (28).

Chapter 3 Block Ciphers 45

3.6.3 Sub Bytes

The Sub Bytes operation is a data dependent substitution of the values in the

state. The transform is made up of 2 steps, finding the multiplicative inverse in the

finite field GF (28) and adding an affine transform. The multiplicative inverse is the

number that when multiplied by the original in GF (28) and reduced by the relevant

irreducible polynomial, gives the value 1 as the answer. An affine transform is a linear

transform followed by a translation. A general affine transform is shown in equation

(3-3) and the particular one used by AES is shown in equation (3-4).

 CAxx +→ (3-3)

 x→ 0x1F * x + 0x63 (3-4)

The affine transform is implemented by calculating each bit in turn using the

formula given in equation (3-5) it required XORing bits from the original number

together and then one bit from the constant C.

 b'i = bi ⊕ b(i + 4) mod 8 ⊕ b(i + 5) mod 8 ⊕ b(i +6) mod 8 ⊕ b(i + 7) mod 8 ⊕ ci (3-5)

3.6.4 Shift Rows

The Shift Rows operation rotates the rows in the state one byte to the left for

each row there is above it, i.e. the top row remains the same but the one below it is

rotated one byte to the left.

Figure 3-13: The effect of the Shift Rows operation.

3.6.5 Mix Columns

The Mix Columns operation performs a vector dot product on each column in

turn with a constant matrix. This is shown in Figure 3-14.

Chapter 3 Block Ciphers 46

Encryption Matrix:

02010103

03020101

01030201

01010302

Hence:

3

2

1

0

c

c

c

c

 becomes

⊕⊕⊕

⊕⊕⊕

⊕⊕⊕

⊕⊕⊕

)*}02({)()()*}03({

)*}03({)*}02({)()(

)()*}03({)*}02({)(

)()()*}03({)*}02({

3210

3210

3210

3210

cccc

cccc

cccc

cccc

Decryption Matrix:

edb

bed

dbe

dbe

00900

00090

00009

09000

 Hence:

3

2

1

0

c

c

c

c

 becomes

⊕⊕⊕

⊕⊕⊕

⊕⊕⊕

⊕⊕⊕

)*}0({)*}09({)*}0({)*}0({

)*}0({)*}0({)*}09({)*}0({

)*}0({)*}0({)*}0({)*}09({

)*}09({)*}0({)*}0({)*}0({

3210

3210

3210

3210

ceccdcb

cbceccd

cdcbcec

ccdcbce

Figure 3-14: The matrices for the encryption and decryption versions of the Mix Columns

operation in hexadecimal.

3.6.6 Add Key

Add Key adds the 128-bit round key to the state using an XOR, an example of

this is shown in Figure 3-15.

Figure 3-15: An example of the Add Key operation in AES.

Chapter 3 Block Ciphers 47

3.6.7 Key Expansion

The round key for each round is different and is derived from the secret key by

the key scheduler. The number of encryption rounds that a block must go through is

determined by the key length, 10 rounds for a 128-bit key, 12 for 192-bit and 14 for a

256-bit key, there is also an initial Add Key operation at the start of the encryption

process. The size of the key used in each round key is 128 bits, and the original secret

key data is always used first. This means that for a key size of 128-bits a total of 11

keys are needed, as the original secret key is always used first the key scheduler needs

to create only another 10 keys, or 1280-bits of data. For a 192-bit key length 13 round

keys are required, equivalent to 1472 bits of expanded data. For a key length of 256-

bits 15 round keys are needed, requiring 1664 bits of expanded data.

Figure 3-16: Examples of the key matrices for the three different key lengths in AES.

During the expansion process the original key is arranged into a matrix similar

in structure to that of the state. Each element has 8 bits and there are 4 rows, the

number of columns is determined by the key length, a 128-bit key has 4, a 192-bit key

had 6 and a 256-bit key has 8, examples are shown in Figure 3-16. Each expansion

round produces a block of data equal in size to the key matrix, so although longer

keys need to generate greater amounts of round keys they produce more data in each

key expansion round and hence require less of them. 10 rounds are needed for 128

bits, 8 for 192 and 7 for 256 bits.

To perform one round of the key expansion the last column of the previous

matrix is rotated downwards, i.e. the bottom byte becomes the top one and the rest are

shifted down by one; the values are substituted using the same s-box as during

encryption, that column is then XORed with the first column in the key matrix and a

column from the constant RCON, as shown in Figure 3-17. To get the rest of the key

matrix the previously generated column is XORed with the new columns counterpart

from the previous matrix, e.g. the 3rd column in the new block is the 2nd column in the

Chapter 3 Block Ciphers 48

new block combined with the 3rd column in the old one. An example of the generation

of the first 2 columns of a round key is shown in Figure 3-18.The only exception to

this is when there is a 256-bit key, in this case another substitution performed on the

data in the forth generated column before it is XORed it with the previous matrix’s

column.

Figure 3-17: The constant RCON.

Figure 3-18: Example of the expansion of the first two columns of the first round key of a

128-bit key.

3.6.8 Inverse Cipher

To decrypt data using AES the inverse of the cipher has to be performed, this

requires performing the inverse of each operation in the reverse order to the forward

cipher. The structure of the inverse cipher is also shown in Figure 3-10. The inverse

of Sub Bytes is again a substitution, the inverse of the affine transform is applied and

Chapter 3 Block Ciphers 49

then the multiplicative inverse of the value is found. The inverse of the Shift Rows

operation is exactly the same except the rows are shifted to the right instead of the

left. The inverse of the Mix Columns has a similar structure; the only difference is the

values in the matrix are now the multiplicative inverses of the original ones. The XOR

operation is its own inverse so Add Key remains the same; the only difference is that

the first inverse Add Key that is performed has to cancel out the last Add Key that

was performed during encryption so the round keys are used in the opposite order.

3.6.9 Implementing the Algorithm

The following sections give details on implementing the various blocks that

make up the algorithm and describe some of the reported implementations.

3.6.9.1 Shift Rows

The Shift Rows operation is a simple remapping of the order of bytes within the

state. This can be accomplished by the way the bytes are wired between the Sub Bytes

and Mix Columns operations, e.g. the first byte on the second row of the output of the

Sub Bytes becomes the input to the second byte of the second row of Mix Columns.

Changing the order of the wiring between blocks does not increase the delay and so

there are no reasonable improvements that can be made to this approach.

3.6.9.2 Sub Bytes

Sub Bytes is the hardest operation as it involves calculating the multiplicative

inverse in GF (28), which can be computationally intensive [41]. It is possible to

calculate it using Euclid’s algorithm [42], but this is an iterative process so would

require several clock cycles [43]. In order to perform the substitution in one clock

cycle a look up table (LUT) is required, this is commonly referred to as an s-box. This

approach is not very area efficient. If a standard LUT is implemented in ROM then it

requires 256 bytes of memory. The s-box is potentially the most replicated element in

an AES implementation as 16 are needed to perform a complete Sub Bytes operation

in one clock cycle and an additional four are used to expand the key, this represents a

significant proportion of the area. The s-box is also the slowest function [41]. There is

an optimisation that is commonly used in software implementations of AES that

merges the Sub Bytes and Mix Columns stages of the algorithm by storing modified

Chapter 3 Block Ciphers 50

s-boxes that give the result of the substitutions multiplied by the relevant constant.

The modified s-boxes are called t-boxes [41].

In order to improve the timing performance of the LUT for the AES s, or t-box,

Morioka and Satoh [41] developed a twisted binary decision diagram (BDD). They

reported an increase in speed by a factor of between 1.5 and 2 compared to

conventional implementations. A BDD is a rooted, directed, acyclic graph, where

each non-terminating node has two directed edges. Each level of nodes represents a

different variable and by following the graph to a terminating node it is possible to

determine a value for the function represented by the graph. An example BDD is

shown in Figure 3-19.

There are a number of characteristics of the s-box that would decrease the

performance if it was implemented in a standard BDD form. A large sharing of

selectors in the first and second stages of the diagram causes a large fan-out. In the

proposed twisted BDD architecture, eight BDDs are arranged in parallel, each

corresponding to an output bit. No node is shared between them and their variable

ordering is twisted so that each primary input i drives the ((8 – i + j mod 8) +1)th

input of BDD j. This causes the fan-out to be greatly reduced. Morioka and Satoh

reported a delay of 440 ps using 2815 gates in a 0.13-µm technology. This fast s-box

allowed them to achieve encryption rates of 11.6 Gbits/s without using pipelining.

Figure 3-19: An example Binary Decision Diagram and associated Truth Table.

There are other more space efficient implementations of the s-box. Rijmen [44]

suggested calculating the multiplicative inverse of a GF (28) value by converting it

into a polynomial of degree 1 with coefficients in GF (24). Denoting the irreducible

polynomial used for multiplication as x2
 + Ax + B and the converted polynomial as bx

+ c, the multiplicative inverse is given by:

Chapter 3 Block Ciphers 51

 1221221))(()()(−−− ++++++=+ cbcABbbAcxcbcABbbcbx (3-6)

A flow diagram showing the required operations is given in Figure 3-20. This

approach still requires calculating the multiplicative inverse of a GF (24) value. This is

a much easier problem requiring a smaller LUT as there are only 16 possibilities for 4

bits. This creates a much smaller s-box, but greatly increases the critical path. This

optimisation was developed further by Hodjat and Verbauwhede [45] by adding

pipelining inside the s-box. Pipelining is discussed in section 3.6.9.7. The speed area

trade-off that they reported on a 1.8-µm technology is shown in Figure 3-21.

Figure 3-20: Calculating the multiplicative inverse in GF (28) using GF (24).

Figure 3-21: The speed area trade-off for different s-boxes using a 1.8-µm technology. [45]

Chapter 3 Block Ciphers 52

3.6.9.3 Add Key

The Add Key operation is only an XOR, there is no reasonable way that is can

be further optimised.

3.6.9.4 Mix Columns

Mix Columns is made up of multiplications and additions. Additions, as in the

Add Key module are simply XOR gates and as stated in section 3.6.9.3 additions are

too simple to be further optimised. Multipliers are more complicated and the design of

them is discussed in the following section.

3.6.9.5 Multiplication

c7 (a7.b0) ⊕ (a6.b1) ⊕ (a5.b2) ⊕ (a4.b3)

c6 (a6.b0) ⊕ (a5.b1) ⊕ (a4.b2) ⊕ (a3.b3) ⊕ (a7.b3)

c5 (a7.b3) ⊕ (a7.b2) ⊕ (a6.b3) ⊕ (a5.b0) ⊕ (a4.b1) ⊕ (a3.b2) ⊕ (a2.b3)

c4 (a7.b2) ⊕ (a6.b3) ⊕ (a4.b0) ⊕ (a3.b1) ⊕ (a2.b2) ⊕ (a1.b3)

c3 (a7.b3) ⊕ (a7.b1) ⊕ (a6.b2) ⊕ (a5.b3) ⊕ (a3.b0) ⊕ (a2.b1) ⊕ (a1.b2) ⊕ (a0.b3)

c2 (a7.b3) ⊕ (a7.b2) ⊕ (a6.b3) ⊕ (a2.b0) ⊕ (a1.b1) ⊕ (a0.b2)

c1 (a7.b2) ⊕ (a6.b3) ⊕ (a7.b1) ⊕ (a6.b2) ⊕ (a5.b3) ⊕ (a1.b0) ⊕ (a0.b1)

c0 (a0.b0) ⊕ (a7.b1) ⊕ (a6.b2) ⊕ (a5.b3)

Table 3-3: The equations for a generic 8-bit by 4-bit GF (28) multiplier.

In order to design a multiplier it is important to understand how multiplication

in GF (28) is performed, this is described in detail in section 3.6.2. When two finite

field elements are multiplied together they cause an effect in the element representing

the sum of the value of their individual elements, e.g. x
3
 * x

4
 = x

7. Therefore each

element is the addition (XOR) of each possible combination of pairs of bits, one from

each multiplicand, whose element numbers sum to the value of the element in

question. This could give a number that is larger than 28 so it has to be reduced

modulo an irreducible polynomial, the one that is used is given in equation (3-2). The

8th element of the irreducible polynomial is ‘1’; this means by adding it to a number

that is too large it can be used to cancel the 8th element. Any other values can be

Chapter 3 Block Ciphers 53

cancelled by multiplying it by the relevant power of x. The equations for a generic 8-

bit by 4-bit GF (28) are shown in Table 3-3.

It is important to note that when performing the multiplication in the mix

columns operation one of the operands is a constant. This can lead to a slightly

smaller design by creating a series of separate fixed value multipliers. The bits of the

polynomial x that must be XORed together for each bit of the polynomial y for each

of the constant multipliers are given in Table 3-4 [46]. This only reduces area if the

multipliers are going to be replicated enough times to mix at least one column in a

clock cycle.

 02 03 09 0b 0d 0e

y7 x6 x6 x7 x4 x7 x4 x6 x7 x4 x5 x7 x4 x5 x6

y6 x5 x5 x6 x3 x6 x7 x3 x5 x6 x7 x3 x4 x6 x7 x3 x4 x5 x7

y5 x4 x4 x5 x2 x5 x6 x7 x2 x4 x5 x6 x7 x2 x3 x5 x6 x2 x3 x4 x6

y4 x3 x7 x3 x4 x7 x1 x4 x5 x6 x1 x3 x4 x5 x6 x7 x1 x2 x4 x5 x7 x1 x2 x3 x5

y3 x2 x7 x2 x3 x7 x0 x3 x5 x7 x0 x2 x3 x5 x0 x1 x3 x5 x6 x7 x0 x1 x2 x5 x6

y2 x1 x1 x2 x2 x6 x7 x1 x2 x6 x7 x0 x2 x6 x0 x1 x6

y1 x0 x7 x0 x1 x7 x1 x5 x6 x0 x1 x5 x6 x7 x1 x5 x7 x0 x5

y0 x7 x0 x7 x0 x5 x0 x5 x7 x0 x5 x6 x5 x6 x7

Table 3-4: The bits that must be XORed together to calculate each bit for the constant

multipliers.

3.6.9.6 Key Scheduler

There are two main types of key scheduler that have been reported, offline and

online. In an offline approach all of the round keys are generated at the start and

stored in memory, whereas in an online approach round keys are generated as they are

required. If the encryption architecture is unrolled then all the round keys are needed

on any given clock cycle. An offline key scheduler can reduce the area requirements

if the key does not change very often compared to the data. This is because the

advantage gained by unrolling the key scheduler is minimal so it is more efficient to

calculate the values once and store them. If the encryptor is not unrolled then there is

Chapter 3 Block Ciphers 54

no space advantage to making the key scheduler offline as there would only be the

need to generate one key at any given time anyway so storing them would only waste

space. Also the memory access time could potentially be greater than the time it takes

to generate the keys online. It is important to note that as the keys are needed in the

reverse order when performing decryption the online key scheduler is only

appropriate for a device that only performs encryption.

3.6.9.7 Pipelining

There are two approaches to pipelining, outer-pipelining and inner-pipelining.

Outer-pipelining involves the addition of registers between rounds so that multiple

blocks of data can be processed in parallel. An architecture is said to be fully

pipelined if the number of pipeline stages, k, is equal to the number of rounds. If an

architecture is only partially pipelined it can process k blocks in the same number of

clock cycles as there are rounds, and after k clock cycles data has to be fed back round

from the final stage. For this reason k is generally chosen to be a factor of the number

of rounds otherwise when one block has been completely processed the new data

would have to be added to a non-constant point in the pipeline and this would increase

the complexity of the controller. Due to the need to replicate round blocks in order to

process more than one data block at once the area of the pipelined architecture is

proportional to k.

Inner-pipelining is similar except the registers are inserted inside the

combinational logic of a round block. If there are n blocks with the same delay then

the inner pipelining can achieve an increase in speed of almost a factor of n, with only

a marginal increase in area. The minimum clock period is determined by the longest

critical path between registers, so dividing blocks that are not the longest has no effect

on the clock speed.

The effects of pipelining on the performance of an AES implementation were

investigated by Hodjat and Verbauwhede in [47]. They designed and simulated

different implementations for an AES processor using a 1.8-µm technology. One with

both inner and outer pipelining, one with only outer pipelining and a third design that

has 5 pipeline stages that each contain 2 rounds and take 2 clock cycles to complete.

The rounds and key generators were split into four sections for the inner pipelining.

The throughput and area for different implementations are shown in Figure 3-22. The

Chapter 3 Block Ciphers 55

effect that pipelining has on the area is less than the effect that pipelining has on the

speed, this can be seen from the graph below. When moving up to an implementation

with more pipelining the throughput is increases by a greater factor than the number

of gates. For example, the difference in the number of gates for the largest multi-

round pipeline implementation and the largest inner and outer round pipelined

implementation is slightly greater than 2 while the throughput increases by nearly a

factor of 4.

Figure 3-22: The Area-throughput trade-off for a 1.8-µm AES implementation. [45]

It is important to note that if pipelining is used it limits the cryptographic modes

of operation that can be used with the device to ECB only. With modes like CBC the

previous ciphertext is XORed with the plaintext, so an entire encryption must be

complete before the next one is started. This is the reason that pipelining was not

included in the design reported by Morioka and Satoh in [41].

3.6.10 Reported Performance of Hardware Implementations

There have been several implementations of AES developed that use different

optimisations in order to improve the performance of the hardware in some. The

results for ASIC implementations are summarised in Table 3-5 and the FPGA

implementations in Table 3-6.

The implementations using t-boxes rather than s-boxes produced faster chips, an

increase in throughput of nearly 30% compared to similar implementations that used

s-boxes [41]. There is a price to pay in area though, as it increased by 350%. This is

because in order to run one column through the Sub Bytes and Mix Columns requires

4 s-boxes and 8 multipliers, or 12 t-boxes and t-boxes are much larger than

Chapter 3 Block Ciphers 56

multipliers. To perform decryption 4 s-boxes and 16 multipliers, or 16 t-boxes are

required.

Description Throughput

(Gbits/s)

Clock

(MHz)

Gates Tech.

(µm)

LUT s-box full AES offline key [48] 1.64 465 28626 0.18

GF (24) s-box, offline key, full AES [49] 2.381 200 58430 0.35

GF (24) s-box, offline key, full AES [50] 2.977 250 63400 0.25

BDD s-box 128 bit dec. no pipe [41] 8.9 699 61841 0.13

BDD t-box 128 bit dec. no pipe [41] 11.3 885 282494 0.13

BDD t-box 128 bit enc. no pipe [41] 11.6 909 167566 0.13

128 bit enc. multi pipelining [47] 23.1 362 222000 0.18

128 bit enc. outer pipelining [47] 48.2 377 482000 0.18

128 bit enc. both pipelining [47] 77.6 606 471000 0.18

Table 3-5: Reported ASIC implementation performances.

In both [51] and [52] they have made a similar encryptor / decryptor

combination and encryptor pair. In [51] the throughput of the implementation is

reduced by a factor of 4 and the area requirements increase by two thirds. In [52] the

area more than doubles and the speed halves although it is later implemented on a

more complex FPGA. Supporting more than one key length can also significantly

reduce the performance of AES chips due to increased complexity.

Description Throughput

(Gb/s)

Clock

(MHz)

Slices FPGA

Small low cost Enc/Dec [53] 0.208 71.5 163 XC3S50

Small low cost Enc/Dec [53] 0.358 123 146 XC2V40

Generic 128 bit Enc. [52] 0.310 25.4 4681 XCV600E

LUT s-box 128 bit enc/dec [51] 0.463 76 5150 XCV1000E

LUT s-box 128 bit enc [51] 1.604 125.38 1857 XCV1000E

Chapter 3 Block Ciphers 57

Description Throughput

(Gb/s)

Clock

(MHz)

Slices FPGA

Full pipeline 128 bit enc/dec [52] 3.239 25.3 7576 XCV3200E

Full pipeline 128 bit enc [52] 6.956 54.35 2222 XCV812E

GF (24) 3 stage inner pipeline [54] 9.184 71.8 9406 XCV800

GF (24) 3 stage inner pipeline [54] 11.965 93.5 9406 XCV812E

GF (24) 7 stage inner pipeline [54] 16.032 125.3 11014 XCV1000

GF (24) 7 stage inner pipeline [54] 21.556 168.4 11022 XCV1000E

Full pipe online key 128 bit enc [55] 16.54 129.2 11719 XCV1000E

Full pipe online key 128 bit enc [55] 17.8 139.1 10750 XC2V2000

Table 3-6: Reported FPGA implementation results.

3.6.11 Testing and Validation of AES

In order to check the validity of an AES implementation NIST created the

Advanced Encryption Standard Algorithm Validation Suite (AESAVS) [56]. It is

designed to perform automated testing of an implementation, using Known Answer

Test (KAT), the Multi-block Message Test (MMT), and the Monte Carlo Test (MCT).

The KATs can be split into four groups GF s-box, key s-box, variable key and

variable plaintext. In variable key tests the plaintext is always made entirely of zeros

and the key is made of increasing number of contiguous ones starting from the left

hand side. The relevant ciphertexts are given for all of these, for all of the possible

key lengths. Similarly the keys for the variable plaintext tests are made entirely of

zeros and the plaintext is made of an increasing number of ones.

MMT tests the implementation’s ability to correctly process multi-block

messages. These require the chaining of information between consecutive blocks.

Several different modes of operation are tested by MMT, namely: ECB, CBC, OFB,

and Cipher Feedback with 128, 8 and 1 blocks of data (CFB128, CFB8 and CFB1).

The block length is 8 bits for CFB8, 1 bit for CFB1 and 128 bits for the others. For

each supported mode 10 messages are supplied with lengths of i * blocklength, where

1≤ i ≤ 10.

Chapter 3 Block Ciphers 58

In the MCT, the implementation under test encrypts 100 plaintexts iteratively

1000 times, by feeding the generated ciphertext back round using the appropriate

method for the cryptographic mode under test. Hence any MCT test involves 100,000

encryption, or decryption, operations, this requires a long simulation.

To perform the test a request file is generated that contains all of the plaintexts,

keys and initialisation vectors, for the tests. The implementation then reads in this

data, processes it and creates a response file. The data in the response file is then

verified with a trusted implementation of AES.

3.6.12 Security of AES

There have been no attacks of full strength AES, however there have been some

concerns voiced over its security. AES has a simple algebraic structure and while this

has not yet led to the discovery of any vulnerabilities it has been criticised as a

potential weakness [57]. AES is based on the algorithm Square, also designed by

Rijmen and Daemen [58], in the specification they include a potential attack that

utilises the byte oriented structure of the algorithm, this is described in more detail in

section 4.2.1. The basic square attack can only break four rounds but it can be

extended to up to eight [30]. It is possible that it could be potentially be extended

further in the future. The algorithms itself achieves good levels of confusion and

diffusion, the same cannot be said for the key-schedule [30], this is discussed further

in section 4.2.2. Finally, like all block ciphers, AES is susceptible to power analysis

attacks and Differential Power Analysis is able to retrieve the key [3, 59-61], this is

discussed further in section 4.3.2.

3.7 Conclusion

Block ciphers were the first type of cipher to be developed in the modern era of

digital cryptography. The foundations were laid by Shannon in the 1949 and they

have evolved significantly since the 1970s, increasing in size and complexity and

becoming immune to several different classes of attacks along the way. They are a

valuable and versatile weapon in the cryptographer’s arsenal, being able to secure

messages sent to trusted recipients, protect files and even encrypt arbitrary length

streams of data.

Chapter 3 Block Ciphers 59

In the 1970s DES was developed and it remained the standard block cipher for

nearly three decades, until computing power and cryptanalysis had advanced to such a

degree that it was no longer deemed secure. After the cracks started to appear its

successor was developed, the Advanced Encryption Standard (AES). There have been

no published mathematical attacks on full round AES and although there have been

criticisms of some elements of the design it is accepted to be currently secure. There

is one class of attacks that no algorithm can currently claim to be immune from and

that is side channel attacks, these are explored in chapter 4.3.

Chapter 4 Security of

Algorithms

4.1 Introduction

There are several different techniques for cryptanalysis. The attacks all make

assumptions about how much information can be observed by the attacker and what

kind of access he has to the device. It is generally assumed that the structure of the

algorithm is known by the attacker. Keeping the algorithm secret is a dangerous way

to try and ensure security, there is no real guarantee that an attacker could not acquire

an implementation of the algorithm and reverse engineer it, or find some other way to

get the details. The complete details of AES have been published and are in the public

domain. When it was being developed as well as being evaluated by various US

government security agencies it also went through a system of public review to ensure

it was secure. If an algorithm stands up to public review then there is more faith in its

security and if a weakness is discovered then it reported.

The majority of analyses focus on algorithmic weaknesses. There is another

group of attacks called side channel attacks; these use information gained from

analysis of emissions from the physical cryptosystem, and can result in the extraction

of the secret key or some important intermediate values. As the attacks use

information generated during the specific encryption an attacker, or some of their

equipment, must be present when that encryption was performed. Generally side

channel attacks fall into one of the following groups:

Chapter 4 Security of Algorithms 61

• Timing attacks – the attacker exploits the fact that some computation time for

some operations is data-dependent. This attack applies more to asymmetric

ciphers [19].

• Power consumption based attacks – the attacker uses variations in the power

consumption during the encryption to try and retrieve key data from the chip.

• Emitted electromagnetic radiation attacks – the attacker uses the emitted

electromagnetic radiation to try and gain information about what is going on

inside a cryptographic chip [20].

• Acoustic cryptanalysis – the attacker uses the acoustic noise emitted by the

keyboard during data entry [62], or by the hum of the processor during a

cryptographic operation [21].

Section 4.2 reviews the general security of AES, it contains details of a

proposed attack, outlines a possible weakness and an improvement for the key

schedule. The rest of the section gives the background theory and some examples of

power analysis attacks. This chapter is mostly a review of current research with some

analysis to draw the ideas together.

4.2 Security of AES

Although no successful attacks on a complete implementation of AES have

been published some concerns have been expressed over its security. Section 4.2.1

describes the square attack, an attack that was identified in the original paper about

the square algorithm on which Rijndael, and hence AES, is based [58]. Section 4.2.2

is about the security of key schedules in general and the AES one in particular.

4.2.1 The Square Attack

While no attacks on full round AES have been published, there have been some

concerns of the security of AES due to the simplicity of its algebraic structure [57].

The byte-oriented structure of AES causes it to be susceptible to an attack known as

the Square Attack. It was published in the original paper that proposed the algorithm

Square, on which AES is heavily based [58]. It is a chosen plaintext attack that

recovers the last round sub-key of a reduced round AES [1], the basic attack can break

four rounds but it can be extended to up to eight [30].

Chapter 4 Security of Algorithms 62

The plaintexts are chosen to have a specific number of active and passive bytes,

where in this context all passive bytes have the same value and all active ones have a

different value. The plaintexts are chosen in groups of 256 so that the active bytes

vary over the range of all possible values. The sub bytes and add key operations do

not change the positions of the active bytes. The mix columns operation creates a

column of active bytes if there is at least one active byte in the column, the next shift

rows operation then spreads these active bytes into all four columns so after the

second mix columns there are four columns of only active bytes. As the values of

active bytes range over all possible values, the inputs to the third round are balanced

over each input set, i.e. the bitwise XOR of all the values of an active byte in the set

of chosen plaintexts is 0. As it is a reduced round AES and the 4th round is the final

round it does not include a Mix Columns operation. This means the output bytes of

the 4th round each depend on a single input byte of the 4th round and are given by the

following formula:

jijiji bytekeysubinputthSboxoutputth ,',', __)_4(_4 ⊕= (4-1)

The input bytes to the 4th round are balances over the set of chosen plaintexts.

By assuming a value for the sub-key byte, the value of the input byte for each chosen

plaintext in the set can be calculated from the ciphertexts. If these values are not

balanced, the hypothesised sub-key byte was incorrect. This can then be repeated for

all possible values of all bytes of the sub-key.

By increasing the number of plaintexts the attack can be extended up to an

eight-round attack. The key schedule of AES is not a one way function and exhibits

bit-leakage, this means that the Square Attack can be used to recover all the sub-keys

including the master key from knowledge of a single n-round sub-key.

4.2.2 The Security of the Key Schedules

When designing cryptographic algorithms, lots of care is given to the design of

the cipher itself, assuring it quickly reaches sufficient levels of diffusion and

confusion, two properties related to the overall cryptographic strength of a cipher,

defined by Shannon in [14]. Key schedule design receives much less attention, with

the majority of block ciphers having ad hoc designed ones [63]. This is despite the

fact that the complexity of the key schedule can have a significant impact on a

Chapter 4 Security of Algorithms 63

cipher’s susceptibility to linear and differential cryptanalysis. Knudsen and

Mathiassen [63] demonstrate using experiments on small, simplified ciphers that the

complexity of the key schedule influences the probability of differentials and linear

hulls (the linear hull of a set S is the intersection of all subsets in a field that contain

S). These affect a cipher’s susceptibility to differential and linear cryptanalysis. They

argue that the more complex the key schedule the greater the resistance to these types

of attack.

In [30], May et al provide a list of three properties that are necessary for a key

schedule to be efficacious, they are as follows:

1. Collision-resistant one-way function: If the key schedule is a one-way

function then it will not be possible for an attacker to gain information about

the master key or other sub-keys from a known sub-key. It may also be easier

to find weak keys and related keys for key schedules which are not one-way

[64].

2. Minimal mutual information: This property aims to eliminate bit leakage

between sub-keys and the master key. Leakage of information to an adjacent

sub-key is impossible if property 1 is satisfied. The direct use of master key

bits in sub-keys gives worst case bit leakage; however this can be easily

avoided.

3. Efficient implementation: The cipher algorithm and the key schedule should

complement each other in implementation aspects as well as security. By re-

using already optimised components of the encryption algorithm and with

some careful consideration during the key schedule design, a fast

implementation is attainable, without the necessity for major additional cost in

circuitry or code size due to design constraints.

4.2.2.1 Analysis of AES Key Schedule

The main weakness in the AES key schedule is that given knowledge of a sub-

key (or part of one), knowledge of other sub-keys (or parts) is derivable, i.e. there is

significant bit leakage. This is due to the fact that a column is XORed with its

equivalent in the previous sub-key to get the next column, and hence knowledge of

two adjacent columns leads to knowledge about the previous sub-key. The iterative

Chapter 4 Security of Algorithms 64

nature of the sub-key generation leads to good computational efficiency but the

iteration is too simplistic leading to the bit leakage problem.

Sub-key Freq SAC

1 0.0000 125.053

2 0.0000 105.433

3 0.0000 72.563

4 0.0000 46.858

5 0.0593 31.840

6 0.0000 28.057

7 0.0000 28.153

8 0.0034 28.237

9 0.0000 28.161

10 0.0110 28.215

Table 4-1: AES key schedule Crypt-X

statistical test results [30].

Round Freq SAC

2 0.0000 96.083

3 0.0048 20.687

4 0.7560 1.183

Table 4-2: AES cipher Crypt-X statistical

test results [30].

As well as not fulfilling the three necessary properties for a strong key schedule

defined in section 4.2.2, the AES key schedule performs poorly, in contrast to the rest

of the cipher, in terms of quickly achieving acceptable levels of confusion and

diffusion. To show this May et al used two statistical tests, the frequency test and the

Strict Avalanche Criterion (SAC) test, available in the software package Crypt-X. The

frequency test is used to test the randomness of a sequence of zeroes and ones, more

specifically in this context it is being used to test the level of confusion, the influence

of each key bit on the output bits, achieved by the algorithm. The result of this test is a

probability, where a value greater than 0.01 / 0.001 indicates that bit mixing is

satisfied with a confidence of 99% / 99.9%. The SAC test measures the level of

diffusion, the degree of change in the output after the change of a single bit of the

input. This is tested with the Kolmogorov-Smirnov test (KS test). The KS test is a

goodness-of-fit test used to determine whether two sets of samples come from the

same probability distribution. It can be used to determine whether the underlying

Chapter 4 Security of Algorithms 65

probability distribution for a finite set of samples differs from a hypothesized

distribution, in this case, that the probability of each output bit changing is 0.5 after

the change of a single input bit. A value less than 1.628 / 1.949 indicates that bit

diffusion is satisfied with a probability of error of 1% / 0.1%.

It is evident from the above tables that the AES cipher achieves confusion and

diffusion by round 4 but the majority of the sub-keys do not achieve complete bit

mixing and hence do not achieve significant levels of confusion. Additionally none of

the sub-keys satisfy the SAC test.

4.2.2.2 Improved AES Key Schedule

In order to combat these weaknesses May et al [30] designed a new key

schedule for AES. In order to maximise the efficiency of the new design, functions

from the AES cipher are used in the new key schedule. The key schedule takes the

master key, adds a round constant, and this value is put through three rounds of AES

using itself as the key, a more detailed description of the algorithm is given in Figure

4-1.

for round = 0 to 10

for j = 0 to 15

KS Plaintext j = KS Round Key j = Master Key j ⊕ Sub Bytes ((round * 16) + j)

for i = 0 to 2

Sub Bytes

Shift Rows

Mix Columns

Add Key

Figure 4-1: Pseudo-code for the improved AES key schedule [30].

The performance of both the cipher with the new key schedule and the schedule

itself were measured in Crypt-X and the results are reported in Table 4-3 and Table

4-4, Table 4-5 repeats the results for AES without the key schedule modifications.

The results show that both confusion and diffusion in the new key schedule reached

significant levels after three rounds, and this increased the speed with which the new

algorithm also meets these criteria.

Chapter 4 Security of Algorithms 66

Round Freq SAC

2 0.1557 15.775

3 0.8757 1.212

4 0.3498 1.689

Table 4-3: Crypt-X results for the new

128-bit key schedule [30].

Round Freq SAC

2 0.0000 21.113

3 0.2663 1.282

4 0.3110 1.347

Table 4-4: Crypt-X results for 128-bit

AES with new key schedule [30]

Round Freq SAC

2 0.0000 96.083

3 0.0048 20.687

4 0.7560 1.183

Table 4-5: Crypt-X results for normal AES

[30].

Instead of adding Round Keys to the cipher round in the key schedule, which

would require a separate key schedule, the Master Key is used. This does not

adversely affect the security. One potential worry might be that it adds a vulnerability

to power analysis attacks (for a detailed description of these see section 4.3), but this

is unfounded as these attacks require the interaction of key data with chosen or known

data. In the case of the new key schedule it is only XORed with KSPlaintext, which is

ultimately derived from the Master Key anyway.

The use of the cipher assures that the key generation is one way. Also as each of

the sub keys are generated independently and the master key is not used as one of

them, there is no bit leakage and knowledge of one sub-key does not give knowledge

of the others.

Although the main aim of the work was to make a key schedule that fulfilled the

properties outlined in section 4.2.2 May et al [30] also report that the new key

Chapter 4 Security of Algorithms 67

schedule improves the resistance to several reduced round cryptanalysis techniques

such as differential cryptanalysis and the Square attack.

4.3 Power Analysis Attacks

Currently the vast majority of electronics are made using CMOS technology.

This has the advantage of having low static power consumption; the dynamic power

consumption is a much more significant component. This means that there is a

relatively high amount of correlation between the power consumption and both the

operations that the chip is performing and the data that is being operated on. This

allows a cryptanalysis technique called power analysis, where by observing the power

consumption of a device when performing encryption or decryption can yield

information about the algorithm, implementation and the secret key. Most of the

different techniques for performing power analysis involve measuring the power

consumption while encrypting or decrypting a large number of known plaintexts or

ciphertexts, combining the input with a guess at a byte of the key, and using the fact

that there is a large data set to enable a statistical test as to the correctness of the

guess. This is then repeated for all guesses of all bytes of the key, the values that

appear to be the most correct are assumed to be the key. More detailed descriptions of

specific power analysis techniques are given in the following sections.

4.3.1 Simple Power Analysis

Simple power analysis (SPA) involves directly interpreting power consumption

measurements collected during a cryptographic process [2]. It is possible to identify

which instruction is being executed by a microprocessor by inspecting the power

consumption trace. This can provide an attacker with information about the key if the

execution path is data dependent, for example if there are conditional branches based

on key data, multiplication and exponentiation can also leak significant amounts of

data via SPA. Some microprocessors also have heavily operand-dependent power

consumption features. These systems can have serious SPA vulnerabilities, even if the

execution path is not key dependent [2].

There are several techniques for the prevention of SPA that are fairly easy to

implement. Avoiding the use of secret intermediate values or key values as the

conditions for branching will remove a lot of the useful information that is leaked. If

Chapter 4 Security of Algorithms 68

such branches are inherent in the algorithm this can require a coding techniques that

can negatively affect performance. Most ASIC implementations of symmetric

cryptographic algorithms have sufficiently small variations in power consumption to

not leak information about the key material via SPA [2].

4.3.2 Differential Power Analysis

Differential power analysis (DPA) is a statistical attack that uses power

consumption data from a large number of encryptions to retrieve secret information

about the key. DPA has proved to be a powerful cryptanalysis technique that has

been able to extract the secret key from several DES implementations [2]. The DPA

algorithm is presented below [2]:

1. A set of N plaintexts are randomly generated.

2. The power consumption during the encryption of the N plaintexts is measured.

The attacker gets N traces each containing n values.

3. A hypothetical model of the chip is fed with the plaintexts (or ciphertexts) and

a guess at one byte of the first (or last) sub-key.

4. A selection function, D, is applied to the output of the hypothetical model

which separates the traces into two sets.

5. The average of both sets is computed and the difference between the averages

is calculated.

6. Steps 3 to 5 are repeated for each sub-key guess. This will give 28 differential

traces.

7. For each differential trace the peak and mean value is determined and the ratio

between the two is calculated.

8. For a correct sub-key guess there will be large peaks seen in an otherwise flat

differential trace.

9. To get all the sub-keys, steps 2 to 8 are repeated 16 times (for a 128-bit key).

The choice of hypothetical model determines the section of the algorithm that is

being attacked. It takes the input or output to that section, generally a section of the

plaintext or ciphertext, and a guess at one byte of the relevant sub-key and outputs

Chapter 4 Security of Algorithms 69

either the output or the input to section. The selection function separates the plain- or

ciphertexts, and therefore their associated power traces, into two sets. Kocher’s

original hypothetical model and selection function D (C; b; Ks) [2] attacked the left

hand intermediate at the beginning of the 16th round. It accepted the ciphertext, C, a 6-

bit sub-key guess, Ks, to predict the output and a value between 0 and 31 representing

which bit of the DES intermediate was being attacked, b, as inputs. The selection

function applies the ciphertext and sub-key guess to an inverse DES algorithm and

returns either a 1 or a 0 depending on the value of the bth bit that would give these

values. Varying the value of b modulus 4 targets different sub-bytes of the key, as in

DES there are 8 s-boxes each with a 4-bit output. Kocher was using DPA to analyse

DES; Schuster reported that while the original selection function used by Kocher on

DES works with the AES power consumption model it was unsuccessful with real test

data [3] and proposes a new one based on the Hamming weight of the output of the s-

box, if it is greater than four then the trace is added to one set, if it is not then it is

added to the other. Schuster uses this to successfully crack an AES implementation

that is being run on an 8-bit microcontroller

4.3.2.1 Leakage Based Differential Power Analysis

As CMOS technology shrinks in size the leakage power becomes a more

significant portion of overall power consumption. While leakage power is mainly

dependent on physical parameters its dependence on input patterns becomes

significant in sub-90 nm technology [65], therefore leakage power needs to be

considered when evaluation a system for susceptibility to DPA. Lin and Burleson

took this into account and developed “Leakage-based” DPA (LDPA) [66].

The LPDA algorithm is essentially the same as the regular DPA algorithm

except the power traces that are recorded capture both the dynamic power and the

leakage power. The attack was tested on a SPICE simulation of an implementation of

DES and it revealed the correct key after 120 traces using 45 nm CMOS, compared to

200 traces for regular DPA using 180 nm CMOS.

4.3.2.2 Correlation as the Statistical Test in DPA

The DPA attack described in section 4.3.2 uses a statistical test called the

difference-of-means. The distance-of-mean test simply takes the difference between

the mean of two sets of data, it assumes that the variances of the two data sets are the

Chapter 4 Security of Algorithms 70

same and not much information from the model can be included. Other tests have

been proposed, including analysis of variance (ANOVA), which can simultaneously

compare the means of several sets of data and works better than the distance-of-mean

test [67]. This section discusses the use of correlation in DPA using the Pearson

correlation coefficient. It was first described by Brier et al in [68]. This coefficient

reflects the degree of linear relationship between two random variables, it can be used

to provide a direct comparison between the real and hypothetical model of the device.

It is defined as the sum of the products of the standard scores of the two measures

divided by the degrees of freedom. This is equivalent to dividing the covariance

between the two variables by the product of their standard deviations as shown in

equation (4-2).

YX

YX

σσ
ρ

),cov(
=

(4-2)

In order to calculate an estimate of the correlation from a number of samples the

formula in equation (4-3) must be used.

2

11

22

11

2

111

)()(∑∑∑∑

∑∑∑

====

===

−−

−
=

N

i i

N

i

N

i i

N

i

N

i i

N

i i

N

i ii

YYNXXN

YXYXN

ii

ρ
(4-3)

The coefficient ranges from −1 to 1, the sign indicating the direction of the

relationship. If the coefficient has the value 1 then a linear equation describes the

relationship perfectly and positively, all data points lie on the same line and Y

increases with X. A value of −1 means a linear equation describes the relationship

perfectly but negatively, i.e. all data points lie on a single line but Y increases as X

decreases. A correlation value of 0 means that there is no linear relationship between

the variables.

The technique described by Kocher in [2] attacks an algorithm by predicting the

value of one bit and partitions the traces accordingly. The method proposed by Brier

is a multi-bit attack; it predicts the number of bits that change in a byte of registers.

This means that the technique involved is slightly different from regular DPA. It has

three stages, prediction, measurement and correlation, a description is given below

[61]:

1. Prediction Stage

Chapter 4 Security of Algorithms 71

a. Predict the number of bit changes inside a number of targeted registers

in a specific clock cycle.

b. Repeat this for all 28 possible values of a byte of the key and for N

different randomly chosen plaintexts.

c. Put them in N * 28 matrix. This is called the Prediction Matrix

2. Measurement Stage

a. Measure the power consumption over all (C) clock cycles in the

encryption process

b. Record the highest power consumption in each clock cycle in an N * C

matrix. This is called the Consumption Matrix

3. Correlation Stage

a. Calculate the correlation between the column representing the clock

cycle that was targeted in the prediction phase in the Consumption

Matrix and each column in the Prediction Matrix.

b. The column of the Prediction Matrix that shows the greatest

correlation is the one that represents a correct key guess.

It is possible to perform this type of attack using purely simulated data. This

requires using a more detailed hypothetical model of the device that can be used to

predict the bit changes in all of the registers in the device for all cycles and entering

the data into an N * C Prediction Matrix. This is then used instead of the Consumption

Matrix in the Correlation Stage.

4.3.2.3 Choice of Target in Differential Power Analysis

Both forms of power analysis attack a specific point in an algorithm. In DPA the

position of this is selected by the choice selection function and in a correlation attack

the choice of which register to target is explicitly made. This section defines the

properties that determine whether a particular register is an appropriate target for the

attack. Figure 4-2 shows a diagram of the AES algorithm with all the possible

positions of registers between the stages. It shows which of the registers in the design

have the properties that make them suitable for the target of a DPA attack.

Chapter 4 Security of Algorithms 72

Figure 4-2: Diagram showing the predictability and fullness of registers at different points in

AES.

Both forms of power analysis find the correct key value by testing all possible

key values and finding the value whose result best fulfils the attack’s selection

criterion, the target must therefore be determined by a small enough number of key

bits for this to be computationally feasible. In practise this limit is assumed to be 16

bits [60], below this a register is said to be predictable. In AES the s-boxes are 8 bits

wide; this gives 256 different key values to test which is easily performed. The Mix

Columns operation mixes the data from 4 bytes; this means the output depends on 32

key bits, above the predictability limit.

Chapter 4 Security of Algorithms 73

A register is described as full if it leaks information about the key via its

transitions. This is also a property required in order to make a register a valid target.

As seen in Figure 4-2 register 1 does not leak information as it only contains plaintext

data. Interestingly, registers 2 and 3 do not necessarily leak information either as the

influence of the key on the transition cancels out over two successive plaintexts as

illustrated in equation (4-4). They can be made to be full by resetting the contents to

0s between plaintexts. Also they can be full in smart card implementations where

there is a constant instruction address loaded.

 Reg21 ⊕ Reg22 = (plaintext1 ⊕ key) ⊕ (plaintext2 ⊕ key)

 = plaintext1 ⊕ plaintext2

(4-4)

Registers after the s-box will all be full as the non-linearity of the substitution

stops the influence of the key on the transition value over 2 successive plaintexts

cancelling.

4.3.3 Inferential Power Analysis

Fahn and Pearson have also developed a type of power attack that is similar to

DPA [69]. It is called inferential power analysis (IPA) and consists of two stages, a

long, computationally intensive profiling stage and a shorter key extraction stage. It

has the advantage over DPA that the attacker does not need to know the plain or

ciphertexts relating to the recorded power traces in order to perform the attack. The

first step in the profiling stage is to record a large number of power consumption

traces, between 100 and 1000 are generally required. The traces do not need to have

the same key, although for simplicity when it was performed in [69] the key was kept

constant.

1. The traces are aligned so that the power consumptions are all matched.

2. These matched traces are averaged to create a Mean Trace.

3. The Mean Trace is chopped into rounds to give Mean Rounds.

4. The Mean Rounds are averaged to give a Super-Average Round.

5. The difference between each Mean Round and the Super-Average Round is

computed, this gives the Differential Traces.

6. The mean squares of the Differential Traces are calculated.

Chapter 4 Security of Algorithms 74

The first averaging of all the traces that have been collected removes the effect

of the plaintext, but, in the case of the constant key example, leaves the key bits.

Averaging the different rounds removes the effect of the key bits on the data; this will

leave only the code features. These are cancelled out by calculating the difference

between the average round and the super-average. After this, only the effects of the

specific sub-key ki remain. The mean square of the differential traces contains peaks

at the locations of the key bits. The number of peaks that can be seen in the final

traces can differ from the number of bits in the sub-key, but there should be a simple

mathematical relationship determined by the specific implementation details of the

device, for example, the binary compliment of the value.

After the locations of the key bits have been identified each key bit has to be

connected to its specific position. How this is actually achieved depends on the

algorithm that is used and can be quite complicated. For an algorithm like DES where

there are no fixed rules about the order inherent in the algorithm it can get very

complicated if the most obvious guesses as to the order have failed. In situations like

that it can be useful to examine the specification of the key scheduling in the

algorithm to gain additional information that can help, although this obviously negates

the advantage that details of the algorithm do not need to be known.

It is useful to observe the distribution of recorded power levels at the peaks that

are indicated by the first stage of the profiling. If the peak is in the correct place and it

represents the manipulation of a single bit of key data, which will be either 0 or 1 with

a probability of ½, then it should have a bimodal distribution, with each mode

representing either a 0 or a 1. If more than one bit is being handled then there should

be a binomial distribution, the shape of which indicates how the bits are being

handled and gives information relating to the Hamming weight of the key bit

grouping.

IPA has several advantages over DPA, the attacker does not need to know the

plaintext (or ciphertext), removing the possibility of simply shielding this data in

order to prevent the attack. DPA is restricted to examining points where the plaintext

and key interact directly, generally limiting analysis to the first few rounds whereas

IPA can probe all rounds of an algorithm. After a lengthy profiling stage IPA can

simply perform a fast key extraction phase on all similar hardware, greatly reducing

Chapter 4 Security of Algorithms 75

the computational overhead when attacking data that has been encrypted with several

different keys.

There are a few countermeasures that can make performing IPA harder.

Avoiding handling key data one bit at a time will remove some of the data.

Randomising the order of execution of the code and adding random delays to the

system will cause problems with alignment and creating a system with an offline key

scheduler may offer some resistance to IPA.

4.3.4 High-Order DPA

High order differential power analysis (HODPA) is a variation of DPA in

which instead of finding the statistical properties of the signal at each sample time the

attacker can use the joint statistics across several sample times to use data from

multiple intermediate values [70].

This can be used in order to defeat whitening DPA countermeasures. In order to

try and defeat DPA intermediate values can be masked by XORing them with

randomly generated numbers, this de-correlates the Hamming weight from any key

data and so information about it is not leaked. Obviously in order to still give the

correct result for the calculation the data must be unmasked, this is again achieved by

XORing the data with the previously generated number. By combining information

gathered from the power consumption trace at the point where mask is generated and

the point where it is removed it is possible to compensate for the masking and

uncover information about the key. If a duplication countermeasure with k shares is

used then the attacker needs to mount a kth order attack.

Although using a higher order approach to DPA has its advantages it also has a

number of disadvantages, if the standard deviation of the noise is the same at all of the

n sample positions then the product has the standard deviation of the original raised to

the power of n, this increases the amount of noise and hence the number of traces that

is required to recover information. In order to extract information using DPA it is

important to know which point in the samples relates to the intermediate value that is

being attacked. In HODPA the effect of the intermediate value that is being attacked

exerts influence on several points in the traces, but to take advantage of this the

positions of all of these correlated points must be known. In first order DPA this

problem is avoided by calculating the entire differential trace, a computationally un-

Chapter 4 Security of Algorithms 76

intensive operation. The natural higher order generalisation of this technique, to

calculate the differential traces with each sample correlated to every other sample in

turn, can quickly become prohibitively expensive.

Waddle and Wagner proposed two methods for second order DPA, one for

where the correlation time is zero, or known, and one for when it is non-zero and

known [71]. Zero-Offset 2nd Order DPA is based on the assumption that the

intermediate values that are the point of attack occur at the same time. This is not

necessarily an unrealistic assumption, for example a parallel processor that calculates

both the random and the masked bits simultaneously. It works by squaring the values

of the samples in the power traces before performing regular DPA. This leads to a

related attack, Known-Offset 2nd Order DPA [71], where instead of calculating the

square the lagged product is calculated, i.e. the sample multiplied by the value of the

sample one offset later.

If the offset is non-zero and is not known then a Fourier transform can be used

to auto-correlate the trace. This is achieved by calculating the squared L2-norm of the

Fourier transform of the DPA trace; this involves multiplying the complex value

generated by the FFT by its complex conjugate. The inverse Fourier transform of this

data set is then calculated. This is repeated for all traces and this is summed for all of

the traces within a particular bit-guess group. Values are only non-zero for correct

correlations. The noise from the other traces significantly contributes to the standard

deviation, so this attack is only practical for short traces.

4.3.5 Mathematics of Differential Power Analysis

DPA uses statistical techniques to gain information about the encryption key.

This section discusses the mathematics behind the way secrets are leaked. Section

4.3.5.1 defines the leakage model for DPA and discusses the way XORing known

data with an unknown constant reveals data. Also the correlation for a system with a

given signal to noise ratio is derived and it is shown that, assuming the correlations

are worked out to a high enough level of accuracy, the attack will always give the

correct answer. Section 4.3.5.3 defines a new property of s-boxes called the

transparency order it is the degree that an s-box leaks information about the key, then

it is shown that an s-box that prevents linear and differential cryptanalysis in an

optimal way has a very poor transparency order.

Chapter 4 Security of Algorithms 77

4.3.5.1 Statistics of Secret Leakage

Power analysis attacks use statistical techniques to exploit the leakage of secret

data via the power consumption. As they are statistical attacks it is important to

understand the statistics of the secret leakage model which is shown in equation (4-5)

and was investigated by Brier et al. in [68].

 bRDaHW +⊕=)((4-5)

Where R is the information the attacker is trying to extract, D is the state the

target register was in from the previous clock cycle, H represents the Hamming

distance function, a is the linear gain between the Hamming distance and the power

consumption of the register, b is the noise and W is the power consumption of the

device. As the noise is, by definition, uncorrelated with the data dependent power

consumption, and the variance of the sum of two independent variables is the sum of

the component variances we get equation (4-6).

 2222
bHW a σσσ += (4-6)

The Brier et al.’s model requires a number of assumptions:

• The same amount of energy is required for the transition from 0 to 1 and 1 to

0.

• All bits in the target register are balanced and require the same amount of

energy for transitions.

These are reasonable assumptions to make. If these assumptions are incorrect

then this will reduce the linear correlation between the registers’ power consumption

and the total power consumption, which is analogous to there being more noise. An

important point is that (D ⊕ R) is a uniform variable; this means that the Hamming

weight is binomially distributed, the binomial distribution being a discrete

approximation to the normal distribution, with an average value of m/2 and a variance

(σH
2) of m/4, where m is the number of bits in R.

From the signal to noise ratio of the power consumption it is possible to

calculate the population correlation of the leakage and power consumption. As the

number of traces used in a correlation attack increases the correlation of the power

consumption with the predictions made using the correct value of the key becomes a

Chapter 4 Security of Algorithms 78

more accurate estimate of the population correlation of the system. The correlation

between two variables is defined as the ratio of their covariance to the product of their

standard deviations (equation (4-2)), hence:

HW

WH

HW

σσ
ρ

),cov(
=

(4-7)

HWHW

WH

HBHaHHBaH

σσσσ
ρ

),cov(),cov(),cov(+
=

+
=

(4-8)

The noise is assumed to be uncorrelated to the Hamming distance, leading to:

HW

H

HW

WH

aHa

σσ

σ

σσ
ρ

20)var(*
=

+
=

(4-9)

W

H
WH

a

σ

σ
ρ =

(4-10)

The SNR is given by the ratio of the standard deviations of the signal and the

noise as defined in equation (4-11).

b

Ha
SNR

σ

σ
=

(4-11)

Combining with equations (4-6) and (4-10) the relationship between correlation

and SNR can be derived.

2222

bH

H

w

H
WH

a

aa

σσ

σ

σ

σ
ρ

+
==

(4-12)

222

22
2

bH

H
WH

a

a

σσ

σ
ρ

+
=

(4-13)

222

2

22

22

22

222

2

1
1

1

SNRaa

a

a

a

H

b

H

H

H

bH

WH

+=+=
+

=
σ

σ

σ

σ

σ

σσ

ρ

(4-14)

2
11

1

SNR

WH

+
=ρ

(4-15)

Correlation based DPA analysis is based on the assumption that the correlation

of the correct key value with the power consumption will have the greatest value. This

Chapter 4 Security of Algorithms 79

can be shown to be true by examining the correlation of an incorrect value denoted by

H' with the power consumption.

'
'

)',cov(

HW

WH

HbaH

σσ
ρ

+
= (4-16)

)',cov()',cov()',cov(HbHaHHbaH +=+

As Hʹ and b are independent:

)',cov(*)',cov()',cov(HHaHbHaH =+

(4-17)

(4-18)

'
''

'

)',cov()',cov(*
HHWH

HHW

H

HWH

H

WH

HHaHHa
ρρ

σσσ

σ

σσσ

σ
ρ === (4-19)

As the correlation between an incorrect key guess and the power consumption

(ρWH’) is equal to the correlation for a correct key guess (ρWH) scaled by the correlation

between the correct and incorrect guess (ρHH’), which is necessarily less than 1, the

correct guess will always have the highest correlation. Assuming that value that gives

H' has the same value as the one that gives H except for k bits, e.g. for H (0xE4 ⊕ R)

and H’ (0xE3 ⊕ R), k is 3, then the Hamming weights of the two values are given by

equations (4-20) and (4-21).

kkm HHH += −

kHHHHH kkmkkm +−=+= −− '''

(4-20)

(4-21)

Where Hm-k is the Hamming weight of the bits that are the same in both and Hk

is the Hamming weight of the bits that are different. As k is constant:

),cov()',cov()',cov(kkmkkm HHHHkHHHH −+=−= −−

From the expected values this gives

2222)',cov(kkmkkm HHHHHH +−−= −−

(4-22)

(4-23)

We know that
2

,
2

km
H

k
H kmk

−
== −

as the mean of the Hamming weight

of a word will always be half of the number of bits in the word assuming the values

are evenly distributed. Additionally,
222

kHk HH
k

+= σ

is a standard result that can

Chapter 4 Security of Algorithms 80

be derived from the definition of variance. Substituting these values into equation

(4-23) gives:

4

2
)',cov(

km
HH

−
=

And hence:

 −
=

m

km
WHWH

2
' ρρ

(4-24)

(4-25)

As stated earlier with an increasing number of traces the estimate of the

population correlation becomes more accurate. The sampling distribution of

correlation, how much the correlation will vary with the number of samples, is

approximately normally distributed when the correlation is close to zero. As the value

of the correlation is bounded between -1 and 1 there is a skew. If the value is positive

then it can extend further in the negative direction than in the positive and vice versa.

After Fisher’s transform is applied it becomes normal with a standard error of

3
1

−N
where N is the number of traces. Fisher’s transform is given in (4-26) [72].

−

+
=

ρ

ρ

1

1
ln5.0z (4-26)

As the population correlation decreases with the addition of more noise, the

margin between a correct and an incorrect key guess decreases and it is more likely

that the variation due to the random nature of the variables will overshadow it.

Therefore the more noise there is in the system the greater the number of traces that

must be used in order to get the same level of confidence in the accuracy of a result.

4.3.5.2 Lower Bound for the Number of Traces Needed to Perform DPA

In [73] Mangard uses a statistical model of DPA to determine a lower bound for

the number of traces required to successfully identify the key from a system that

implements DPA countermeasures. He considers countermeasures that reduce the

SNR and countermeasures that change the time the intermediate result is processed.

The maximum correlation between the correct key hypothesis and the power

consumption is defined in equation (4-27):

Chapter 4 Security of Algorithms 81

)var(

)var(
**

11

),(

2

max
P

P
p

SNR

HH

′
′

+

′
=

ρ
ρ (4-27)

Where p’ is the probability that the power consumption at the sampling point is

due to the processing of an attacked intermediate, P is the power consumption due to

the processing of an attacked intermediate and P’ is the power consumption of the

device at the sample time.

Mangard reasoned that the number of samples required to correctly identify the

key is determined by the distance between the sampling distributions with means of 0

and ρmax as all of the values will be taken from one of these distributions, the greater

the overlap between the two distributions greater the chance of the incorrect

correlation appearing higher than the correct one. The amount of overlap can be

reduced by increasing the number of traces used as this will reduce the standard

deviation of the distributions. Using equation (4-28) Mangard calculated the

probability of value drawn from ρ = ρmax distribution being higher than one from the

distribution ρ = 0.

−

−

+
−

−

+

Φ=

3

2

01

01
ln2

1
1

1
ln2

1
max

max

N

ρ

ρ

α

(4-28)

 2

max

max

1

1
83

−

+
+=

ρ

ρ
αZ

N

(4-29)

Equation (4-28) can be transformed into (4-29) to directly calculate the number

of samples required, where Zα is the quantile that determines the distance between the

distributions. Quantiles are evenly spread points in a cumulative probability

distribution, this marks the boundaries between consecutive sub-sets. There is a

probability of k / n that a value drawn from a distribution is lower that its kth n-tile. In

actual DPA several values are drawn from the distributions, for AES 255 are drawn

from ρ = 0 for each ρ = ρmax, these values are not independent so getting an exact

Chapter 4 Security of Algorithms 82

probability for a peak is difficult. Based on a series of experiments with different

values of α it was determined that α = 0.9 is a reasonable lower bound for the number

of samples, α = 0.9999 leads to a number of samples that has a high probability of

revealing the attacked sub-key. Between those two values it is less clear.

4.3.5.3 S-Boxes and DPA

In [74] Prouff studied the effects the s-box has on the resistance of an algorithm

to DPA. He defined a new property called the transparency order for an s-box. He

showed that when s-boxes are optimally resistant to linear and differential

cryptanalysis they perform inherently poorly in terms of their transparency order.

In order to derive the transparency order for a function first we must introduce

some mathematical and notational preliminaries. F is an (n, m) function, that is a

function that maps from GF (2n) to GF (2m), v is a vector in GF (2m) and u is a vector

in GF (2n). The sign function is defined in equation (4-30), it is a Boolean function,

the output of this function is either 0 or 1.

 Fv
Fv

⋅−−=⋅)1(
2

1

2

1
 (4-30)

The Fourier transform of the sign function of F is defined by the Walsh function

W.

 ∑
∈

⋅+⋅−=
)2(

)()1(),(
nGFx

xuxFv

F vuW (4-31)

A mapping function F is balanced if the weight of the function, the sum of the

outputs of the function across all inputs, equals 2n-1, i.e. there is an equal number of 1s

and 0s at the output. This is a requirement for a function to be a secure cryptographic

primitive. A function is balanced if and only if WF (0, v) equals zero for every vector v

∈ GF (2m). Bent functions are another set of Boolean functions, they are maximally

non-linear and have only balanced non-zero derivatives. They are not balanced so

they can not be used as cryptographic primitives but they do resist linear and

differential cryptanalysis in an optimal way [74]. Another important concept is that of

a derivative, they are used in differential attacks. The derivative of a function F with

respect to the vector a is an (n, m)-function that maps x to F (x) + F (x + a):

)()(: axFxFxFDa ++→ (4-32)

Chapter 4 Security of Algorithms 83

As stated in section 4.2.2.1 in order to have good levels of diffusion a function

must satisfy SAC, it was generalised to the Propagation Criterion (PC) by Preneel in

[75]. In order for a function F to satisfy PC (l) at a high level DaF must be balanced

for every vector a of weight at most l. The correlation coefficient between two

functions Boolean f and g is given by:

 ∑
∈

+−=
)2(

)()()1(),(
nGFx

xgxf
gfcorr (4-33)

It is also important to note that the correlation coefficient between the function

that maps x to v.F (x) and the function that maps x to v.F (x + a) is the Walsh function

of the derivative of F. This relationship is also expressed in equation (4-34).

),0())(),((vWaxFvxxFvxcorr FDa
=+⋅→⋅→ (4-34)

The rest of this section derives the transparency order for an s-box and describes

the properties of the transparency of a few important functions. For the purposes of

this section the power consumption of a cryptographic device is defined as:

 bXFKXcHXC KK ++=))(),(()(α (4-35)

 Where b is the noise, c is the energy required to switch one bit from 0 to 1 or 1

to 0, α is the data on the device before the targeted transition and FK is the data that

replaces it K is the key and X is the plaintext.

We can define the single bit correlation attack as follows:

∑

=∈

+⋅⋅=∆ ••

1)(,2
,

))(,(
2

)(
uHGFu

K
Kn

KK n

FuFvcorr
c

K α (4-36)

In this case u is a vector where only 1 bit is 1 and the rest are 0, these serve to

select a single bit in the vector (Fk + α), K is a round key guess and
•

K is the correct

value of the key. This can be generalised to a multi-bit attack by summing the

contributions of each bit in v.

∑

=∈

•• ∆=
1)(,2

,
)()(

vHGFv
KKK n

KKδ
(4-37)

It becomes much more difficult to perform a successful DPA attack on an s-box

when the peaks are not high enough for the correct values to be distinguished from the

Chapter 4 Security of Algorithms 84

incorrect ones. This is the case if the error in the computation of the correlation δ is

larger than the average value given in equation (4-38).

∑

−∈

••

•• −
−

=
.
}{2

))()((
12

1
)(

KGFK
KK

n

n

KKKD δδ (4-38)

In order to prevent differential and statistical attacks, cryptographic algorithms

are designed so that round functions with different keys are as uncorrelated as

possible, hence it is reasonable to assume that corr (v.FK, u. •

K

F) equals zero, unless u

= v. Also if we assume that α and F are independent corr (v.F+ u. •

K

F , u.α) is equal to

zero unless v.F+ u. •

K

F is constant. Taking equation (4-31) and (4-33) into account this

leads us from equation (4-36) to equation (4-39)

),0(

2

)1(
)(

).(

,
vW

c
K

n

FFv

KK

K
K

α

•

•

+

−
=∆

(4-39)

Hence:

),0(

2
),0(

2

)1(
)(

).(

,
vW

c
vW

c
K

nn

FFv

KK

KK

αα =
−

=∆

••

•

+
•

(4-40)

This leads us from equation (4-38) to equation (4-41).

∑∑

•

•

−∈
=∈

•

−
−=

}{21)(,2

)(
12

1
),0(

2
)(

KGFK
K

n

vHGFv

n

n
n

KvW
c

KD δα
(4-41)

Now if we assume that the function α equals the constant value β, then due to

equation (4-31), equation (4-42) is true. This is a realistic assumption if the device

uses pre-charge logic, where the registers are cleared between operations, or the

previous value represent the op-code for a microprocessor.

 nv
vW 2*)1(),0(β

β
⋅−= (4-42)

Hence:

))(2(2),0(
1)(,2

ββ HnvW
n

vHGFv
n

−=∑
=∈

 (4-43)

Chapter 4 Security of Algorithms 85

As 1 is not added but subtracted for each non-zero bit in β, the total is has a

maximum value of n. Also, if α is a constant, then from equation (4-36) we get

equation (4-44), as constants make no contribution to the correlation.

),()1(

2
)(

,
. •• ⋅⋅−=∆ ⋅

K
K

v

n
KK

FvFvCor
c

v
β

 (4-44)

Due to equation (4-34), equation (4-44) becomes:

),0()1(

2
)(.

,
vW

c
K FD

v

n
KK KK

•
+

• −=∆ β (4-45)

From equations (4-37), (4-41), (4-43) and (4-45) we can derive (4-46).

∑ ∑

∈ =∈

•

−
−

−−=
n n

a

GF vHGFv

FD

v

nn
vW

c
HncKD

2 1)(,2

.
2

),0()1(
22

)(2)(
α

ββ
(4-46)

Thus we come to the definition of the transparency order shown in equation

(4-47), it is generalised for (n, m)-functions. This gives an idea of how susceptible an

s-box is to DPA attacks. It is the highest value of D (
•⋅

K) across all possible values of

β. This is because the peak will have to be small enough not to be discernable for all

values of both the round keys and β.

)),0()1(

22
)(2(max

2 1)(,2

.
22

∑ ∑
∈ =∈

∈
−

−
−−=

n n
am

GF vHGFv

FD

v

nn
GF

F vW
c

HmT
α

β

β
β

(4-47)

The transparency order can vary from 0 to m. If the function F is bent then WDaF

will be 0 for all values of v and hence TF will equal m. Bent functions are not balanced

so are never used as cryptographic primitives, but they do resist linear and differential

cryptanalysis in an optimal way. More generally if a function satisfies PC (l) at a high

level it does not have a good transparency order. If F satisfies PC (l) then DaF is

balanced, and hence WDaF (0, v), for every vector H (a) ≤ l. This means:

∑ ∑∑ ∑

>∈ =∈∈ =∈

−=−
laHGF vHGFv

FD

v

GF vHGFv

FD

v

n n
a

n n
a

vWvW
)(,2 1)(,2

.

2 1)(,2

.),0()1(),0()1(
α

β

α

β
(4-48)

The number of values of a for which the Walsh function of the derivative of F

with respect to a is not zero is given by: ∑
=

−
l

j

j

nn
C

0

2 . As WDaF is lower than 2n then:

Chapter 4 Security of Algorithms 86

 n

vHGFv

FD

v
mvW

n
a

2),0()1(
1)(,2

. ≤−∑
=∈

β (4-49)

So:

−=− ∑∑ ∑

=∈ =∈

l

j

j

nnn

GF vHGFv

FD

v
CmvW

n n
a

02 1)(,2

. 22),0()1(
α

β
(4-50)

Finally:

−

−

−≥

∑
=

12

2

1 0

n

l

j

j

nn

F

C

mT

(4-51)

It is also shown by Carlet in [76] that the inverse function, which is used as the

basis of the AES s-box, the Gold functions and the Kasami functions also have large

transparency orders. Carlet discovers that in the case of the AES s-box, for which m =

n = 8, the transparency order is ≥ 7.8, this is close to the maximum, hence the AES s-

box has a very poor transparency order.

4.3.6 Signal Processing Techniques

It is possible to combine power analysis with other signal processing techniques

in order to improve the performance. Bohy et al [77] used principal component

analysis (PCA) and independent component analysis (ICA), statistical pre-processing

techniques more commonly associated with neural networks, to increase the signal to

noise ratio and improve the performance of power analysis attacks. PCA searches for

linear combinations of variables with the largest variances, when several linear

combinations are needed it orders the variances in decreasing importance, thereby

allowing the attacker to ignore less relevant measurements. This technique was used

to remove noise that was added to the power consumption by masking

countermeasures on a smart card. This enabled the Hamming weight to be read from

power traces at the point when a PIN being entered was compared to the stored one.

They reported results of approximately a 65% chance of being able to recover a PIN

from a Microchip PIC 16F84 smart card using this technique with SPA. ICA is a more

powerful technique that separates a complex data set into independent sub-parts. The

aim was to use it to separate the effects of different parts of the chip from the power

Chapter 4 Security of Algorithms 87

trace, thereby reducing the noise. It was able to unmask the power traces as long as

the added noise was independent of the power consumption. It also allowed the

recovery of the clock pulse, which would be useful when performing attacks like

differential fault analysis.

4.3.7 Other Uses for Power Analysis

The most widely used cryptographic algorithms are open to public review, so

any insecurities in algorithms are more likely to be identified and fixed. Some

algorithms are kept secret under the assumption that if the details are not publicly

known then any insecurities cannot be exploited. This is not necessarily true, as power

analysis techniques can be used to reverse engineer algorithms.

Quisquater and Samyde [78] used the analysis of power consumption and

electromagnetic emissions to determine the instructions that were being executed on a

smart card processor. The processor that was being analysed contained a four stage

pipeline; this means that each instruction influences the power trace of the following

three clock cycles after it starts. Each instruction gives a different power analysis trace

and it is a function of its address in memory, the data that is handled and, if relevant,

the address where that data will be stored and the Hamming weight of the instruction

is clearly visible. Additional data can also be recovered by measuring the electric

field. The concept was shown to be workable by creating a dictionary of the power

consumption for various instructions and then recording the power consumption and

electric field data for a set of instructions and correlating them with the dictionary

entries. A success rate of higher that 87% was reported, it was better for CISC

processors that for RISC ones. On the Z80 95% of the software was recovered. Neural

networks were then employed in order to automate the process.

When performing DPA the sign of the peaks in the differential power traces are

not given any significance, Novak proposed Sign-Based Differential Power Analysis

(SDPA), which can be used to reverse engineer secret algorithms [79]. The basic

method is to perform DPA and to record the signs of the power bias in a SDPA

vector. A SDPA vector is a vector with n elements, where n is equal to the number of

peaks in the DPA trace. Each element has either a 1, representing a positive bias, or a

0, representing a negative bias. This can then be converted into a SDPA value by

calculating the vector dot product of the SDPA vector with a vector with elements

Chapter 4 Security of Algorithms 88

numbered 0 to m, each containing the value 2m. It is difficult to directly interpret the

sign data, as there are several different possible explanations, so cross-iteration

analysis is used. This is where the SDPA data from several iterations of the algorithm

are combined and stored in a SDPA matrix, which can be more conveniently written

in the form of a vector containing SDPA values. This makes it easier to interpret how

the data relates to each other. New intermediate values can then be identified. These

intermediates can then be subjected to SDPA, this new information can then be

combined with other methods such as SPA and the algorithm is gradually revealed.

Novak successfully applied this attack and reverse engineered an unknown GSM

authentication algorithm.

4.3.8 Countermeasures

Various countermeasures have been proposed for power analysis attacks with

varying degrees of efficacy. These countermeasures can be broadly separated into

several groups: balanced logic styles, these seek to avoid leaking information by

making the power consumption of transitions the same as non-transitions, masking

techniques, these seek to hide details of the internal variables from an attacker and

Dynamic Voltage and Frequency Switching (DVFS) that confuses the attacker by

randomly changing the clock frequency and supply voltage of the chip. Sections

4.3.8.1 – 4.3.8.3 outline these techniques and describe the effectiveness of the

countermeasures as well as the cost in terms of area and performance, the

performance costs for the various countermeasures are also summarised in section

4.3.8.5. Section 4.3.8.4 discusses countermeasures to higher order DPA.

4.3.8.1 Balanced Logic

Section 4.3.8.1.1 discusses the use of Sense Amplifier Based Logic (SABL), this

is a logic style that has exactly one transition per clock cycle irrespective of the data

that is being processed. Tiri et al report an AES processor made using this technique

where the full key cannot be retrieved even after 1.5 million traces [5]. Section

4.3.8.1.2 discusses Yu and Bree’s attempts to prevent DPA by using an asynchronous

design that has no clock [80]. This approach offers no DPA resistance unless it also

uses a dual rail balanced logic approach. Section 4.3.8.1.3 discusses the effectiveness

of the countermeasure and methods for defeating it. Section 4.3.8.1.4 details the effect

on performance.

Chapter 4 Security of Algorithms 89

4.3.8.1.1 Sense Amplifier Based Logic

Tiri and Verbauwhede have investigated the possibility of using a different logic

style that does not leak information in order to defeat DPA [25, 81-84]. The style they

suggested is Sense Amplifier Based Logic (SABL). In every cycle SABL charges a

capacitance with a constant value and uses this constant amount of charge for every

transition, including those where the inputs of a gate do not change in value. This is

because SABL is based on the Dynamic and Differential Logic (DDL), where there is

exactly one switching event irrespective of the input pattern. This is achieved by using

DeMorgan’s law to create a gate with two halves, one that calculates the result and

one that calculates the complement, this assures that there is always one output high

and one low. Additionally there is an AND gate on each output and a pre-charge

signal that sets the outputs of the gate to 0 for half of each cycle. The design of the

AND and OR gates and their truth tables are shown in Figure 4-3.

Figure 4-3: The basic design of DDL AND and OR gates and their respective truth tables.

There is no guarantee that there will only be one switching event per cycle if

this approach is used to build DDL versions of compound gates, e.g. XOR gates.

Fortunately all logic functions can be made with AND, OR and NOT gates,

additionally the inverter is unnecessary in this style as both the result and its

complement are calculated, so to invert a signal the Z and Zconnections are switched.

During the pre-charge phase of the cycle the output of both halves of the gate

are 0, due to the lack of inverters this means the output of any gates connected to them

are 0, so there is no need to pre-charge them. This means that the pre-charge signal

propagates as a wave through the block, this reduces the load on the pre-charge signal.

This style is called Wave Dynamic Differential Logic (WDDL). In WDDL the pre-

charge signal is added to the input of the block. This is shown in Figure 4-4, the

output of the pre-charge inputs is 0 when the prch signal is high. Figure 4-4 also

Chapter 4 Security of Algorithms 90

shows a WDDL flip-flop, during the evaluation phase the registers at the output to the

block store the pre-charged 0s and launch the pre-charge wave in successive blocks. It

is important to note that a clock speed of twice the data rate is required for this

scheme as the pre-charge and evaluation phases happen on different clock cycles.

Figure 4-4: A WDDL Flip-Flop with pre-charge inputs. [25]

If there is no inversion in a block of logic then the gates that calculate the result

and the ones that calculate the inverted result are on distinct paths, and hence can be

separated into two blocks. This can make it easier for the router to match the paths.

In order for this technique to be truly useful it would have to be easily integrated

into a design flow. This was achieved by Tiri and Verbauwhede by using the

following technique. First the design is synthesised using a subset of a standard cell

library using only AND, OR and NOT gates. A script then converts the AND and OR

gates into WDDL form and replaces the NOT gates with the appropriate connecting

of gates. The placement of the logic proceeds as normal, and the router matches the

output lines of the two halves of each gate. A designer does not need any specialised

knowledge of the underlying principle of the countermeasure, normal Verilog or

VHDL can be used as an input to the automated design flow. This approach was

tested by simulation and an ASIC was developed that contained two AES cores, one

that used a WDDL approach and one that did not.

4.3.8.1.2 Clock-less AES Design

Yu and Brée proposed a countermeasure that involved creating a completely

asynchronous AES chip [80]. This was hoped to provide added security as the clock

in a synchronous design guarantees the timing of each operation and so aids the

detection of small differences in power consumption. At first they developed an AES

Chapter 4 Security of Algorithms 91

chip using a single-rail asynchronous style. The chip was a 128-bit encryptor, no

pipelining was used and computations were performed at the byte level. The s-boxes

were implemented as LUTs using dynamic ROM, and RAM was used to store the

plaintext, ciphertext and round keys. The asynchronous design language Balsa was

used to synthesise the core.

The new design was simulated and the results showed a strong data dependence

in the power consumption levels. One of the weaknesses was the ROM; it has two

modes, charge and read. When the ROM is in charge mode the output is set to zero, in

the read mode the ROM is discharged and the data is loaded onto the output, hence

only ‘1’ bits consume current. A new approach was adopted that used dual rail

balanced logic instead. This approach was hoped to be more secure against DPA.

Everything including the ROM, ROM controller and the RAM had to be made secure

using the dual rail approach. This had the unfortunate side-effect of doubling the size,

therefore an online key-scheduler was used.

4.3.8.1.3 Efficacy

The clock-less dual rail design developed by Yu and Brée was not directly

evaluated for DPA susceptibility, but instead the power consumption was simulated

using 500 encryptions with the same key but different plaintexts, and the amount of

energy that was consumed was recorded. The mean energy consumed was 764.81 mJ,

there were variations of 2.85 mJ around this; the standard deviation was 0.79 mJ.

These values were not compared to a single-rail design, so no details of the level of

improvement that their technique offered is available. While these variations are

small, the standard deviation being just over 0.1% of the mean, they could still be

exploited by a determined attacker. The source of the variations was reported to be

that some of the dual rail buses were not routed as pair and the logic gates did not

have balanced loads.

Tiri and Verbauwhede tested the DPA resistance of the WDDL logic style in

simulation [82] and found that if layout parasitics were ignored then it gave perfect

security. As stated in section 4.3.8.1.1 Tiri and et al also developed an ASIC with

both single and dual rail AES cores on it so the gains in security due to the WDDL

logic style could be fully evaluated [5]. They recorded 15,000 power traces for the

unprotected AES core and found that all 16 key bytes could be determined using

Chapter 4 Security of Algorithms 92

between 320 and 8,168 traces, the average being 2,133. They also recorded 1.5

million power traces for the WDDL AES core. 11 out of the 16 key bytes could be

retrieved using between 21,185 and 1,276,186 traces, with an average of 255,391. The

remaining five key bytes could not be retrieved, even using the full 1.5 million traces.

As the key can sometimes be retrieved there is still some data leaking from the

WDDL implementation. This can be attributed to two main factors: differences in the

loading capacitances of two complementary logic gates and differences in the delay

time between the input signals [85]. Improving the placement and routing could even

out the capacitance and may help with some of the difference in delay, but as some

difference in delay is due to the two inputs travelling through a different number of

gates it will not be possible to completely eliminate it.

As only dynamic power has been considered when designing the WDDL logic

gates it is still susceptible to Leakage-Based DPA. Lin and Burleson used normal

DPA and the approach described in section 4.3.2.1 to attack an implementation of

DES protected by WDDL simulated in SPICE. The key could be retrieved using 5000

traces with regular DPA, this fell to 2000 with LDPA [66].

4.3.8.1.4 Efficiency

In order to balance the logic it needs to be replicated so that there is always one

transition, this requires doubling the amount of logic and hence the area of the design.

Additionally, balanced flip-flops require four normal ones, so the overall area of a

design will more than double.

The ASIC that Tiri et al developed containing both single and dual rail AES

cores shows an increase in area of a factor of 3, going from 0.79 to 2.45 mm2, the

maximum clock speed falls by nearly a factor of 4, going from 330 to 85.5 MHz and

the power consumption rises from 0.054 to 0.200 W, again nearly a factor of 4.

Clearly this is an expensive DPA countermeasure.

4.3.8.1.5 Conclusion

Dual rail designs can significantly reduce the information leakage from a crypto

device. In ideal conditions, when parasitics and path length are ignored they give

perfect security in simulation. Clearly these are unrealistic assumptions and when

these are included information is leaked. There are more complex place-and-route

Chapter 4 Security of Algorithms 93

algorithms that can match them in the two paths and reduce the correlation between

power consumption and data, but there are some sources of the correlation and hence

leakage that are currently unavoidable, inputs to a logic block travelling through a

different number of gates for example. Even though some unrealistic assumptions

were made for some simulations of dual rail designs, these criticisms clearly cannot

be made against the WDDL ASIC made by Tiri and Verbauwehede. The ASIC clearly

demonstrated that WDDL is capable of significantly reducing the amount of

information leaked through power consumption. Dual rail designs do come at a high

cost in terms of performance, for the WDDL ASIC the area increased by a factor of 4,

the speed fell by a factor of 4 and the power consumption increased by a factor of 4.

4.3.8.2 Hiding Intermediate Values

Section 4.3.8.2.2 discusses the use of masking, this is where the plaintext is

masked with a random value and encrypted; the mask is removed after the encryption.

This hides all the intermediate values from the attacker. Section 4.3.8.2.1 discusses

the duplication method, which splits the intermediate values into a number of other

variables using a secret splitting scheme. Section 4.3.8.2.3 discusses the effectiveness

of the countermeasure and methods for defeating it. Section 4.3.8.2.4 details the effect

on performance.

4.3.8.2.1 Duplication Method

A method proposed by Goubin and Patarin [86] and again later by Chari et al

[10] called the duplication method involves replacing each intermediate value that

depends on the input with k variables that form into a secret sharing scheme. An

example of the secret sharing scheme that could be used is if the k variables were

XORed together to form the actual intermediate value. Computations can then be

performed securely on the shares using a modified algorithm and then recombining

the data at the end.

In general operations in cryptographic algorithms will fall into one of five

categories:

1. Permutation.

2. Expansion.

3. XOR with another intermediate variable.

4. XOR with key data.

Chapter 4 Security of Algorithms 94

5. Non-linear transform.

Permutation and expansion operations simply need to be performed on all

variables in the secret share, the relationship between them before the operation will

still be correct after it. With the two types of XOR operation, if it is between two

variables dependent on the input then the corresponding section of each variable must

be XORed together, if it is with key data then the key data must be XORed with each

section of the intermediate variable. The non-linear transforms are slightly more

complicated to implement, k different s-boxes are required, each with all of the

sections of the secret share as an input and one as an output. Of these k s-boxes, k-1 of

them implement randomly chosen secret transformations and the remaining one

implements a transform that when combined with all the others will give the value

that would have been given if they were combined before transformation. As tables

are used for the substitutions there is no need to recombine the different sections of

the secret share and hence it remains secure against DPA.

4.3.8.2.2 Masking

Masking involves ensuring the attacker cannot predict any full registers in the

system without making run-specific assumptions that are independent of the inputs to

the system. This is achieved by applying a reversible random mask to the plaintext

data before encryption with a modified algorithm. This makes exploiting data from

several encryptions impossible as it would require guessing the correct mask for each

run, increasing the number of traces decreases the probability of this. The difficulty

with this technique is that if a mask is added in a linear way it will be difficult to

remove after the non-linear section of the algorithm, in AES the Sub Bytes operation.

 Several different masking techniques have been designed for AES, the three

main ones were developed by Akkar and Giraud [87], Oswald et al [4, 7, 88] and

Trichina and Seta [8]. Akkar describes a masking technique for both AES and DES

although only the AES method will be discussed here. It involves adding a mask to

the plaintext, removing it before the Sub Bytes operation and replacing it with a

multiplicative mask. After the byte inversion in Sub Byte the multiplicative mask is

replaced with the original additive mask. Trichina’s method uses a similar technique

to that of Akkar’s except that it re-uses the additive mask as the multiplicative mask,

this requires fewer operations as it has to calculate fewer masks. The other difference

Chapter 4 Security of Algorithms 95

is that a new mask is generated every round. The third approach, by Oswald et al,

adds a mask at the start and does not remove for the non-linear sections of the

algorithm, but converts the calculated (data + mask)
-1 to the wanted (data

-1
 + mask)

by calculating a correction in parallel.

4.3.8.2.3 Efficacy

The duplication method does not offer complete security against DPA, it is

possible to perform k
th order DPA on it. Generally the complexity of HODPA

increases exponentially with order, as the traces must be combined with the correct

time offset between them. This means DPA would probably become infeasible with a

relatively small k. If the system is not carefully designed however, then it may be

possible to spot the positions on the power trace where the data is being handled and

hence reduce the complexity to something manageable [89].

In order to evaluate the security gains of the various masking techniques

Pramstaller et al made a processor utilising the three types as described in section

4.3.8.2.2, they discuss this in [23, 90]. No attempts to perform DPA on these

implementations was made, the standard DPA algorithm is not applicable to a masked

implementation. This does not guarantee security however; both the Akkar and the

Trichina approaches are vulnerable to a “zero value attack”. This is where the partial

data and the partial key have the same value after the additive mask is removed so the

value will be zero and the multiplicative mask will have no effect [91]. Also it was

shown in [92] that the Trichina method can be defeated by regular DPA. Akkar

reports in [87] that HODPA, albeit with considerable effort, can defeat the masking

countermeasure. Mangard et al implemented an AES ASIC using the Oswald

approach, the Akkar approach and an unmasked implementation [93]. Despite the fact

that these masking techniques were provably secure against first order DPA the

implementations could still be attacked using results from simulations to make

predictions about the outputs of logic gates rather than registers. For Akkar’s

technique this required 130,000 traces. For Oswald’s technique only 30,000 were

required, this was of a similar order to the 25,000 traces required for the unmasked s-

box.

4.3.8.2.4 Efficiency

Chapter 4 Security of Algorithms 96

The effect that the duplication method has on the performance of the design

depends on the value of k. For each additional secret share variable an additional data

path needs to be added. Additionally, as well as needing more s-boxes they are all

bigger, the size increasing to the power of k. The size of the design will have to

increase by a factor greater than k. The duplication method significantly increases the

amount of memory required for the s-boxes so it is not appropriate for smart card

implementations without modification. In [86] Goubin and Patarin suggest ways to

reduce the memory requirements so as to be able to fit a duplication protected DES

implementation with a k of 2 on a smart card. If the same random transformation is

used for all of the 8 DES s-boxes then the number of s-boxes that need to be stored in

memory is 9 rather than 16. These s-boxes can be made smaller by combining the

parts of the secret share in a secure way, by doing it inside a bijective masking

function so the actual value never appears in registers. The two post-s-box

intermediate values are: some randomly chosen secret transform of the securely

combined value, and, that value XORed with what the output of the s-box would be in

an unmodified implementation. The unmodified s-box output can be calculated

securely from the altered combined value from a table that has been rearranged.

Pramstaller et al implemented an ASIC with AES s-boxes using the three

masking techniques described in section 4.3.8.2.2 [9, 23], they used a 0.25 µm

process. The effect of the countermeasures on the area and the critical path are shown

in Table 4-6. Akkar’s implementation is the largest, and Trichina’s is the smallest,

Oswald’s is the slowest. Compared to the smallest AES s-box the area increases by

between a factor of just under 3 to over 4, and the critical path increases by a factor of

between approximately 1.5 and 2. While compared to the fastest AES s-box the area

increases by a factor of between 1 and 2 and the critical path by between

approximately 4 and 6. The final column of Table 4-6 gives the number of random

bits per data bit required by the algorithm. Oswald’s masking algorithm requires a

128-bit mask for each 128-bit input block. Akkar’s masking algorithm required both a

multiplicative and additive mask and hence required 256 random bits for each input

block. Trichina’s masking algorithm reuses the additive mask as a multiplicative mask

but requires one for each round so requires 1,280 random bits for each input block.

This will put additional strain on the efficiency of the algorithm as the random

numbers have to be generated by additional circuitry and potentially in additional

Chapter 4 Security of Algorithms 97

time. Pramstaller et al also developed a 128-bit implementation of AES Oswald’s

masking method, it was designed as a high throughput chip and they compared it to

Fastcore [94]. They reported an similar area, Fastcore had 45,325 gates, their design

had 42,408, this did not include the circuitry required to generate the random masks

and the Fastcore datapath includes some additional functionality [9]. The throughput

fell from 2.12 Gb/s for Fastcore to 1.15Gb/s for Pramstaller et al’s design. Both chips

used a 0.25 µm CMOS process.

S-box Implementation Area (mm2) Critical Path (ns) Random Bits / Data Bit

AES 0.0075 – 0.0125 4 – 5.8 0

AES LUT 0.015 – 0.037 1 – 3 0

Oswald 0.025 – 0.033 8.3 – 14.4 1

Akkar 0.034 – 0.054 6.5 – 12.2 2

Trichina 0.020 – 0.035 6 – 9.2 10

Table 4-6: A table comparing the area, speed and random bit requirements for masked and

unmasked implementations of the AES s-box [23].

4.3.8.2.5 Conclusion

Clearly masking techniques are not a solution to the problem of DPA, the costs

on performance are significant, increasing the size of an s-box by a factor of between

3 and 6 [9, 23] and in an full implementation of AES decreasing the speed by a factor

of 2 [94]. That doesn’t even include the penalties for generating the massive amount

of random bits required to make the masks. Much more significant that the cost to

performance is the inability of any of the proposed masking techniques to actually

protect a system from DPA, the Trichina technique is vulnerable to regular DPA [92],

and the Akkar and Oswald techniques are vulnerable to DPA against logic gates

rather than registers, using simulations to predict the values of the logic gates [93].

This pretty much rules masking out as an effective DPA countermeasure.

The duplication method can protect implementations against DPA but it can be

defeated with HODPA. The order of HODPA to which it is vulnerable is determined

by the number of duplications that are used to protect it. HODPA is computationally

expensive as it requires the attacker to combine the power traces in an iterative way to

Chapter 4 Security of Algorithms 98

determine the correct time offset. One possible weakness of the duplication method is

the random transformations that are used to make the s-boxes need to be kept secret, if

an attacker was able to determine what they were then the implementation may be

vulnerable.

4.3.8.3 Dynamic Voltage and Frequency Switching

Dynamic Voltage and Frequency Switching (DVFS) was originally proposed as

a technique to reduce power consumption. Yang et al realised that is would also

frustrate an attacker who was trying to perform DPA on a cryptosystem as they would

typically assume that the device is operating at a constant frequency and hence take

power samples at constant intervals [11].

When DVFS is used as a DPA countermeasure it is composed of three parts, the

processor core, the DVFS feedback loop and the DVFS scheduler. The DVFS

scheduler randomly generates a voltage or a frequency value, the feedback loop then

implements the frequency and voltage using a phase locked loop and a ring oscillator

and supplies it to the processor core.

4.3.8.3.1 Efficacy

Yang et al [11] created a simulated DES implementation with DVFS but did not

perform actual DPA on it. Instead, to measure the effectiveness of their

countermeasure they simulated 1000 of encryptions, collected statistics about the

variation in the power and timing, and defined two performance metrics, Power

Traces Entropy (PTE) and Time Trace Entropy (TTE). These represent uncertainty in

the power and consumption and clock period traces. They found that in their design

with DVFS the PTE was 7.5% higher than their design without. The TTE was ∞%

higher as there wasn’t any uncertainty in the timing in designs without DVFS.

Baddam and Zwolinski [95] attempted to perform DPA on a simulation of a

cryptosystem using this technique and discovered that they could not retrieve the key

after 10,000 traces. As any circuit with a clock frequency is necessarily sequential,

lots of values will change in the circuit on the rising edge of the clock, this will create

a detectible spike in the power consumption, which the attacker is already measuring.

This information can be used to determine the altered frequency, this in turn give

information about the new supply voltage. Applying this new data to their DPA

technique Baddam and Zwolinski were able to retrieve the key from a DVFS

Chapter 4 Security of Algorithms 99

protected cryptosystem. As an improvement to the technique they suggested only

modifying supply voltage and keeping the frequency constant so as not to give the

attacker the tools to defeat the countermeasure. When tested this reduced the

correlation with power consumption by a factor of 5, although DPA could be

performed on a single AES s-box using 2,500 traces it could not be performed on a

full implementation of AES with 10,000 traces.

4.3.8.3.2 Efficiency

The area overheads for DVFS are not particularly large, as adding the

countermeasure simply involves including the DVFS scheduler and feedback loop. In

[11] it was assumed that the underlying hardware was already available in the design

essentially reducing the area cost to nothing. The accuracy of that assumption depends

on the exact nature of the device in question and it will not always be true. Changing

the frequency and the voltage affects the amount of power and time required to

perform encryption. When Yang et al implemented DES using DVFS they reported a

speed overhead of 16% but the amount of power used fell by 27% [11].

4.3.8.3.3 Conclusion

In terms of the performance cost to an implementation that a countermeasure

incurs DVFS is cheap. The size of the design will not increase very much, especially

if the chip already has a phase-locked loop and ring oscillator. The speed decrease is a

moderate 16% and the power consumption was even reduced by 27%.

If the operating frequency is altered as well as the voltage then it is possible to

use the large increase in power consumption that accompanies the rising edge of a

clock pulse to deduce the new clock frequency and hence the supply voltage and

defeat the countermeasure [11]. If only the power consumption is altered then this is

not possible and the countermeasure can achieve a factor of five reduction in the

correlation with power consumption [95], making it infeasible to attack a simulation

of full AES with 10,000 traces.

4.3.8.4 High Order DPA Countermeasures

Designing ad hoc countermeasures for DPA does not assure security against

HODPA. It has been shown that masking techniques are not secure against HODPA

[92]. The Duplication method, using k shares, does not provide security against k
th

Chapter 4 Security of Algorithms 100

order DPA attacks. However, while the complexity of the implementation increases

with order k, the complexity of the attack increases exponentially with k, so an attack

would quickly become infeasible.

A modification to the masking technique was suggested by Chang and Kim that

would make it secure against 2nd order DPA [96]. It involves generating two masks

and selecting one at random and applying it to the data. This provides security as the

attacker is not able to determine the point at which the mask is loaded.

Another masking technique that is not vulnerable to HODPA was proposed by

Goubin and Akkar [97] and applied to DES. A 32-bit number is generated randomly

and this is used to create 2 new s-boxes, one that masks the value and one that

unmasks it. The intermediate values in DES have variable vulnerability to DPA, that

is to say that information about some of the rounds does not gives more information

about the key than others. The middle 2 two rounds are not vulnerable, at this point

the data is unmasked and a new set of secure s-boxes is used. If only one mask was

used then it would be susceptible to HODPA in the same way that other masking

techniques are.

4.3.8.5 Summary of Power Analysis Countermeasures

Countermeasure Penalty Effectiveness

Speed Area Power

Balanced logic

WDDL 4 3 4 11 out of 16 key bytes identified with

average of 255,391 traces, others not

identified with 1.5 million traces.

Masking

Oswald [23] 2.1 2.5 - Susceptible to DPA targeting logic

gates with back annotated netlist.

[93].

Chapter 4 Security of Algorithms 101

Trichina [23] 1.5 2.8 - Susceptible to DPA [92].

Akkar [23] 1.7 4.2 - Susceptible to DPA targeting logic

gates with back annotated netlist.

[93].

Duplication - > k - Susceptible to HODPA [22].

DVFS

Frequency and

supply voltage

1.2 - .73 Can be defeated using power surges

to find new rising edges of clock

pulse [95].

Supply Voltage - - - Correlation strength decreased by a

factor of 5 [95].

Table 4-7: Summary of DPA countermeasures.

4.3.8.6 Conclusion

As discussed in section 4.3.8.5 adding hardware countermeasures to DPA is

expensive in terms of area and time requirements, increasing them by a factor of 1.2

to 4 and 1.8 to 4 respectively.

The effectiveness of the countermeasures is often debatable, even if it has been

demonstrated that they work. Some masking techniques that were proposed were

shown to be susceptible to higher order DPA attacks [87] and one was even

vulnerable to first order DPA [92]. Even techniques that were shown to be

theoretically provably secure [6, 7, 46], was susceptible to DPA using predictions

based on simulations and a back-annotated netlist [93].

Most other countermeasures were generally shown to be secure in simulation

with unrealistic assumptions about parasitics. Even if the countermeasures are

implemented it is still difficult to show that they are definitely secure by attempting

DPA on them. However many traces are recorded in the experiments it is still possible

that if more were taken enough information would leak to enable an attacker to

retrieve the key. It is only possible to show that countermeasures are not secure, or are

effective up to a certain limit. In order to assure security this limit has to be greater

than the number of traces realistically available to the attacker. This is still not a

Chapter 4 Security of Algorithms 102

definite figure, and is largely dependent on the application for which the encryption is

used. Hwang et al collected 1.5 million traces and could not retrieve the key from

their WDDL AES ASIC [98], they claimed that this demonstrates that their method is

secure. 1.5 million traces is equivalent to the encryption of 12 MB of data.

4.4 Conclusion

Cryptography is a constant battle between cryptanalysts and code makers.

Algorithms are developed, weaknesses are found and techniques to overcome these

vulnerabilities are discovered and included in the next generation of algorithms. As

processing power becomes cheaper algorithms have to become more complex, with

longer keys to withstand the ever increasing brute force attacks. The current standard

is AES which has no known mathematical attacks and with key lengths of 128, 192

and 256 bits cannot be feasibly brute forced with current technology. Even the most

modern algorithms however fall to side channels, until an effective countermeasure is

developed the cryptanalysts have the upper hand.

There are no truly successful techniques to protect AES against DPA. Hardware

countermeasures are expensive in terms of area and speed and cannot be guaranteed

to work. Masking techniques have been shown to vulnerable to a variety of DPA

based attacks such as targeting logic gates [93] and the duplication method is

vulnerable to high order attacks [22]. Clock frequency based countermeasures can be

compensated for and defeated [95]. Balanced logic styles can protect implementations

up to a point, but any data dependence in power consumption, no matter how small,

can be exploited by an attacker if they have access to enough power traces, and the

logic can never be perfectly balanced.

The countermeasures that have partial success, balanced logic and randomly

varying the supply voltage, both reduce the effectiveness of DPA. This does not

prevent it, but does increase the number of traces required to successfully perform an

attack. This leads to the question: how many traces are required for an attack before it

is considered secure against DPA? There is no general answer to this, it is determined

by the specific use of the system in question, if it is not feasible to get enough power

traces to retrieve the key before the key is changed then it is essentially secure. If the

key is never changed then the attacker has a theoretically infinite number of power

traces available to them and even the slightest data dependence in the power

Chapter 4 Security of Algorithms 103

consumption will eventually betray the key. Tiri et al tested their WDDL system with

1.5 million traces and found that they could not retrieve the entire key using DPA [5]

but DES is considered vulnerable to differential cryptanalysis even though it requires

247 chosen plaintexts. Additionally, even retrieving some key bits weakens the cipher.

In the WDDL example 11 out of 16 key bytes were successfully determined, this just

leaves 40 key bits unknown. That is well within the reach of an exhaustive search

with current levels of available computing power. It is important not to forget the

words of Robert Morris at Crypto 95:

“Never underestimate the time, expense, and effort an opponent will expend to

break a code.”[99]

Chapter 5 Recording and

Analysing Power Data and

Benchmark DPA Results

5.1 Introduction

In order to investigate potential countermeasures to differential power analysis

it must first be possible to perform DPA so the efficacy of any modification can be

determined. This requires both a design of a suitable cryptographic algorithm, in this

case AES, the implementation of which is described in section 5.2, and a system to

extract power consumption measurements. A system was developed that used an

oscilloscope to measure the power consumption of an FPGA while performing

encryption and is described in section 5.3.2. The data was then analysed using a

program that is described in section 5.3.3. Also DPA was performed in simulation in

two different ways. Firstly the power consumption was estimated using transitions in

registers in a VHDL simulation as, this is described in section 5.3.1.1. Also, a model

of DPA was made in Matlab that can be used to quickly perform lots of experiments,

this is useful for performing Monte Carlo simulations and is described in section

5.3.1.2.

5.2 AES Core

This section describes the AES core that was implemented in order to have a

platform to test the susceptibility and effectiveness of countermeasures to DPA.

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 105

Another advantage of developing a new AES implementation was that a greater

understanding of the algorithm and issues regarding implementation was gained.

5.2.1 Modules

A highly modular design style was used to implement AES. This simplified the

addition of optimisations and the creation of a variety of architectures.

5.2.1.1 Sub Bytes

For the Sub Bytes operation two different s-boxes have been produced, one that

uses the LUT approach and one that converts the values from GF (28) to GF (24), also

versions of these were made for pure encryptors, for further details see section 3.6.9.2.

The designs were synthesised and details are given Table 5-1.

S-box Slices Delay ns

LUT Full AES 139 9.41

LUT Encryptor 68 8.44

GF (24) Full AES 58 20.33

GF (24) Encryptor 46 17.45

Table 5-1: Details of the various s-box implementations.

As the Shift Rows operation can simply by implemented as routing it was

combined with Sub Bytes in the top level of the module, with the substitution of each

input going to a different output.

5.2.1.2 Mix Columns

Originally the multiplication for the mix columns was performed by a series of

generic GF (28) multiplication modules. One of the operands in each multiplication is

constant, so this was then changed to a series of custom built constant value

multipliers, the equations for which are given in Table 3-4. There is a degree of

sharing of values in the equations so there is a further optimisation that can take place,

the 4th bit of the 03 multiplier is the 4th bit of the 02 multiplier and x4. When a purely

encrypting implementation of AES was made the custom multiplier was changed so it

only calculated the multiplications needed for encryption. The designs were

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 106

synthesised and details are given Table 5-2. The custom multipliers outperform the

generic ones in both speed and area.

Multiplier Slices Delay ns

Generic 724 13.13

Custom 600 11.97

Custom enc 208 5.65

Table 5-2: Details of the various Mix Columns implementations.

5.2.1.3 Key Scheduler

Several different key schedulers were designed that could calculate an entire

round key in 1 clock cycle. They were 128-bit online and offline schedulers and a full

AES offline key scheduler. Online key schedules generate the round keys as they are

required whereas offline ones pre-calculate them and store them for future use. The

designs were synthesised and details are given Table 5-3.

Key Scheduler Slices DFFs Delay

128-bit Online 428 128 31.03 ns

128-bit Offline 1,383 1,285 769 ns

Full AES Offline 7,688 1,824 84.78 ns

Table 5-3: Details of the various Key Scheduler implementations.

5.2.2 Architectures

Several different architectures were implemented, a 128-bit encryptor with

online and offline key schedulers, a 128-bit encryptor / decryptor with online and

offline key schedulers, a full AES encryptor / decryptor with an offline key scheduler

and a fully pipelined 128-bit encryptor with online and offline key schedulers. The

designs were synthesised for a Xilinx XCV100E with a speed grade of -6.

The area, speed and throughput in bits per second are given in Table 5-4. For

implementations that have an offline key schedule additional clock cycles were

required to pre-calculate the expanded key so the overall cycles per result and hence

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 107

the throughput would be dependent on how many blocks were encrypted with each

key. For the implementation of full AES with three different possible key lengths, the

number of rounds and the setup time of the expanded key is determined by the key

length. It can be seen from Table 5-3 that although an online key scheduler is smaller

for one round this is because the overhead in creating an offline version is very large,

when the pipelined architectures were created the offline key schedule approach used

nearly 2,000 less slices. The complexity involved in creating an implementation that

supports multiple key lengths is so great that there is a significant increase in area and

reduction in clock speed.

Implementation Clock

(MHz)

Cycles /

Result

Throughput

(Mb/s)

Slices DFF

128-bit Enc online 33.4 10 427 2,446 516

128-bit Enc offline 25.2 10 323 3,099 1,702

128-bit Enc/Dec off. 28.1 10 360 4,364 1,575

Full AES Enc/Dec off 12.5 10–14 114-160 10,003 2,085

128-Bit Enc piped on. 43.9 1 5,620 11,709 2,309

128-Bit Enc piped off. 28.5 1 3,650 9,991 3,624

Table 5-4: The performance results from the various AES implementations.

5.3 Performing a Correlation Attack

In order to gain any real insight into power analysis attacks and their

countermeasures such an attack must be performed. The ultimate aim of this is to

develop a system where the resistance to power analysis attacks can be measured.

This section describes the various methods that have been used to perform a

correlation attack on AES and the tools that were developed in order to facilitate

them.

5.3.1 Simulation

Before an attack was performed on a physical system it was first done in

simulation. Section 5.3.1.1 describes a correlation attack on Modelsim simulation of a

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 108

VHDL design of an AES chip. Section 5.3.1.2 discusses the use of Matlab to simulate

a realistic but simplified model of a device being subjected to power analysis. This

allows investigation into properties of the attack that would otherwise take a

prohibitively long time.

5.3.1.1 FPGA Power Estimation

As shown in [60] the number of bit transitions inside the registers of an FPGA

gives a reasonable estimation of the power consumption at that time. For this reason a

program was written that could accept an FPGA design file and use it to produce a file

containing the number of bit changes within all registers in the design on each

successive clock cycle. Details of the program are given below.

The program parses post-synthesis VHDL files and extracts the names of the

registers in the design. The program then writes a test bench containing the key to be

extracted and a list of plaintexts. Additionally a Modelsim script file is written that

loads the design and a test bench, runs the simulation and records the values in the

registers at each delta time into a file. This file is then read, and the number of

transitions in a given clock cycle is counted. This information is used to perform DPA

on the design using the method described in section 4.3.2.2, to extract the key that

was specified in the test bench. In this example 742 traces were required to extract all

16 bytes of the key.

The first byte of the key had the decimal value 43. In Figure 5-1 the correlation

between the consumption matrix and the prediction matrix for the first byte of the key

is shown for all 256 possible values of the key, the value with the highest correlation

is 43, this means that the correct value for the first key byte can be correctly

identified.

In Figure 5-1 it can be seen that there are a series of distinct levels that the

values of the correlation take. This is due to the effect discussed in section 4.3.5.1.

Each time the Hamming distance between the key guess and the correct key is

increased, the correlation falls by a fraction equal to the number of bits in the key

guess, in this case 8. This can be seen in Figure 5-1 as the correlation when the key

guess is 42 is approximately the same as when it is 47, both having a Hamming

distance of 1 away from 43. When half the bits are incorrect there is a correlation of

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 109

approximately 0, and when all bits are incorrect the correlation is negatively

correlated by the same amount as the largest peak.

Figure 5-1: Graph showing the correlation of the 256 key guesses for a correlation attack on

the power estimation of an AES FPGA with 1,000 traces.

5.3.1.2 Matlab Simulations of the Consumption Model

The simulated attack described in section 5.3.1.1 takes a significant amount of

time. The majority of this is taken up by the Modelsim simulation, as to be sure that

enough register transition data was collected 4,000 plaintexts were used, this took

over 2.5 hours on a 3 GHz Pentium 4. Using Matlab it is possible to simulate a

correlation attack on AES much faster and so investigate a wider variety of properties

of the attack, such as the affect of the SNR and number of traces on the results of the

correlation.

In the AES design that was attacked using a Modelsim simulation in section

5.3.1.1 there were 516 registers, 128 are used for storing the data relevant to the

attack, the rest are not used at all during the targeted clock cycle of the encryption.

This may seem to imply that there is no noise in the measurements, but this is not

true. All of the bytes are calculated in parallel but each one is targeted individually

and the data is independent so the data from one byte appears as noise when attacking

another. This means that the signal-to-noise ratio of this system is 0.25. The Matlab

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 110

model to simulate an attack randomly generates 16 1-byte integers for the plaintext

and XORs them with a 16 byte key and then sums the Hamming weight of each

number. This value is entered into the consumption matrix. The prediction matrix is

the Hamming weight of all 256 possible key values XORed with the randomly

generated plaintext value of the target byte.

Figure 5-2: Graph showing the correlation of the 256 key guesses for the Matlab model of a

correlation attack on AES.

The first byte of the key had the decimal value 43. In Figure 5-2 the correlation

between the consumption matrix and the prediction matrix for the first byte of the key

is shown for all 256 possible values of the key, the value with the highest correlation

is 43, this means that the correct value for the first key byte can be correctly

identified.

The signal to noise ratio can be improved by combining data from two key

bytes. This does increase the size of the key-space that must be exhaustively searched

from 28 to 216. The value of the 2-byte section of the key that was being targeted was

0x2B7E or 11,134 in decimal notation. In Figure 5-3 the correlation between the

consumption matrix and the prediction matrix for the first byte of the key is shown for

all 65,536 possible values of the key, the value with the highest correlation is 11,134,

this means that the correct value for the first two key bytes has been correctly

identified. As stated in section 4.3.5.1 the correlation of the correct key choice is

related to the signal to noise ratio of the system, as this has been increased from

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 111

16
1 to 8

1 the value of the maximum correlation as calculated by equation (4-15)

becomes 1/3. Like Figure 5-1, Figure 5-3 also has a regular pattern in the values of the

correlation, with key guesses that have the same Hamming distance from the correct

value having the same correlation. The only difference is that in this example there

are 2 bytes, and so 17 different possible values for the Hamming distance between the

correct and incorrect values.

Figure 5-3: Graph showing the correlation of the 65,536 key guesses for the Matlab model of

a correlation attack on 2 bytes of AES (2B 7E) with 1,000 traces.

5.3.2 Performing a Correlation Attack on an FPGA

An AES core was combined with an LFSR to provide the plaintexts and loaded

onto a Xilinx XCV1000E FPGA. The FPGA was put into a Xilinx BG560

prototyping board. The board only contains wiring for the JTAG, sockets for

oscillators and some LEDs. The power for the internal logic of the FPGA is supplied

via separate power supply jacks, this means that the power consumed by other things

on the board does not interfere with the power consumed by the chip itself, this will

reduce the noise for power analysis attacks. The power consumption data was

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 112

captured using an Agilent Technologies 4 channel mixed signal oscilloscope with a

maximum sample rate of 1GHz (MSO6104A). The power consumption of the FPGA

can be deduced by measuring the current drawn from the power supply, the

oscilloscope only measures voltage. A 0.5 Ω resistor was connected in serial with the

FPGA and the voltage across it was measured by connecting an oscilloscope probe

either side of it and subtracting one value from the other. The FPGA generated a

Doing signal, one pin went high when an encryption was being performed in order to

trigger the oscilloscope. In addition to the power consumption data the oscilloscope

also captures the Doing signal and the clock pulse to aid the synchronisation of the

power consumption traces. The output from the oscilloscope is an array of 1,000

floating point numbers signifying the values displayed on the screen.

Figure 5-4: Correlation for all possible key values for an attack on a single AES s-box on an

FPGA with 10,000 traces.

To test the setup, an attack was performed on a single AES s-box. A random 8-

bit plaintext was generated using a 128-bit LFSR, this was XORed with a constant

value (0x2B) to represent the key and this was fed into the s-box and the output was

stored in a register. A graph showing the correlation of all possible values of the

constant key for 10,000 traces is shown in Figure 5-4, there is a clear peak at the

decimal value 43, showing the correct value of the constant that was XORed to the

LFSR output. Figure 5-4 looks different to the previous graphs of the correlation of all

possible key values, there is not the distinct set of levels for the correlation of

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 113

incorrect values, this is because the predictions are made after the s-box. This is

discussed in more detail in section 5.4.

Figure 5-5: The correlation for all possible key values after 30,000 traces while attacking the

first byte of the first sub-key of AES before the s-box.

After the correct function of the test-bed was verified a correlation attack was

performed on an AES core. The correlation of all possible key values of the first byte

of the first sub-key after 30,000 traces is shown in Figure 5-5, again the correct value

is 43 and this is the largest peak in the graph. Even though the correct answer is still

clearly visible in the graph the actual value for the correlation is much lower in this

attack, at 0.03785, compared to the simulated attack, at 0.2599. This is because there

is a lot more noise this system as the Modelsim simulation considers only register

transitions whereas in the real system there is noise from all parts of the circuit.

5.3.3 DPA Software

As noted in section 4.3.2.2 a correlation attack is a three stage process involving

predicting the values in registers based on the plaintext and the key, generating and

capturing the power consumption information and performing the correlation. These

can be grouped into two more general tasks of capturing power data and then

processing it. Power consumption data from the FPGA was captured using the Agilent

MSO6104A oscilloscope; in order to automate this, a program was written to control

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 114

it. The program has two main tasks, initialising the settings on the oscilloscope and

transferring data from the oscilloscope to the PC. The settings for the capture, such as

the number of traces that are going to be performed and the number of clock cycles of

the traces that are to be captured, are entered into the GUI, shown in Figure 5-6, the

program then calculates the appropriate time-base settings and sets up the relevant

channels on the oscilloscope for capture. The program also sends requests for data to

the oscilloscope. When the FPGA is performing an encryption a “Doing” signal is set

high, the oscilloscope uses this as a trigger and captures the power consumption data.

Now it has data in its buffers is can fulfil the program’s request to send the data to the

PC. For simplicity of design there is no communication between the PC and the

FPGA, the plaintexts were generated by an on-chip LFSR and there was a counter that

ensured a fixed period of time occurred between encryptions. If this was greater than

the time taken to transfer data between the oscilloscope and the PC then the

oscilloscope would receive another request for a transfer before the next encryption

took place and the process would repeat. There was another counter on the FPGA that

stopped it after a certain number of encryptions had been performed, there was also a

counter in the program that counted the number of datasets that had been received. If

the data transfer between the PC and oscilloscope took longer than the time between

encryptions the program would not capture the expected number of traces and it

would be apparent that the capturing process had failed. The output from this was

stored in comma delimited files ready for processing by other programs.

Figure 5-6: GUI for the program that controls the transferral of data between the oscilloscope

and the PC.

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 115

Figure 5-7: GUI for the DPA analysis program when attacking simulated power data.

Figure 5-8: GUI for the DPA analysis program when attacking FPGA power data.

The majority of the basic level algorithms for performing the various types of

correlation attacks were very similar, for this reason one program was written that

incorporated the analysis of both the simulated results and the power traces captured

from the FPGA. Different options in the GUI could be set to control aspects of the

analysis such as the number of traces, how the plaintexts were generated, either a file

with a list of them or an LFSR, and which, if any, of the countermeasures proposed in

sections 7.2.1 - 7.2.3 were used. The GUI for the program when performing DPA on a

simulated AES and FPGA data are shown in Figure 5-7 and Figure 5-8 respectively.

There are several available settings displayed in Figure 5-8, most are self-explanatory.

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 116

In the Countermeasure section there are four options: None, for when there is no

countermeasure; Mixed, for when the countermeasure is the additional Mix Columns

operation (see section 7.2.2); May, for when the countermeasure was the strengthened

AES key schedule developed by May et al [30] (see section 7.2.1); and Rolling, for

when the key schedule continues expanding the key indefinitely (see section 7.2.3). It

should also be noted that the option marked “cheat to reduce data” does not really

cheat but performs the correlation using the correct value of the key byte (which is

already known to the analysis program) to find the sample in the power consumption

trace that gives the highest correlation. This is then the only sample that is used when

calculating the correlation for the other 255 key-byte guesses which makes the data

analysis stage much faster.

5.4 Effects of the Position of the Target Register on Correlation

Attacks

The correlation attacks described in section 5.3 all target the register at the start

of the first round after the initial Add Key operation (apart from Figure 5-4, where

there is only an s-box and a register). This was chosen as in the AES design each

round was performed in one clock cycle so there were no registers after the s-box and

it was a simpler modification to reset the initial register at the start of each encryption

than to alter the structure of the round. A simulation of power analysis was performed

in Matlab where the target of the attack was a register that stored the results of the

substitution. A graph of the correlation from all 256 key values from a simulated DPA

attack is shown in Figure 5-9, and an attack on a real FPGA is shown in Figure 5-10,

in both cases the correct key value was 43.

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 117

Figure 5-9: Graph showing the correlation of the 256 key guesses for the Matlab model of a

1,000 trace correlation attack on AES targeting the algorithm after the S-Box.

Figure 5-10: Correlation of the 256 key guesses for a 30,000 trace correlation attack on an

FPGA AES implementation, targeting the algorithm after the s-box.

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 118

A number of differences become immediately apparent when comparing this

graph to the one shown in Figure 5-2. In Figure 5-2 the variable plaintext byte is

XORed with constant key, the statistics are like those described in section 4.3.5.1,

with a reduction in the correlation by ¼, in an 8-bit attack, from the maximum for

each incorrect bit in a guess. It is significantly easier to extract the correct value from

a post s-box attack. This is because there is potentially a high correlation between the

predictions for correct and incorrect key hypothesis when the target is (Plaintext XOR

KeyGuess) as one bit difference in the key leads to only 1 bit difference in the output.

In contrast, as the s-box is a complex, non-linear function then after it is applied a

single bit difference in the key guess leads to a vastly different output and hence there

is a much lower correlation for incorrect key guesses. As explained by Prouff in [74]

the same properties that make an s-box satisfy the propagation criterion to give an

algorithm resistance to linear and differential cryptanalysis also make the s-box

fundamentally vulnerable to DPA.

Performing a 2-byte power analysis attack has an analogous effect on the

correlation; an example is given in Figure 5-11.

Figure 5-11: Graph showing the correlation of the 65,536 key guesses for the Matlab model

of a post s-box correlation attack on 2 bytes of AES (2B 7E) with 1,000 traces.

Knowing the position of the registers in the AES design would not always be

possible in a realistic situation. If the incorrect position is attacked with the prediction

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 119

function clearly this will not give the correct result. It is however unlikely that the

result that is given will be confused with the correct one as they look significantly

different. If the target is pre s-box when it should be after it then it looks similar to a

correct attack, there is no large peak indicating the correct result but there is still the

same characteristic shape in the graph, this is because there is still the same pattern in

the values of the prediction matrix irrespective of whether any of the predictions are

accurate. If the target is post s-box instead of before it then the graph looks

significantly different, there are not the same number of levels for the correlation and

the highest and lowest values are significantly reduced. This is illustrated in Figure

5-12.

Figure 5-12: Graphs showing the results of a correlation when the attack targets the incorrect

side of the s-box, the graph on the left targets post s-box and the graph on the right targets pre

s-box, in both cases the correct key, 43, is not represented by the highest peak.

Figure 5-13 shows three DPA traces where the correlation values have been

sorted into descending order. Each has an SNR of 0.25 but a different number of

traces. As the number of traces increases the correlation line becomes flatter and it

appears that the correlation for incorrect guesses will approach zero. This is however

not quite the case, the amount of variability of the calculated values decreases as the

number of traces increases. This is discussed further in Chapter 6.

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 120

Figure 5-13: Correlation of all 256 key guesses for 3 different numbers of traces arranged in

descending order.

5.5 Conclusion

A number of different methods for performing DPA have been developed. A

system that records the power consumption of an FPGA configured as an AES core

was made and programs that analyse the data were written. Also a method of

performing DPA using Modelsim VHDL simulations was made which also proved

effective, this creates measurements with much less noise than a real system which

means that less power traces are required to perform DPA saving time collecting and

processing data. It does only measure register transitions so any information leaked

through other sources, such as logic gates, would not show up in these simulations.

Additionally a model of DPA was made in Matlab, this allowed even faster

experiments to be performed, which is important in order to perform Monte Carlo

simulations of a DPA system so the properties of DPA can be better understood, this

will be used extensively in Chapter 6.

After gaining experience of collecting and analysing DPA data it was

discovered that the choice of the position in the algorithm that is attacked has a

significant effect on the results and the number of traces required to successfully

retrieve a the value of a byte of the key. If the value targeted is after the s-box then it

Chapter 5 Recording and Analysing Power Data and Benchmark DPA Results 121

is much easier to perform DPA. This is because of the non-linear properties of the s-

box, even if there is only a single bit error in the key guess this will lead a

significantly different value after the s-box and hence the correlation for an incorrect

key guess will be lower and therefore easier to distinguish from the correct value.

Chapter 6 The Statistics of

Differential Power Analysis

6.1 Introduction

Differential Power Analysis is a statistical attack, understanding the statistical

properties of it can yield techniques for evaluating the vulnerability of a system and

the efficacy of countermeasures, as well as other insights into the attack. In previous

sections the number of traces that were required to retrieve the key for different

scenarios have been given as an indication as to the ease at which the system was

cracked. Due to the statistical nature of the attack these are not definite values, but are

product of the implementation being attacked, the choice of the inputs that were used

and the noise in the system. Just because it required 1,000 traces to crack a system

with on Monday there is no guarantee that 1,000 traces will succeed on Tuesday.

With a given number of traces and a specific level of random noise there is a

fixed probability of success. In order to investigate this relationship further, a Monte

Carlo simulation of DPA was performed with different numbers of traces each time

using different random generated plaintexts and keys. To form the consumption

matrix the plaintext was XORed with key and the Hamming weight was calculated.

No additional noise was added but the contribution to the consumption model from

the bytes in the plaintext that were not being attacked would act as noise. The number

of times a byte of the key was successfully retrieved was recorded and the probability

of success against the number of traces was plotted, this can be seen in Figure 6-1.

The simulation was repeated with 16 and 32 bytes in the plaintext and key, this

changes the amount of noise in the system.

Chapter 6 The Statistics of Differential Power Analysis 123

Figure 6-1: A graph showing the probability of successfully retrieving a key byte against the

number of traces taken in simulation calculating 16 and 32 bytes concurrently.

It can be plainly seen from the graph that the more traces that have been used

the greater the probability of success. Also, the more noise there is in the system the

greater the number of traces that are required to achieve the same success rate. In

order to determine the precise relationship between these variables a statistical model

of DPA is derived and from this, a technique to calculate the probability of success

from the amount of noise in the system and the number of traces that have been taken

is established.

Detecting the effect of a particular pattern of register transitions can have other

uses than divining a cryptographic key. This chapter also presents a method for using

DPA to detect the presence of a particular pseudo-random sequence that has been

added to a design as a sort of watermark to protect intellectual property.

6.2 Statistical Model of DPA

6.2.1 Introduction

In order for DPA to be successful the correlation relating to the set of

predictions based on the correct key guess must be higher than the predictions relating

to the 255 incorrect key values. The specific value of the correlation generated by the

predictions based on the correct and incorrect key guesses can vary between

Chapter 6 The Statistics of Differential Power Analysis 124

successive runs of DPA depending on the values of the plaintext and the key that are

used and the noise in the rest of the circuit. This means the value obtained is just an

estimate of the true correlation; this estimate is called the sample correlation as it is

based on the samples taken. The true correlation is that calculated if the entire

population was sampled (therefore this is referred to as the population correlation) and

as the population is all potentially observable values, this implies an infinite number.

This means that there is a random element to the values created and hence the chance

of the guess with the largest correlation not being the correct key.

In order to investigate this relationship between the noise and variables, and to

verify the accuracy of the model a Monte Carlo simulation of several DPA attacks

was performed using a 16-bit key and putting it through the AES s-box. Each

plaintext was then used to generate 256 prediction values for each byte. After a fixed

number of plaintexts had been generated the power consumption values were

correlated with each column of the prediction matrix and the correlation values for

each key guess were recorded. The first byte of the key was kept constant and the rest

were changed to new random values and the process was repeated a large number of

times. One byte of the key was kept at a constant value so it was possible to

investigate the statistics of the correlations generated by each incorrect key guess

individually. There was no random noise added to the power consumption values as

the 16 bytes were independent of each other so the signal-to-noise ratio (SNR) of

each byte is given in equation (6-1) where the SNR in this case is the ratio of the

standard deviations of the data dependent part of the signal and the noise.

15

1
=SNR

(6-1)

6.2.2 Statistical Model of DPA

In order to develop a statistical model of DPA it is important to understand the

statistics of correlation. The distribution of the sample correlations around the

population correlation is called the sampling distribution. Due to the fact that the

value for the correlation between two variables is bounded between -1 and 1 the

sampling distribution of it is not normal, as when the population correlation is positive

the sample correlation can vary more in the negative direction than in the positive and

Chapter 6 The Statistics of Differential Power Analysis 125

vice versa. In order to convert it to a normally distributed variable the Fisher

transform [72] must be applied to the data as given in (6-2):

−

+
=

r

r
rFisher

1

1
ln

2

1
)(

(6-2)

This means that after the Fisher transform has been applied the correlation can

be modelled as a normally distributed random variable. This is only accurate when the

number of samples is greater than 30, but this does not matter because in most

practical examples of DPA the number of traces is much higher than 30. For the rest

of this discussion all data is assumed to be after the Fisher transform unless

specifically stated.

The standard deviation of a sampling distribution is called the standard error, for

the post-Fisher correlation it is controlled by the number of traces that were used in

the correlation and is given by (6-3):

3

1

−
=

traces
StdError

(6-3)

Correlation is a measure of how much of the variance of one variable is due to

the variance of another. This is the same as how much of the total signal is made up of

the information that we are interested in. This will be referred to as PercentSignal and

is related to the SNR as shown in equation (6-4):

2
11

1

SNR

nalPercentSig
+

=
(6-4)

This is the correlation of the correct prediction values with the power

consumption and after the Fisher transform gives the mean of the sampling

distribution for the correct key.

DPA in AES separates the key into groups of 8 bits and so there is 1 correct and

255 incorrect correlations, each taken from their own normal distribution. Section

6.2.2.1 deals with the distribution of the correlation between the power consumption

and the predictions with the correct key guess; this is referred to as the Correct

distribution. Section 6.2.2.2 describes the distributions of the correlation between the

power consumption and the predictions with the 255 incorrect key guesses, referred to

from now on as the Error distributions.

Chapter 6 The Statistics of Differential Power Analysis 126

6.2.2.1 Correlation with the Correct Key

After the Fisher Transformation has been applied the correlation between the

consumption matrix and the prediction matrix generated with the correct key forms a

normal distribution. The standard deviation of the distribution is related to the number

of traces and can be calculated from equation (6-5). The mean is the PercentSignal of

the system. Figure 6-2 shows four distributions of correlation using a different

number of traces.

3

1

−
=

traces
StdCorrect

(6-5)

 ()nalPercentSigFishertMeanCorrec = (6-6)

Figure 6-2: Distribution of correlations from the correct key guess using different numbers of

traces.

6.2.2.2 Correlation with the Incorrect Key

As there are 255 different incorrect key values and hence 255 prediction

matrices, clearly there have to be 255 different correlation distributions. Each will

have properties controlled by signal SNR of the crypto system, the number of traces

and particular details of the implementation.

Chapter 6 The Statistics of Differential Power Analysis 127

6.2.2.2.1 Mean

Each of the distributions has its own mean. The values of each mean is

controlled by two factors, the SNR of the system and constant that is determined by

the correlation between the prediction matrix for the correct key guess and the

prediction matrix for incorrect key guess relating to the distribution.

)),Pr(()(nConsumptioedErrorcorrFisheriMeanError = (6-7)

))Pr,Pr(()(NoiseedCorrectedErrorcorrFisheriMeanError += (6-8)

+

+
=

)Pr()Pr(

)Pr,Prcov(
)(

NoiseedCorrectedError

NoiseedCorrectedError
FisheriMeanError

σσ

(6-9)

++

+

=

)(),Prcov(2)Pr()Pr(

),Prcov()Pr,Prcov(

)(

22 NoiseNoiseedErroredCorrectedError

NoiseedErroredCorrectedError

FisheriMeanError

σσσ

(6-10)

By definition the noise and the prediction matrices are independent, therefore this

reduces to:

+
=

)()Pr()Pr(

)Pr,Prcov(
)(

22
NoiseedCorrectedError

edCorrectedError
FisheriMeanError

σσσ

(6-11)

+
=

)()Pr(

)Pr()Pr,Pr(
)(

22
NoiseedCorrect

edCorrectedCorrectedErrorcorr
FisheriMeanError

σσ

σ

(6-12)

+

=

)Pr(
)(1

)Pr,Pr(
)(

2

2

edCorrect
Noise

edCorrectedErrorcorr
FisheriMeanError

σ
σ

(6-13)

From equation (6-13) and (6-4) it can been seen that this is:

)*)Pr,Pr(()(nalPercentSigedCorrectedErrorcorrFisheriMeanError = (6-14)

The correlation between the Correct and Error prediction matrices can be

estimated to a reasonable degree of accuracy by randomly generating large prediction

matrices for the 256 key values and calculating the correlation between them. As this

is a relatively quick calculation (compared to simulating an entire DPA system) a

Chapter 6 The Statistics of Differential Power Analysis 128

large number of samples can be used, this will reduce the standard error of the

estimate which is given in (6-3).

Clearly the Correct prediction matrix, and therefore the MeanError, is affected

by the choice of key. This means that in the general case, where the key is not

specified, there are 256 different possible sets of arrays of MeanError. In order to

investigate this all 256 * 255 values were estimated using a large number of samples.

This is discussed further in section 6.4.

6.2.2.2.2 Standard Deviation

The standard deviation of the distribution of correlations is controlled by the

number of samples in the correlation, this is the same for both the Correct and Error

distributions.

3

1

−
=

traces
StdError

(6-15)

6.2.2.2.3 Correlation between the Correct and Error distributions

Now both the mean and standard deviation have been found it would be easy to

think that the model is complete, unfortunately the relationship is not quite that

simple. There is a correlation between the Correct and Error distributions. This

means that if a sample from the Correct distribution is above the mean it affects the

probability of a sample from each of the Error distributions being above their mean.

This also has to be modelled.

Like MeanError the correlation between Correct and Error, referred to as

CorrCorr, is controlled by the correlation between their respective prediction matrices

and the SNR of the system. Figure 6-3 shows the variation of CorrCorr with

PercentSignal when the correct key is 0 and the key guess is 1. When PercentSignal

approaches 0, when there is a large amount of noise, CorrCorr tends towards the

correlation between the Correct and Error prediction matrices. As the PercentSignal

approaches 1, when the noise drops off to 0, the CorrCorr tends towards another

constant that can be determined by simulation. The relationship between CorrCorr

and S can be modelled using the inverse tan function, as shown in (6-16):

Chapter 6 The Statistics of Differential Power Analysis 129

(i), CorP)corr (ErrPCwhere

ast))) + (C+ L. - .* (* ((Last - (C
iCorrCorr

 -

=

=

2

25254nalPercentSigtan
)(

1

(6-16)

Where Last is the value that CorrCorr tends towards when PercentSignal is

approaches 1. The modelled curve is plotted next to the actual curve in Figure 6-3.

Figure 6-3: The correlation of Correct and Error and the model curve versus PercentSignal

6.2.2.3 Summary of the Model

The Correct correlation can be modelled by the normal distribution shown in

equation (6-17) where N (µ, σ) is a normally distributed random variable with a mean

of µ and a standard deviation of σ. The Error correlations can be modelled as the

normal distributions described in (6-18), where i ∈ 0 … 254.

 ()StdCorrecttMeanCorrecNCorrect ,= (6-17)

 (

) CorrectiCorrCorriCorrCorrStdStd

tMeanCorreciCorrCorriMeanErrorNiError

)())(((

,*)()()(

22 +−

−=

(6-18)

Chapter 6 The Statistics of Differential Power Analysis 130

6.3 Predicting Success

From the model developed in section 6.2 we can generate a formula to

determine the probability of successfully determining the correct key using DPA on a

system. This is achieved by calculating the probability of the highest of the 255 Error

values being greater than a particular value, denoted by t, and the Correct value

equalling t, then integrating across all possible values of t.

∫
∞

∞−

=∩≤= dttCorrecttErrorPSuccessP))(max()(
(6-19)

)(*)|()(tCorrectPtCorrecttErrorPtCorrecttErrorP ii ==≤==∩≤ (6-20)

∏
=

=≤==≤
254

0

)|()|)(max(
i

ii tCorrecttErrorPtCorrecttErrorP
(6-21)

dttCorrectPtCorrecttErrorPSuccessP
i

i)(*)|()(
254

0

==≤= ∫∏
∞

∞− =

(6-22)

)()(, ttCorrectP StdtMeanCorrecϕ== (6-23)

The probability of an Error distribution being less than the Correct when it is at

t is the probability of the distribution that was used to model the lack of perfect

correlation between the two variables being less than t.

)(

)|(

2222))(*(

)(1
,

))(*(

)*()(t

tCorrecttErrorP

iCorrCorrStdStd

iCorrCorr

iCorrCorrStdStd

tMeanCorreciCorrCorriMeanError

i

−

−

−

−Φ

==≤

(6-24)

∫∏
∞

∞− =
−

−

−

−Φ

=

dttt

SuccessP

StdtMeanCorrec

i
iCorrCorrStdStd

iCorrCorr

iCorrCorrStdStd

tMeanCorreciCorrCorriMeanError)(*)(

)(

,

254

0))(*(

)(1
,

))(*(

)*()(
2222

ϕ

(6-25)

Where φµ,σ is the probability density function (PDF), and Φµ,σ is the cumulative

probability density function (CDF) for the normal distribution. Unfortunately this

cannot be directly evaluated as the CDF for the normal function does not have any

elementary primitives and so certainly cannot be integrated. There are techniques to

approximate it, however, so the integration in (6-25) can then be approximated using

numerical integration.

Chapter 6 The Statistics of Differential Power Analysis 131

It is important to note that the formula calculates the probability of successfully

extracting 1 byte of the key. In order to calculate the probability of successfully

retrieving the entire 16-byte AES key the resultant value would need to be raised to

the 16th power.

6.3.1 Calculating the Other Variables

While it is useful to calculate the probability of success from the number of

traces for a given signal to noise ratio, it would be more useful for an attacker to be

able to calculate the number of traces required to ensure a particular probability of

success on a system with a given SNR, and more useful to a designer to be able to

determine the amount of noise in a system that would require the attacker to take a

particular number of traces if they wanted to have a given probability of success.

Due to the formula not being able to be evaluated directly, it is not possible to

rearrange it for these purposes. It is however possible to use the original technique to

perform an iterative search for the value of the desired variable. This entails either the

SNR or the number of traces and making an initial estimate of the value of the other

one that will give the desired probability of success. The probability of success is then

determined and if the initial guess was too low it is increased, if it was too high then a

binary search can take place to efficiently determine the correct value.

6.3.2 Testing the Formula

In order to verify the efficacy of the formula an FPGA implementation of an

AES s-box was fed 50,000 random plaintexts XORed with a constant byte and the

power consumption was recorded, DPA was performed for the correct key using all

50,000 traces to get a accurate estimate of the population correlation, the standard

error of the estimate was 0.0045 and the correlation was estimated to be 0.8642. DPA

was then performed on 20 traces from the 50,000 taken at random and it was recorded

whether the correct key was retrieved, this was repeated 100,000 times. The success

rate was 76.24%. The estimated PercentSignal was used to evaluate the probability of

success when 20 traces were used, the result returned was 72%. The process was

repeated on a similar design of an AES s-box, this time with a correlation estimate of

0.4874, the predicted success rate for 20 traces was 26.54% and the actual success

rate was 29.358%. This is clear evidence that the method described above is a good

Chapter 6 The Statistics of Differential Power Analysis 132

indicator of the probability of successfully retrieving a key using DPA given the SNR

of the system and the number of traces to be used in an attack. This also implies that

the statistical model of the attack is accurate.

6.4 Relative DPA Susceptibility of Keys

The result of the correlation in DPA is affected by the values that are used to

compute it and therefore the inputs that are used when performing the encryption. In

DPA it is assumed that the plaintexts are random and as normally a large number are

used their effect will average out. Each byte of the key is considered independently

and only has one value for the entire attack. It is conceivable that the choice of that

value can influence the probability of success, this section investigates that

possibility.

The probability of successfully retrieving a key is related to the relative position

of the mean of the incorrect distributions compared to that of the correct distribution.

This is controlled by the SNR of the system and the correlation between the prediction

matrices for the Correct and Error distributions. The correlations between prediction

matrices is controlled by the structure of the s-box so this analysis is only valid for

algorithms that use the AES s-box. As stated in section 6.2 there is a set of 255

MeanError values for each possible key value. As they are different it is possible that

different keys have different levels of susceptibility to DPA. To investigate this all

65,280 different MeanError values were estimated for a particular prediction function

using a large number of samples. Each row has similar values, a KS test is not able to

reject the null hypothesis that the values are drawn from different distributions.

These values are just estimates, the possibility that the true values for different

keys are the same was tested by calculating the lowest value for all different keys with

two different numbers of samples and the Fisher transformation was applied to the

results. If the variation in the values was due to an estimation error then the values

would be normally distributed around the true value with a standard deviation related

to the number of samples used in the estimate of the correlation. The standard

deviation for both sets of values was 0.0035; the standard deviations predicted by the

number of samples for the two estimates were 0.001 and 0.00057. Additionally the

distribution of values was not normal, the Lilliefors test, a version of the KS test

optimised for normality testing, showed this. This refutes the possibility that the

Chapter 6 The Statistics of Differential Power Analysis 133

variance in the values of the correlation between the Correct and Error prediction

using different keys is due to the inaccuracy of the estimates.

This leaves the problem of how to select which of the 256 sets of MeanError to

use. The most accurate choice would be to calculate the probability of success for all

256 key values and take the average, this would be rather computationally intensive as

it would require calculating 65,280 mean values in addition to performing 256

integrations. How worthwhile this is, is determined by the overall effect the difference

in key value has on the calculated probability.

In order to investigate the variability in probability of success due to the

difference in key, the probabilities for all keys were calculated for a particular system,

these are shown in Figure 6-4. While there is a difference it is very small, the standard

deviation of the probabilities is 0.000091. The variation is much lower than other

errors in the system and so it makes little difference which of the 256 sets of values is

used.

Figure 6-4: The probability of successfully retrieving a key using DPA for the different

possible values of the key.

Chapter 6 The Statistics of Differential Power Analysis 134

6.5 Protecting Intellectual Property Using a DPA Detectable

Watermark

6.5.1 Introduction

Intellectual Property (IP) is a valuable commodity and can form the main source

of income for a company. It is, therefore, important to protect it. There have been

several proposed methods for achieving this. In [100] Alkabani and Koushanfar

propose adding a series of initial states to a state machine that require a unique and

unpredictable set of inputs that only the designer knows to bring the device into its

functional state. Koushanfar, Hong and Potkonjak developed techniques for adding a

signature to the structural properties of designs [101].

If the design of an integrated circuit contains a small section that produces a

known bit pattern in a set of registers, like a pseudo random bit generator (PRBG),

then it would be possible to use DPA to detect this. This would act like a watermark

and would be useful for determining if a piece of hardware contains the relevant piece

of intellectual property (IP).

6.5.2 Power Consumption Watermarks

6.5.2.1 Adding a Watermark

In order to detect a watermark in the power consumption of a device a

characteristic fingerprint needs to be added to it. This can be achieved quite simply by

the addition of a pseudo random bit generator (PRBG). The pseudo random, but

deterministic, values generated in the registers of the PRBG will add a specific pattern

to the power consumption.

6.5.2.2 Measuring Power Consumption

In order to determine whether a watermark is present in the power consumption

of a design the power consumption must be recorded. Assuming the PRBG generates

a new multi-bit value each clock cycle then the power consumption needs to be

sampled each clock cycle. The correlation between the power values and the

Hamming distance in the registers of the PRBG in successive values is then

calculated.

Chapter 6 The Statistics of Differential Power Analysis 135

6.5.3 Detecting the Watermark

If the watermark is present in the power consumption then the population

correlation will have the value of the ratio between the standard deviation of the

power consumption of the watermarking hardware and the standard deviation of the

total power consumption. If the IP is included within a larger design it may not be

possible for the rights holder to know the value of this. They could measure the

standard deviation of the total power consumption but the standard deviation of the

power consumption of the watermarking hardware would be dependent on the

technology that it was implemented on, so would not necessarily be the same as their

reference version.

What is known is that if the watermarking hardware is there then the population

correlation will be positive and if it isn’t then it will be 0. After the sample correlation

has been calculated it can be determined whether it is reasonable to reject the null

hypothesis that the correlation was drawn from a distribution with a mean that is not

greater than zero and hence there is no watermarking hardware present. In order to do

this a p-value is calculated using a z-table. The p-value is the probability of observing

by chance a result that is at least as extreme as the one being tested. A z-table contains

the probabilities of a standard normal distribution, one with a mean of 0 and standard

deviation of 1, being greater than a set of values.

3

1
1*

3
1

0

/
0 −=

−

−
=

−
= NF

N

F

n

x
z

σ

µ
(6-26)

It is determined by looking up on a z-table the associated probability for the

value of z which can be calculated with (6-26) where x is the mean sample correlation,

in this case the Fisher transform of the sample correlation, µ0 is the value of the mean

in the null hypothesis, in this case 0, σ is the standard deviation of the sampling

distribution, given by (6-2) and n is the number of samples in the mean of the sample

correlation, as only one correlation is being calculated this is 1.

6.5.3.1 Summary of method

In order to tell whether the power consumption data supports the presence of a

watermark the following steps must be taken:

Chapter 6 The Statistics of Differential Power Analysis 136

1) The power consumption (P) of the device is measured from its reset state and

the Hamming distance (H) of the registers in the PRBG for the same number of

samples (T) is recorded.

2) The correlation between the two is calculated.

ρ = Corr (P, H) (6-27)

3) The Fisher transform is applied to the correlation.

F = Fisher (ρ) (6-28)

4) The confidence level must be decided. This is the probability incorrectly

detecting a watermark when there is none. A typical value is 0.05.

C = 0.05 (6-29)

5) The p-value is calculated.

P = Z (F (T-3)1/2) (6-30)

6) If the p-value is lower than the confidence level then the null hypothesis can

be rejected and the watermark has been detected.

6.5.3.2 Experimental Results

Watermark Yes No Yes No Yes No

Samples 5000 5000 1000 1000 1000 1000

σ Total 1 1 1 1 1 1

σ Watermark 0.05 - 0.1 - 0.05 -

Null Hypotheses

rejected (%)

97 4.8 93.9 5.0 46.6 4.8

Table 6-1: Summary of the simulation results.

A series of simulations was performed in order to verify the method. The power

consumption of the watermarking hardware was modelled by generating a series of

random numbers between 0 and 255 and calculating the Hamming distance between

them, giving values between 0 and 8. Noise was included by adding a series of

normally distributed random numbers to the model. The noise represents both the

power consumption from the rest of the circuit and any non-linearity in the power

consumption vs. Hamming distance. The correlation was performed between the

Hamming distance values and the power consumption model. This was repeated

Chapter 6 The Statistics of Differential Power Analysis 137

10,000 times for different numbers of samples and with different amounts of noise.

Simulations of hardware power consumption with no watermark were also performed.

In these, the Hamming distance for a watermark was calculated in the same way and

they were correlated with normally distributed random numbers that had the same

standard deviation as the total power consumption for the watermarked simulations.

The results are summarised in Table 6-1.

6.5.3.3 Type I and II Errors

There are two types of errors when trying to detect a watermark: detecting one

that is not there and not detecting one that is. The probability of incorrectly rejecting

the null hypothesis and falsely claiming there is a watermark is the significance level

chosen for the p-value test. This is why the number of times a watermark was detected

in the simulations when there was none was always approximately 5% irrespective of

the number of samples taken and the population correlation.

Figure 6-5 : A graph illustrating the effect of increasing the number of samples of the ease of

detecting a watermark

The probability of not detecting a watermark that is there is controlled by two

factors: the population correlation and the number of samples. The smaller the

population correlation the greater the number of samples that must be taken to ensure

the same probability of detecting the watermark. This is because increasing the

Chapter 6 The Statistics of Differential Power Analysis 138

number of samples reduces the standard deviation of the sampling distributions

making it easier to differentiate between the two. This is illustrated in Figure 6-5, the

curves in both plots are normal distributions with the same mean but different

standard deviations, the shaded area represents the amount of the sampling

distribution that the correlation can come from in order to reject the null hypothesis

with a confidence of 0.95. It is clearly more likely to successfully detect the

watermark from the lower graph.

6.5.4 Calculating the Number of Traces if the Population Correlation is Known

In the previous section it was assumed that the population correlation could not

be reasonably estimated before trying to detect the watermark. While this would most

likely be the case if the IP in question is an entire chip design then the population

correlation could be estimated.

If this is the case then it is possible to use this information to calculate the

number of power consumption samples that need to be recorded in order to give a

particular probability of successfully detecting the watermark. The following method

can be used to calculate the number of samples required to give a 90% chance that the

null hypothesis will be rejected at the 0.05 level. First the z-table is consulted to find

the value that the standard normal distribution has a 95% chance of being lower than

and 90% chance of being higher than, these will be referred to as z<95 and z>90.

To reject the null hypothesis at 0.05 the correlation must be higher than

equation (6-31).

3
95

−

<

N

z
(6-31)

Also, there is a 90% chance that the correlation will be greater than equation (6-32).

PF
N

z
+

−

>

3
90

(6-32)

In order for there to be a 90% chance of rejecting the null hypothesis at the 0.05

level these two values must be the same, this is demonstrated in Figure 6-6. The dark

grey shaded area represents 90% of the area under the right hand curve which is the

sampling distribution of the correlation. The light grey shading represents 95% of the

area under the left hand curve which is what the sampling distribution of the

correlation would be if the null hypothesis was correct.

Chapter 6 The Statistics of Differential Power Analysis 139

Figure 6-6: A graph illustrating the requirements for rejecting the null hypothesis at the 0.05

level 90% of the time when the population correlation is known.

The number of traces required to achieve this is given by equation (6-35).

33
9590

−
=+

−

<>

N

z
F

N

z
P

(6-33)

3
9095

−

−
= ><

N

zz
FP

(6-34)

3
2

9095 +

 −
= ><

PF

zz
N (6-35)

In order to verify this method a simulation was performed, 100,000 correlations

were performed with 10,000 samples where the population correlation was 1/34. A

population correlation of 1/34 would require approximately 10,000 samples to reject

the null hypothesis at the 0.05 level 90% of the time and with 10,000 traces the

sample correlation would have to be 0.0165 or greater as shown by equations (6-36)

and (6-37) respectively.

000,10897,93
)34

1(

)2816.1(6449.1
2

≈=+

−−

=
Fisher

N
(6-36)

0165.0
3000,10

6449.1
=

−
(6-37)

Out of the 100,000 correlations generated in the simulation 90,231 were higher than

this value so would have rejected the null hypothesis at the 0.05 level, this is

approximately 90%.

6.5.5 How much area should be given to the watermarking hardware?

The probability of successfully detecting the watermark is related to the

population correlation, which is determined by the power consumption of the

Chapter 6 The Statistics of Differential Power Analysis 140

watermarking hardware. The greater the amount of area that is dedicated to

watermarking hardware the easier it will be to detect but the larger the overhead

involved. Assuming that power consumption is directly proportional to area the

population correlation of the watermark can be estimated using (6-38) where W is the

percent increase in area due to the watermarking hardware.

21 W

W
P

+
=ρ

(6-38)

Using this and equation (6-36) it is possible to calculate the number of samples

that would be required to give a chosen probability of successfully detecting a

watermark with a given significance level. Table 6-2 gives the number of samples

required to successfully detect a watermark 90% of the time with a significance level

of 0.05 after different amounts of area have been dedicated to the watermarking

hardware.

When performing DPA to retrieve cryptographic keys the samples are relatively

difficult to collect, the attacker has no control over when they are generated or how

many are generated before a new key is used. When using DPA to detect watermarks

this is not true and it is easy to collect however many are deemed necessary. It is not

unlikely that 10 million samples could be quite easily taken, this would give a good

chance of detecting a watermark that added less than 0.1% to the area of a design.

Increase in area Samples Increase in area Samples

10% 862 0.5% 342,560

5% 3,431 0.2% 2,141,000

2% 21,415 0.1% 8,563,900

1% 85,644

Table 6-2: The number of samples required to detect a watermark using a given percentage of

the hardware with a 90% accuracy.

6.5.6 Conclusion

It is possible for designers to add hardware to their designs that will create a

known pattern of register transitions as a way of using DPA to detect whether their IP

has been used without their permission. As DPA is a statistical technique it does not

give a definite answer, but if the correlation between the watermarking register

Chapter 6 The Statistics of Differential Power Analysis 141

transitions and the power consumption is calculated it is easy to calculate the

probability that the measured result would have been observed assuming the

watermark was not there. If this is sufficiently unlikely it gives reasonable confidence

in the falseness of the null hypothesis and by extension the hypothesis that the

watermarking is present. The overhead incurred by this protection can be chosen by

the designer and a method of calculating the amount of effort they would need to go

to in order to detect it based on their choice is also presented. It has been shown that

the overhead can be very low (< 0.1%) and still produce a signal that can be most

likely detected with a realistic amount of data collecting.

It is important to note that the p-value is not the probability that the null

hypothesis is true, but the probability of getting the observed result given that the null

hypothesis is true. Bayes’ theorem could be used to convert between these two

probabilities but it would involve knowing the probability that the watermark is

present (without having performed any tests to see if it is) and the probability of

getting the observed correlation (without any knowledge or assumptions about the

sampling distribution that it was drawn from). It is not practical to estimate these

values.

6.6 Conclusion

As DPA is a statistical attack it is important to understand the statistical

properties. The analysis of these properties has led to a technique for calculating the

probability of key retrieval with a given number of traces for a particular system with

a known SNR. This technique can be easily adapted to calculate one of the other

variables, each being arguably more useful to either an attacker or a designer of a

crypto-system. A designer may wish to calculate the amount of noise that must be

present in a system in order to reduce the probability of a successful attack to a given

level assuming the attacker has access to a known and finite number of traces. An

attacker, having previously analysed the power consumption for the SNR of the data

dependence may wish to know how many traces he is required to take to give him a

good chance at retrieving the entire key. Additionally it has been determined that

although there is a slight variation in the susceptibility of different key values to DPA

the overall effect is negligible, so there are no particular key values that it would be

best to avoid if concerned about DPA susceptibility. Improving the understanding of

Chapter 6 The Statistics of Differential Power Analysis 142

the mathematics of the attack was one of the main aims of the thesis. This has been

achieved.

The ability of DPA to discern a characteristic pattern of processed data in the

power consumption of a device can be put to more benign uses than cracking

encryption. If a section is added to a design to generate a known pattern of register

transitions then it would be possible to use this as a watermark to detect theft of

intellectual property.

Chapter 7 Novel Algorithmic-

Based Power Analysis

Countermeasures

7.1 Introduction

All the countermeasures to power analysis attacks described previously have

been added to implementations of a cryptographic algorithm. As summarised in

section 4.3.8.5, they come at a large cost in terms of either the speed of the

implementation or its requirements in memory or area, and when their effectiveness is

evaluated they, at best, simply frustrate the attacker, forcing him to collect more

power consumption data, or perform High-Order DPA, rather than stopping the attack

completely. It is unlikely that any countermeasure that involves attempting to

eliminate the leakage of information through the power consumption will ever be

completely effective. In can be seen from the relationship between the SNR of the

data dependence in the power consumption and the number of power traces required

to give a particular probability of successfully that was derived in Chapter 6 that any

correlation, no matter how small, can be exploited by an attacker to discern the key if

they have enough traces. Any attempts to remove the correlation will be imperfect and

will leave the device vulnerable.

If DPA is ever going to be completely eliminated as a potential avenue of attack

a new method will be required. Rather than adding ad-hoc and expensive

countermeasures a better alternative would be if algorithms were secured against this

type of attack when they were designed. This chapter describes the investigation into

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 144

some possible algorithmic countermeasures. It is important to note that in this thesis

only the resistance to power analysis attacks is examined. There has been no

investigation into the effects these changes have on the general security of the

algorithm, although all the modifications involve measures that ought to strengthen

algorithms, either adding additional layers of existing cryptographic primitives or

increasing the confusion and diffusion properties of the key schedule.

Section 7.2 describes the evaluation of a set of different ideas on how to modify

AES to protect it from DPA. Only one of the ideas, a perpetually expanding key

schedule (section 7.2.3) is effective. In section 7.3 TDES is modified to be DPA

resistant, however the algorithm isn’t well suited to the countermeasure and it comes

at a significant cost in terms of area. Other modern cryptographic algorithms were

investigated to determine their suitability to the countermeasure, this is described in

section 7.4 and one of them, ARIA, is shown to perform well with the modification in

section 7.5. This leads to a second attempt at protecting TDES in section 7.6 with

much better results.

7.2 AES Algorithm Alterations

This section describes the investigation into the resistance to power analysis

attacks imparted to a modified version of the AES algorithm by several techniques,

and their effect on the resources required to implement it. The countermeasures were

added to the same AES design that was used in section 5.3.1.1 and 5.3.2; a 128-bit

encryptor with an online key schedule that calculates one round per clock cycle.

When the design was synthesised for a Virtex-E 1000 it used 2,446 slices and 516 flip

flops, and it had a clock speed of 33.4 MHz, giving a throughput of 427 MB/s. The

first modification is based on the strengthened key schedule described in section

4.2.2.2. The next uses an additional Mix Columns operation before the first round to

decrease the predictability of the target registers. The final one uses a constantly

changing key to remove the ability of the attacker to exploit data across a large

number of encryptions.

7.2.1 Strengthened Key Schedule

The AES key schedule has a number of weaknesses as described in section

4.2.2.1. A version of AES was implemented with the strengthened key schedule

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 145

described in 4.2.2.2 in order to test whether the new key schedule adds any resistance

to power analysis attacks. As the first sub-key is no longer the master key and the key

schedule is a one way function in order to fully crack this algorithm all sub-keys must

be extracted. After the first sub-key is extracted it is possible to predict values in the

first round up to the Add Key operation. From here the attack can be performed again

to extract the next sub-key, this will increase the amount of computation an attacker

has to do.

7.2.1.1 Effects on the Efficiency of the Algorithm

There were significant changes to the design of the AES core. The key schedule

used the same hardware as the encryption so they had to be calculated consecutively

rather than concurrently. This meant that a more complicated controller was needed,

so the number of registers increased to 521 and the number of clock cycles increased

to 54. The clock speed was 31.2 MHz, so the throughput fell by 83% to 74 MB/s.

Although the design had a more complicated controller the datapath was reused by the

key schedule, this reduced the total size of the design to 1,699 slices, 69% of the size

of the original AES implementation, fulfilling the third property in May et al’s list of

requirements for a good key schedule [30].

The throughput of the new algorithm is significantly reduced because each

round requires a round key which takes four clock cycles to generate. If the design

was changed from an online key schedule to an offline one this would make

significant savings in time, the round keys would still take 40 clock cycles to calculate

but it would only have to happen once so the average number of clock cycles required

to encrypt one plaintext would return to 10. Clearly the offline key schedule would

require more area than an online one, but as the datapath is reused in this scheme it

would still require less area than a standard AES offline key schedule.

7.2.1.2 Attack on a Simulated System

In order to determine if the new key schedule afforded any protection from DPA

an attack was performed using a Modelsim simulation as described in 5.3.1.1. The

attack was successful. A graph of the correlation for 256 possible key values of the

first byte of the first round key is shown in Figure 7-1. The key byte had the value 35,

or 0x23, it can be seen as the largest peak in Figure 7-1. Although the number of

registers in the design increased compared to normal AES none of the new ones store

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 146

new data during the target clock cycle so there are no additional transitions and hence

the signal to noise ratio remains the same. The first sub-key was retrieved using 761

traces.

Figure 7-1: Graph showing the correlation after 1000 traces of the 256 key guesses for a DPA

attack on a Modelsim simulation of an FPGA running AES with a strengthened key schedule

targeting the first byte of the first round key before the s-box.

Figure 7-2: Graph showing the correlation after 1000 traces of the 256 key guesses for a DPA

attack on a Modelsim simulation of an FPGA running AES with a strengthened key schedule

targeting the first byte of the first round key after the s-box.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 147

When the target was changed to after the Sub Bytes operation the number of

traces required to crack it fell to 291. A graph of the correlation for 256 possible key

values of the first byte of the first round key when the DPA attack targets the data

after the s-box is shown in Figure 7-2, again the correct value of the key is clearly

shown as the largest peak.

Figure 7-3: Graph showing the correlation after 1000 traces of the 256 key guesses for a DPA

attack on a Modelsim simulation of an FPGA running AES with a strengthened key schedule

targeting the first byte of the second round key before the s-box.

As mentioned in section 4.2.2.2 the round keys are created using a one way

function and the master key is no longer used in the first round. This means that all

round keys must be cracked to allow decryption of the ciphertext. Once the first round

key has been retrieved this can be fed into the algorithm and the 128-bit state just after

the first Mix Columns operation can be calculated, this is the data that interacts

directly with the key data in the Add Key operation in the first round. The DPA

algorithm can be repeated using this value instead of the plaintext to retrieve the

second round key. To do this on the improved AES algorithm required 999 traces if

the target was before the s-box and 332 if it was after. Graphs of the correlations for

the 256 key values for these two attacks, before and after the s-box, on the first byte

of the second round key are shown in Figure 7-3 and Figure 7-4 respectively. The

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 148

value of the first byte of the second round key was 0x81, or 129 in decimal notation,

and is revealed as the largest peak in both graphs.

Figure 7-4: Graph showing the correlation after 1000 traces of the 256 key guesses for a DPA

attack on a Modelsim simulation of an FPGA running AES with a strengthened key schedule

targeting the first byte of the second round key after the s-box.

7.2.1.3 Conclusion

While the modifications to the key schedule that were proposed in [30] arguably

increase the security of the algorithm against some attacks, DPA is not one of them.

While it is more irritating for the attacker as they have to run the DPA analysis once

for each round key, the attack is no harder and they can still use the traces from the

same encryptions used to crack the first key for the second and hence no additional

traces are required compared to standard AES.

7.2.2 Addition of Initial Diffusion

As explained in section 4.3.2.3, attacks like DPA and correlation attacks cannot

target all positions in an algorithm but can only yield useful information when the

target registers are full and predictable. The efficiency of these attacks is related to the

fact that one byte of the target is related to one byte of the plaintext and one byte of

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 149

the key. If an extra Mix Columns operation is added to the algorithm after the initial

Add Key but before the first set of registers then all bits of the key and plaintext in 1

column have an effect on the value and therefore the Hamming weight of the register.

This means that instead of checking the correlation of the 256 columns of the

prediction matrix corresponding to all possible values in one byte of the key all 232

must be checked. It would be possible to increase this to 2128 by adding an analogous

mix rows operation.

It is important to note that, unlike later on in the algorithm, the Mix Columns

comes after the Add Key; this is because the unpredictable element, the key, has to be

mixed with the known plaintext. A block diagram of the modified algorithm is shown

in Figure 7-5. It is important to note that the Mix Columns operation must be between

the Add Key and the first register. If there are any registers between the two then this

can be the target for the attack and the countermeasure is rendered useless. For this

reason this is only suitable for an FPGA or ASIC implementation rather than a

microprocessor as each byte of the Add Key would be calculated and stored in

registers on different clock cycles.

Figure 7-5: Diagram showing the structure of the algorithm with extra initial diffusion.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 150

7.2.2.1 Effects on the Efficiency of the Algorithm

There is very little difference between an implementation of an encryptor of this

algorithm and one of normal AES. There are still 516 registers, a small combinational

section was added, but due to some slight differences in implementation the number

of slices used in the design fell to 2,395 when synthesised for a Xilinx Virtex-E. The

clock speed fell to 27 MHz, reducing the throughput by 20% to 346 MB/s.

7.2.2.2 Attack on a Simulated System

Figure 7-6: Graph of the correlation for each key guess when attacking the first byte of the

sub-key of AES with additional diffusion using the normal DPA algorithm.

There is the same number of registers in this design and the design of regular

AES that was attacked in section 5.3.1.1. This means that there is the same amount of

noise in the system and hence if DPA was successful it should identify the correct key

with a correlation of approximately 0.2. The first byte of the key was targeted, it had

the value 43 and 4,096 traces were used. Using normal DPA the key could not be

retrieved. The correlation from each key guess is shown in Figure 7-6. The largest

peak is at 30, with a value of 0.03484, much lower than what would be expected from

a series of correct prediction about the transitions in the target register. The correct

value of 43 has a correlation of 0.004951. It is not feasible that an attacker could

determine the correct key from this data. Another attempt at DPA was made, this time

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 151

it was assumed that the attacker knew the other values in the column of sub-key bytes.

The correlation from each key guess is shown in Figure 7-7 correct value of 43 had

the highest peak at 0.2398. Using this approach required 674 traces to successfully

retrieve all 16 bytes of the key.

Figure 7-7: Graph of the correlation for each key guess when attacking the first byte of the

sub-key of AES with additional diffusion using a DPA algorithm that assumes the attacker

known the other sub-key bytes in the column.

7.2.2.3 Conclusion

This countermeasure increases the key space that must be searched in order to

determine the correct key as each byte that is stored in the registers is dependent on an

entire column of the key. As stated previously this technique relies on the fact that the

Mix Columns operation is performed before any values are stored in registers, this

means that the technique is unsuitable for use with microcontrollers as they would not

be able to perform it atomically. Even if algorithms are protected with this system it

would be possible for a naive designer to put registers in the wrong place in the design

and open up DPA vulnerability. Also, if the attacker knows the values of some of the

bytes in the key then DPA can be used to discover the values of other bytes.

It is possible that a technique similar to that used in [93], where the target for

the DPA is not the contents of a register but the output of logic gates, would still be

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 152

able to retrieve the key from this algorithm. This would require more detailed

knowledge of the design and, as the logic gates consume less power than registers,

more traces, so it would make DPA harder, but not impossible.

7.2.3 Perpetually Expanding Key Schedule

The reason DPA is so effective is that it is able to combine the information from

several encryptions, combining the small variations in power consumption into usable

information. This is only possible because the attacker is able to make predictions of

the values inside registers based on a hypothesis of the value of a byte of the key. In

AES the key is expanded once and this data is used for every block, this means the

key hypothesis is valid across all of the encryptions using the same key.

The proposed modification would continue to expand the key so the same round

keys are not reused. This undermines the attacker’s ability to make predictions about

the values inside registers. Due to the nature of the AES key schedule, after each

round of key expansion the value of each byte becomes dependent on the value of an

additional byte in the original key. This means that after encrypting two plaintexts

with the modified algorithm the value of each byte in the round key is dependent on

all bits in the original key. This means that to make any accurate predictions of the

value of any hypothesis about the value of one byte assumptions about all bytes would

need to be made. The attack would therefore offer no advantage over brute force.

7.2.3.1 Effects on the Efficiency of the Algorithm

Other than potentially providing resistance to DPA this countermeasure is that

there can no longer be random access of the encrypted data as the key for each block

is different and has to be calculated in sequence. This is not necessarily that much of a

disadvantage as ECB is the only mode of operation for block ciphers that allows this

and using this method can lead to some insecurities, like replay attacks.

Ultimately the effect of this modification on the efficiency of the

implementation depends on what features the implementation requires. For an

implementation that is only an encryptor it is not practical to have an offline key

schedule, as the round keys will not be the same for the next encryption so have to be

re-calculated anyway. As the round keys are used in reverse for decryption any

implementation must store them when decrypting, for normal AES an offline key

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 153

schedule would be the obvious choice. With the new approach the implementation

would have the disadvantages both the online and offline styles, the key would have

to be calculated each time and additional memory would still be required.

Implementation Clock

(MHz)

Cycles /

Result

Throughput

(Mb/s)

Slices DFFs

128-bit Enc 29.1 12 310 2,576 651

128-bit Enc/Dec off. 28.1 21 171 4,575 2,074

128-bit Enc/Dec Unroll. 6.3 11 73 6,395 780

128-bit Enc/Dec Piped 17.5 11 - 13 203-172 6,394 1,164

128-bit Enc/Dec 2*Mem. 26.4 11 307 5,616 3,209

Table 7-1: A summary of the performance of different implementation s of modified AES

with a perpetually expanding key schedule.

In order to further investigate the performance impact of the modification 4

different versions of the algorithm were made and synthesised for a Xilinx Virtex-E

with a speed grade of -6. The performance of these designs is summarised in Table

7-1. A standard 128-bit encryptor was made, this was very similar to the

implementation of the unmodified algorithm.

Next an implementation that could also decrypt was made. As decryption

requires the keys in reverse order the keys have to be calculated first and stored, this

doubles the number of clock cycles required for processing a block. In order to try and

make the implementation more efficient the key schedule was unrolled, this means

that the entire expanded key is calculated combinationally, it does increase the area

requirements as there are four s-boxes required for the generation of each round key,

also the critical path becomes significantly longer, reducing the maximum clock

speed. In order to increase the clock speed of the unrolled implementation registers

were added in the key schedule, this means the key expansion is performed across

several clock cycles, increasing the number of cycles per result but the critical path

falls. With three blocks of registers in the unrolled key schedule the clock cycle

increased to 17.5 MHz and the throughput increased to 172 Mbits/s for decryption,

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 154

this is significantly higher than the unrolled version but there is only a marginal

increase in throughput compared to the offline version.

An alternative way of increasing the throughput was then investigated that

involved doubling the amount of memory the key schedule has and while reading the

round keys for the processing of one block it calculates and stores the keys for the

next. Using this technique the throughput was returned to nearly that of the encryptor,

there is a significant increase in the amount of area used, over 1,000 more slices

compared to the simple decryptor, and clearly it involves nearly twice the amount of

flip flops for storing the round keys.

7.2.3.2 Attack on a Simulated System

Figure 7-8: Graph of the correlation for each key guess when attacking the first byte of the

sub-key of AES with a perpetually expanding key schedule before the s-box using the normal

DPA algorithm with 4096 traces.

A DPA was performed on a simulation of a device running the modified

algorithm. The initial value for the first byte of the first sub-key was 43, 0x2B. A

graph of the correlation of the key guesses after 4,096 traces when the target register

is before the s-box is shown in Figure 7-8, the key guess with the largest peak was

212 giving a correlation of 0.02274. This is not the correct key value and the

correlation value is much lower than what would be expected for a successful attack

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 155

given the signal-to-noise ratio of the system. The correlation after 4,096 traces when

the target register is after the s-box is shown in Figure 7-9, the key guess with the

largest peak was 111 giving a correlation of 0.04413. This is also not the correct key

value and the correlation value is again much lower than what would be expected for

a successful attack, the highest peak does not really distinguish itself from the rest of

the results.

Figure 7-9: Graph of the correlation for each key guess when attacking the first byte of the

sub-key of AES with a perpetually expanding key schedule after the s-box using the normal

DPA algorithm with 4096 traces.

7.2.3.3 Attack on a Physical System

After the algorithm was attacked in simulation the design was implemented on a

Virtex-E 1000 FPGA and the power consumption was measured while the device was

performing encryptions using the setup described in section 5.3.2. After 45,000 traces

none of the correct key values could be retrieved from the system. The initial value

for the first byte of the key was 0x2B, or 43 in decimal notation, a graph of the

correlation for each key guess is shown in Figure 7-10. The value with the highest

correlation is 137 with a correlation of 0.01029; the correct value of 43 is significantly

lower at -0.000841.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 156

Figure 7-10: Graph of the correlation for each key guess when attacking the first byte of the

sub-key of AES with a perpetually expanding key schedule after the s-box using the normal

DPA algorithm with 45,000 traces.

7.2.3.4 Conclusion

Experimental results suggest that this algorithm is resistant to DPA. This is

because the DPA algorithm does not really apply to the modified algorithm as it is not

possible to make any meaningful predictions about the contents of registers as the

assumption that the sub-key byte that is being targeted is constant is no longer valid.

As there are no hardware countermeasures implemented, if a new prediction formula

could be derived that got around the changing sub-keys this design would be just as

susceptible to DPA as any other.

Due to the way the AES key schedule works after the generation of each new

sub-key the value of each byte of the new key is determined by the value of an

additional byte of the original key. This means that, for a 128-bit key, after 16 round,

less than two encryption blocks, each byte of the sub-key is dependent on every byte

in the original key. Making predictions about values inside registers now involves

assumptions about the entire key and so this method would offer no advantage over

brute force.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 157

7.2.4 Summary of Results

Algorithm Pre S-Box Post S-Box

AES 742 345

Strengthened K.S. 761 291

Strengthened K.S. 2nd Byte 999 332

Initial Diffusion 4,096+ 4,096+

Initial Diff., (some knowledge of key) 674 -

Perpetually Expanding K.S. 4,096+ 4,096+

Table 7-2: Summary of results for DPA attacks on Modelsim simulations of AES.

The results of the attacks on the Modelsim simulations for various versions of

AES are summarised in Table 7-2. Strengthening the key schedule using the

technique proposed by May et al [30] does not add significantly more security in

terms of the number of traces that are required for complete key retrieval, although as

the other round keys cannot be derived from the first all must be extracted using DPA

increasing the overall computation time by a factor of 16.

Adding another level of diffusion after adding the first key does offer some

frustration to an attacker. Attempting unmodified DPA on a system running this

algorithm did not reveal the key. With knowledge of three bytes of the key in a

column the attacker could use minimally modified DPA to retrieve the 4th with

approximately the same level of effort as regular DPA. There are some other practical

issues when attempting to implement such a system, there must be no registers storing

the intermediate data after the initial Add Key, as this would be a potential target for

the attacker that completely bypasses the countermeasure. This makes it unsuitable for

software implementations. Additionally, with sensitive enough measurements, it may

be possible to target logic gates within the additional Mix Columns operation again

bypassing the effects of the countermeasure completely

The results of the tests on the perpetually expanding key schedule indicate that

it is effective at preventing an attacker from retrieving the key.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 158

7.3 TDES

TDES became the de facto replacement to DES after it was recognised that the

security that DES provided was no longer sufficient. It is slowly being replaced by

AES as security systems are upgraded, one area where it remains in widespread use it

in the electronic payments industry, for example EMV [102], more commonly known

as Chip and Pin. Section 7.3.1.1 reports the results from a simulated DPA attack on

TDES. Section 7.3.2 discusses the application of the algorithm modification described

in section 7.2.3 to TDES, and the effect on the size and throughput of the

implementation.

7.3.1.1 Attack on TDES

In order to verify the efficacy of the countermeasure compared to normal TDES

DPA was performed on an unprotected version of the algorithm. First a VHDL

implementation of TDES was downloaded from opencores.org [103], this was then

synthesised for a Xilinx Virtex-E 1000 and simulated in Modelsim and the register

transitions were recorded using the same method as described in section 5.3.1.1.

Figure 7-11: The correlation for each key guess in the first key section in the first DES block

of TDES with 1,000 traces.

The entire key could be retrieved with 1,640 traces. This is more than is

required for the AES implementations. The sections of the key that are individually

targeted are only 6 bits long and in each DES block there are 48-bit keys, giving a

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 159

total of 144 key bits for TDES all influencing the number of register bits that are

changing in the target cock cycle. This means that there is a lower signal-to-noise

ratio for the TDES simulation than in AES. A graph of the correlation between the

prediction and consumption matrices for the first key section for a DPA with 1,000

traces is shown in Figure 7-11. The actual value of the first key section was 0x22, or

34, and the value retrieved from the DPA was also 34 meaning the correct key had

been retrieved. Although 1,000 traces was not enough to extract all eight keys in the

experiment it was enough to get six and Figure 7-11 shows a clear peak compared to

the noise.

7.3.2 Modified TDES

The DES key schedule forms the various round keys by bit shifting the master

key and selecting specific bits from it. This can only give a limited number of

possibilities for the key so the technique of continuing the key expansion cannot be

directly applied to TDES. For this reason the key schedule in each DES block was

replaced by the AES key schedule with a couple of modifications. Firstly, the AES

key schedule has four s-boxes that substitute the values inside a 32-bit vector, these

are replaced by the expansion function, which converts the 32-bit vector to a 48-bit

one, and the eight DES s-boxes, each having a 6-bit input and a 4-bit output returning

the data to 32 bits. Obviously, it was allowed to continue expanding for each

successive block as described in section 7.2.3.

In order to ensure backwards compatibility with DES, TDES is often used in

EDE (encryption-decryption-encryption) mode, as supplying the same key to all

blocks gives the same result as supplying the same key to a single DES block. Due to

its popularity this was the version that was implemented. This meant that the ability to

perform decryption was required by at least one of the DES blocks, this requires

additional resources as unlike the original DES key schedule, the AES one can only

generate the round keys forwards, so when they are needed in reverse order for

decryption then need to be stored. In the standard algorithms the round keys do not

change so they are calculated once at the start and stored. This is only a small delay of

a few clock cycles for each key. With the constantly expanding approach this time

penalty is applied to every block so it becomes more significant. In order to overcome

this enough storage is added for two sets of round keys and while the first set is being

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 160

used the second set, for the next block, it being calculated. This does however require

more space.

The AES key schedule works on blocks of 128 bits, the TDES key is not that

long the system must be modified to take this into account. There are several solutions

to this, one would be padding the keys, or repeating them or increasing the size of the

key space to 384 bits. The solution that was chosen was increasing the size of the 3

DES keys to 64 bits and combining these in different ways to form the 128-bit keys as

shown in Table 7-3. These changes make no difference to the internal working of the

algorithm, the only effect is that it is supplied with a different set of round keys.

TDES Key Number Key Formation

1 DES Key 1 + DES Key 3

2 DES Key 2 + DES Key 1

3 DES Key 3 + DES Key 2

Table 7-3 : Arrangemet of keys for the Modified TDES.

7.3.3 Effect on Efficiency

The modified TDES design was synthesised for a Xilinx Virtex-E 1000, as was

the original TDES. The size requirements and the clock speed for the two designs are

summarised in Table 7-4. There is a significantly greater penalty for the alterations

than in AES, the number of slices required increases by a factor of nearly 6. The DES

key schedule is simple to implement, it is just a series of bit shifts and permutations,

the AES key schedule is significantly more complicated, involving substitutions and

XOR operations, and has the additional disadvantage of requiring the storage of round

keys for decryption. Also this penalty applies to each DES block so the effect is

tripled. The design increases by so much that the modified TDES is larger than the

modified AES, which only required 5,616 slices. The clock speed of the design does

not change significantly however. This is because the critical path for the orignal

design included both the key schedule and the datapath, the datapth being responsible

for nearly half of the delay. The modification to the algorithm required the addition of

registers between the two sections so although the delay for the key schedule was

more than doubled this was offset by the breaking up of the critical path.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 161

 TDES Modified TDES

Slices 1,201 6,940

DFFs 1,215 6,323

Clock Speed (MHz) 49.478 43.537

Cycles / Plaintext 19 19

Throughput (MB/s) 166.66 MB/s 146.65 MB/s

Table 7-4 : Summary of speed and area requirements for the standard and modified TDES

when synthesised to a Virtex-E 1000.

7.3.4 Attack on a Simulated System

Figure 7-12: Correlation for all 64 key guesses for an attack on a Modelsim simulation of a

modified TDES system with 4,096 traces.

The modified TDES was synthesised for a Xilinx Virtex-E 1000 and simulated

in Modelsim and the register transitions were recorded using the same method as

described in section 5.3.1.1. The correlation between the prediction and consumption

matrices for all 64 key guesses using 4,096 traces is shown in. The actual value of the

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 162

first key section was 10, and the value retrieved from the DPA was 17, with a

correlation nearly 4 times higher, meaning the correct key had not been retrieved.

7.3.5 Conclusion

The technique of continually changing the round keys between block can also

be adapted to protect TDES from DPA. There are however some properties of

algorithm that mean the implementational penalties for doing this are greater. DES,

and by extension TDES, has a very simple key schedule, it consumes little area but

can only generate a limited number of round keys. This limitation meant that for the

purpose of the modification it had to be replaced with a more complex one. As the

original DES key schedule was so compact the modification significantly increased

the size of each block and because there are three DES blocks in TDES the area

penalties were tripled. The increase in cost is so great that after the technique has been

applied the TDES design is larger than the modified AES system.

While this is a powerful technique for making algorithms immune to DPA it is

not necessarily appropriate to retrofit all current algorithms using this method. Section

7.4 outlines the requirements it to be implemented in an efficient way and investigates

several modern algorithms in order to identify the most appropriate design for

perpetually expanding key schedules.

7.4 Application of Perpetual Key Schedule to Other Algorithms

Using a key schedule that continually generates different round keys for

successive encryption blocks to defeat DPA generally does not have a high overhead

compared to an implementation of the same algorithm with a normal key schedule.

There are some limits on when it can be used, the key schedule has to be complex

enough to generate a large sequence of bits, the DES, and hence TDES, key schedule

cannot do this so when TDES was modified to be secure against DPA the key

schedule was replaced by the one from AES. This greatly increased the hardware and

performance overhead compared to standard TDES.

When the new algorithm was implemented as an encryptor there was a

significantly smaller overhead than when the implementation could also perform

decryption. This was due to the fact that during decryption the round keys are needed

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 163

in reverse order, but they can only be generated forwards. This meant that either a

new set of round keys had to be generated for each block before decryption could take

place, or additional memory was required to store the results of the calculation of the

next set while the current set was being used. Algorithms that can generate the round

keys in any order would not suffer from this problem, further reducing the overhead

for the technique. This section evaluates a number of modern encryption algorithms

for their suitability for this countermeasure and identifies the properties of key

schedules that give the best performance in terms of the relative cost of changing the

key schedule. Section 7.4.1 describes the key schedules of the algorithms that are

being investigated and section 7.4.2 discusses the advantages and disadvantages of the

various properties the different key schedules have.

7.4.1 Key Schedules of Modern Algorithms

The following algorithms were selected as AES finalists or are recommended

algorithms for either NESSIE, (New European Schemes for Signatures, Integrity and

Encryption) a European project to identify secure cryptographic algorithms, or

CRYPTREC, an equivalent project set up by the Japanese government.

7.4.1.1 MARS

MARS [104] was developed by IBM in 1998, the design team included Don

Coppersmith, who also helped design DES. MARS was a finalist in the AES process,

and as such works on a block size of 128 bits, processing the data in 32-bit words, and

supports variable key lengths, from 128 bits to 448. It has a Feistel structure and is 20

rounds long and so requires 40 words, or 1,280 bits, of expanded key data.

7.4.1.1.1 Key schedule description

The master key is placed into a table of 15 32-bit words called T, the key will

always be shorter than this so it is concatenated with a binary value of its length in

words and then padded with 0s. The array T is then put through four rounds of the

following transformations:

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 164

for j = 0 to 3

for i = 0 to 14

)4()3)((15mod215mod7 jiTTTT iiii +⊕<<<⊕⊕= −−

for k = 0 to 3

 for i = 0 to 14

Ti= Ti ⊕ S (Low 9 bits of Ti-1 mod 15)<<<9

for i = 0 to 9

15mod410 iij TK =+

Figure 7-13: Pseudo-code for the key schedule of the MARS algorithm.

Where S is MARS’s s-box. Finally, to ensure that none of the key words that are

involved in multiplication, K5, 7, … 35, in the algorithm have certain properties, namely

that the lowest two bits are set to 1 and there are no groups of ten consecutive 1s or 0s

the following operation is performed.

The lowest two bits of Ki are recorded and set to 1. If patterns of more than ten

consecutive 1s or 0s are detected in Ki then the runs are XORed with bits from entries

265 through to 268 of the s-box, the particular entry being selected by the original

value of the two lowest bits in Ki, and rotated by a number of bits selected using the

value of the five lowest bits in Ki-1. In the final section i = 5, 7, … 35.

7.4.1.1.2 Analysis

The key schedule of MARS could be modified to use a perpetually expanding

key schedule, the use of the s-box and significant bit mixing between sub key bytes

ensures a complex enough relationship and the last 480 bits of the expanded key could

be used as a new input.

While the key schedule uses the same s-boxes as the datapath the structure is

significantly different and so hardware specifically to expand the key will have to be

included. It will always be possible to generate round keys in parallel with the main

datapath. In decryption keys are needed in reverse order so have to be pre-generated

and stored. The key expansion for MARS is quite complex, requiring multiple clock

cycles, or significant unrolling of loops, but the amount of expanded key data is a

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 165

modest 1,280 bits. Due to this, double buffering the key schedule as described in

section 7.2.3 will not have as large an area penalty as for other algorithms.

7.4.1.2 RC6

RC6 [105] was published in 1998 by Ron Rivest, Matt Robshaw, Ray Sidney,

and Yiqun Lisa Yin. It was submitted as a candidate for AES and it was a finalist.

RC6 is a Feistel network that acts on variable blocks sizes, number of rounds and key

lengths. Technically the algorithm is specified as RC6-w/r/b where w is the data word

size, r is the number of rounds and b is the number of bytes in the key. The version

that shall be discussed here is the one that was submitted as a candidate for AES, so

acts on block sizes of 128 bits, four 32-bit words, supporting key lengths of 128, 192

and 256 and consists of 20 rounds. RC6 requires 2 (r + 1) words of expanded key

data. This variant of RC6 requires a total of 1,344 bits of expanded key data. The

designers have largely recycled the key schedule from the 1995 RC5 algorithm.

7.4.1.2.1 Key schedule description

The key schedule of RC5, and hence RC6 initialises the expanded key space

with two “magic constants”, P and Q, which are both odd and of length w, and are

derived from the hexadecimal representation of Euler’s constant and the Golden Ratio

[106]. The first word in the expanded key, S, is set to P and each successive word is

set to the previous word + Q, where the addition is performed modulo-2w. Next the

master key is copied to the array L and mixed in with the pseudo random bit streams

in the following way:

A = B = 0

i = j = 0

Repeat (3 * # words in S)

)4()3)(jiBASSA ii +⊕<<<++==

)()(BABALLB jj +<<<++==

i = (i + 1) mod # words in S

j = (j + 1) mod # words in L

Figure 7-14: Pseudcode for the bit mixing of the key schedule of RC6.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 166

7.4.1.2.2 Analysis

RC6 can be protected from DPA by taking the final 128, 192 or 256 bits of the

expanded key, copying it into the array L and repeating the key expansion process.

This key schedule cannot generate the sub-keys in any order. In AES a given round

key depends only on the round key before it, in RC6 the sub-keys are generated with a

three stage process so cannot be derived in an online fashion. This means that the

expanded key would probably be pre-computed and stored, as the only other option

would be to replicate hardware to unroll the loop which would be expensive. The

offline design makes the maximum area penalty slightly less for the comparison

between the original algorithm and a modified version as there must always be

enough memory to store the entire expanded key. As the key schedule does not use

the cryptographic primitives from the main datapath there is little area penalty

incurred from providing the hardware to enable the new encryption key in parallel

with the encryption of the previous plaintext. This would require the addition of

another 1,344 bits of memory.

7.4.1.3 Serpent

Serpent was published in 1998 [107] by Ross Anderson, Eli Biham, and Lars

Knudsen, it was submitted as a potential algorithm for AES and was a finalist. Serpent

is a 32 round SPN and like the other AES submissions it works on 128-bit blocks and

supports key lengths of 128, 192 and 256 bits. In the final round an additional round

key is also used bringing the total amount of expanded key data up to 33 round keys

or 4,224 bits.

7.4.1.3.1 Key schedule description

The master key is padded to 256 bits by adding a 1 followed by as many 0s as is

required and split un into eight 32-bit words labelled w-8 to w-1. These are then

expanded into 132 intermediate keys w0 to w131 using the following relationship:

 11)(1358 <<<⊕⊕⊕⊕⊕= −−−− iwwwww iiiii φ (7-1)

Where φ has the value 0x9e3779b9, the fractional part of the golden ratio in

hexadecimal. The intermediate keys are then converted into the final round keys by

passing them through Serpent’s s-boxes. Serpent has eight different 4-bit to 4-bit s-

boxes. In order to increase parallelisation the key schedule, as well as the rest of the

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 167

algorithm, was designed using a bit slice technique. The intermediate key word is

substituted not as a series of 4–bit words, but a single bit from four consecutive

intermediate words is put into an s-box and the final round keys are made of the

corresponding s-box output bits.

7.4.1.3.2 Analysis

If the key schedule of Serpent was modified so that the expansion of the master

key into w did not stop, but continued, generating 132 intermediate keys, for

conversion into round keys, for each plaintext that needed to be encrypted then the

algorithm could be protected from DPA.

Serpent requires a large number of expanded key bits so pre-calculating the

expanded key and storing it would require a lot of RAM, making an offline key

schedule expensive in terms of area. Conversely, generating one round key requires

the same number of s-boxes as processing one round so calculating the round keys in

parallel would require doubling the number of s-boxes. S-boxes are a significant

factor in the size of most hardware implementations of cryptographic algorithms, so

doubling the number would have a serious area penalty. There is a compromise of

interleaving round key generation and one round of encryption on alternating clock

cycles, this would only require storing the 12 32-bit words that the current round key

is based on. This is true for the original algorithm as well as a modified version, and

the cost of modifying the algorithm can only be compared to an implementation of the

original.

For an encryptor that alternated between generating round keys and performing

encryption to reduce the area of the design there would not be a significant cost in

terms of area or speed for modifying the algorithm, the round keys would have to be

generated for each plaintext anyway and no additional memory would be needed. If

the round keys were pre-calculated and stored the amount of time required to process

a plaintext would double as the keys would still have to be calculated for each

plaintext.

As a decryptor has to provide the round keys in reverse order but can only

generate them in the actual order any design that can decrypt would need enough

memory to store all the round keys and would pre-calculate them. After modification

the algorithm would need to generate a new set of keys for each plaintext so again the

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 168

amount of time taken to process a plaintext would double. This could be mitigated

with the same double buffering technique that was described in section 7.2.3, but this

would require doubling the, already significant, amount of memory for storing round

keys and also adding another 16 s-boxes so the next set of keys could be calculated

which the current plaintext was being processed.

7.4.1.4 MISTY 1

MISTY was developed by Mitsuru Matsui in 1995 [108]. It uses blocks of 64

bits and keys of 128 bits, it is a recommended algorithm for both NESSIE and

CRYPTREC. It uses a nested Feistel structure, where each round is made up of a

three round Feistel structure with a 32-bit datapath, with each sub-round being

composed of a smaller three round 16-bit Feistel structure where the two halves are

split into 7 and 9 bits. MISTY can have any number of rounds on the condition that it

is divisible by four. MISTY1 only requires 256 bits of expanded key data.

7.4.1.4.1 Key schedule description

As MISTY1 does not require to expand the key very much, only to double the

amount of key data, the key schedule is fairly simple. The master key is separated into

eight 16-bit words and these are all fed through the 16-bit round function, consisting

of three rounds of the lowest level Feistel structure. The round key for each 16-bit

word is the master key from the word to its right. During a set of four rounds of

encryption all 16 key words are used.

7.4.1.4.2 Analysis

The key schedule for MISTY could have a perpetually expanding key schedule.

The second half of the expanded key could be used as the new master key, the round

function is complex enough to remove the possibility if short repeating patterns

appearing in the expanded keys. As the expansion of the key involves putting one

word of the key into the round function using another master key word as the round

key there is mixing between key words. After eight encryption blocks the value of

each block of the key would be affected by the value of each bit in the original master

key.

The keys in MISTY can be generated in any order, normally this would enable

an online key schedule to be used for both encryption and decryption, MISTY is a

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 169

little different. Due to the small nature of the expanded key, the fact that the entire

expanded key is required in the first four top level rounds and the reuse of the second

level round function to generate the expanded key the more efficient design would

still be offline. Very little memory would be required to store the entire key and this

would be traded off against the area cost of replicating the 16-bit round function. The

speed penalty for pre-expanding the key would only have to be paid once for the

original algorithm, but it would be incurred once encryption for the modified one.

The size of this cost as a proportion of the total run time is dependent on the

number of rounds. Each top level round contains three of the second level rounds that

are used to expand the key and 8 key expansions are required. Expanding the key with

whatever hardware there is in the system will require the same amount of time as 8/3

top level rounds, if there are only four rounds this is a 66% decrease in throughput,

33% for 8 round and so on. There is very little increase in area, no additional storage

is needed, but a more complex controller will be required.

7.4.1.5 Camellia

Camellia was developed by Mitsubishi in 2000 [109]. It has a block size of 128

bits and supports key lengths of 128, 192 and 256 bits. It was selected as a

recommended algorithm for both CRYPTREC and NESSIE. It uses a Feistel structure

and consists of 18 rounds when a 128-bit key is being used and 24 for a 192 and 256-

bit key. There is also additional key mixing at the start and end of the algorithm and

every six rounds two round keys are used this bring the total number of 64-bit round

keys required by the algorithm to 26 for the 128-bit key and 34 for 192 and 256-bit

keys.

7.4.1.5.1 Key schedule description

The key schedule of Camellia uses the same cryptographic primitives as the

main algorithm to expand the master key into the round keys. The master key is

separated into two 128-bit blocks KL and KR. In the case of the 128-bit key length KR

is set to 0, in the case of the 192 bit key the right hand side of the KR is set to the

compliment of the left hand side. KL is XORed with KR and this is then encrypted for

four rounds with a constant set of round keys, the new value is KA. For key lengths

greater than 128 bits KA is then XORed with KR and encrypted for another two rounds

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 170

giving KB. The final values of the 64-bit round keys are then selected from KL and KA

for the 128-bit key and from all four values for the 192 and 256-bit keys.

7.4.1.5.2 Analysis

The Camellia key schedule can be modified to prevent DPA by setting KR and

KL to KA and KB, generating a new KA and KB and deriving the next set of round key

from these values. The cipher reuses the round function to expand the key, so a new

set of round keys could not be calculated in parallel without almost doubling the size

of a design, this is not a significant problem for the original algorithm as the keys only

have to be calculated once and the amount of RAM needed to store them is small as

they are derived from four 128-bit values. For the modified version these values need

to be re-initialised for every plaintext, adding six clock cycles for every 18, an

increase of 33%. The round keys can be generated in any order meaning that there is a

greater consistency in the performance of a design that can decrypt compared to one

that can only encrypt.

7.4.1.6 Hierocrypt-3

Hierocrypt-3 was developed by Toshiba in 2000 [110]. The structure of

Hierocrypt-3 is a 16 round nested SPN in which a higher level s-box is itself a smaller

SPN. It works on blocks of 128 bits using keys of length 128, 192 and 256 bits which

have 6, 7 or 8 rounds respectively. Each round requires two 128-bit round keys and

there is one final key addition, therefore a total of 1,664, 1,920 or 2,176 bits of

expanded key data are required for the three supported key lengths. It is a

recommended cipher from the CRYPTREC program.

7.4.1.6.1 Key schedule description

The master key is padded to 256 bits with a series of 32-bit constants derived

from the binary representations of irrational numbers and converted to the first

intermediate key with the σ0 function. The function σ iteratively generates the first

four intermediate keys (Z) for 128 / 192-bit keys and 5 for 256-bit keys. One

intermediate key is required for each round and the remaining ones are generated by

the σ-1 function. Figure 7-15 shows the structure of the functions σ0, σ and σ
-1.

In Figure 7-15 K denotes the actual round keys that are derived from the

intermediate keys Z, T is the total number of rounds. G denotes the round constants

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 171

prevent periodic patterns appearing the intermediate keys and, like the key padding

constants, are based on the binary representations of irrational numbers. P is a linear

permutation that separates the data into four blocks and XORs each block with one

other. M5E and MB3 are both similar to P except they separate the data into two distinct

groups of four blocks and XORs data within the groups. The function Fσ separates the

data into 8 bytes, passes them through Heirocrypt-3’s s-box and then applies the P

function.

Figure 7-15: The structure of the Heirocrypt-3 key schedule.

7.4.1.6.2 Analysis

The key schedule for Heirocrypt-3 is fairly similar to that of AES. It is an

iterative key schedule, a function is applied to the master key to generate a set of

intermediate values from which the first round key is derived, and one of two related

function are repeatedly applied to the previous intermediate data to provide the

intermediate data for the next set of round keys. The round key iteration functions are

complex and involve a large degree of bit mixing between sub-key words ensuring the

appropriate properties for a perpetual key schedule design.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 172

The key schedule design being similar in structure to that of AES has the same

problems. Assuming an online key schedule has been used, altering the encryption

algorithm will require very little modification, simply looping the key schedule round.

While the key schedule uses the s-box from the datapath it does not use any of the

other blocks. This means that the hardware for the key schedule will have to be

included irrespective of the style of key schedule that is used so there will always be

the possibility of calculating round keys in parallel with the main datapath. For

decryption the keys will be needed in reverse order so they will have to be pre-

generated and stored. Using the approaches discussed in section 7.2.2.1 it is possible

to trade off costs in speed and area by double buffering the memory for the offline key

schedule, Heirocrypt-3 required between 1,664 and 2,176 bits of expanded key data.

7.4.1.7 ARIA

ARIA is a 128-bit SPN based block cipher that uses 128, 192 and 256-bit keys

[111], it was designed in 2003 by cryptographers in South Korea and in 2004 it was

selected by the Korean Agency for Technology and Standards to be a standard

cryptographic algorithm. ARIA has 12, 14 or 16 rounds depending on the key size

that is used and it requires 128 bits of expanded key data per round, with an additional

128 bits for a final key addition. In total 1,664, 1,920 or 2,176 bits are required.

7.4.1.7.1 Key schedule description

The key schedule in the ARIA algorithm has two phases, initialisation and

expansion. The initialisation phase uses the master key and three 128-bit constants to

generate four 128-bit sub-keys using a 256-bit Feistel cipher. The left half of the

Feistel data is the first 128 bits of the master key, the right half is any unused bits of

the key padded with zeros to 128 bits. The Feistel cipher is used to generate four 128-

bit values using the odd and even round functions Fe and Fo, who differ due to the fact

that ARIA uses two different s-boxes and their inverses in a different order on

alternating rounds.

 W0 = KL (7-2)

 W1 = Fo (W0, CK1) ⊕ KR (7-3)

 W2 = Fe (W1, CK2) ⊕ W0 (7-4)

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 173

 W3 = Fo (W2, CK3) ⊕ W1 (7-5)

From these values the round keys are generated. This is done by XORing one of

the values with another after it has been rotated by a certain number of bits. The

choice of the two values and the amount of rotation are determined by the round.

7.4.1.7.2 Analysis

ARIA can be modified for DPA resistance by continuing the initialisation

Feistel cipher to generate four new sub-keys for every plaintext that must be

encrypted. After the initialisation stage of the key schedule the round keys can be

generated in any order so no additional area or speed penalties are paid when

implementing a system that can perform decryption. As the key initialisation phase

uses the round function of the encryption datapath it could not be performed in

parallel without essentially doubling the area requirements of a design, encryption

would have to be temporarily stopped in order to re-initialise the key, increasing the

amount of clock cycles per processed plaintext by between 25% and 33% depending

on the key length.

7.4.2 Application of Perpetual Key Schedule to Other Algorithms

Several of the algorithms described in section 7.4.1 have similar designs,

Hierocrypt-3, Serpent, MARS and RC6 iteratively apply a function to the key data,

the output of which is both a round key and the input for the function to generate the

next key. Camellia and ARIA use a two stage process, the first stage takes the master

key and generates four intermediate keys, in the key generation stage these are

combined in a variety of different ways to form the round keys. All of the key

schedules reuse some of the cryptographic primitives that are found in the main

datapath, Camellia, ARIA and MISTY-1 use the entire round function for key

expansion. This section discusses the advantages and disadvantages of the key

schedule structures with respect to modifying algorithms so they have a key schedule

that protects them from DPA.

7.4.2.1 Initialisation vs. Iterative

There are two main approaches to generating round keys in the algorithms that

have been discussed in section 7.4.1. Firstly there is the iterative approach where a

function is applied to a block of expanded key data with a fixed length, the output of

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 174

which is a new round key which forms all or part of the input to the next iteration.

Examples of these are Hierocrypt-3 and Serpent, and MARS and RC6, which repeat

the iterative process across a number of rounds. The second approach uses an

initialisation phase, where a, typically more complex, transform converts the master

key into a relatively small set of intermediate keys, the bits of which are combined in

a number of different ways to generate the various round keys. This is the technique

used in Camellia and ARIA. The exception to this is the algorithm MISTY 1, which

needs such a small amount of expanded key data that it simply applies the round

function to the master key in order to double the amount of key data available.

The advantage of the initialisation approach is that once the intermediate keys

have been determined the round keys can be generated in any order. This is a

significant advantage when performing decryption and it makes the performance of

encryptors and decryptors a lot more consistent.

7.4.2.2 Reuse of Cryptographic Primitives

Lots of the algorithms have key schedules that make some use of the

cryptographic primitives to expand the key. All of the ones described in section 7.4.1

make use of their s-box, except RC6, which doesn’t use an s-box. Hierocrypt-3 also

reuses some of the datapath functions for permuting bits and ARIA, Camellia and

MISTY 1 reuse the entire round function.

There are several advantages to reusing the entire round function. The main one

is that hardware can also be reused making the design potentially much smaller and

simplifying the implementation process as less has to be designed. Also, as noted by

May et al. in [30] key schedules designed in an ad hoc fashion tend to perform

relatively poorly in terms of the confusion and diffusion properties of the expanded

key. By reusing the round function assuming the cipher performs well in these areas

the key schedule will also. Having good confusion and diffusion performance will

also reduce the need for time consuming complex multi-round key expansion

algorithms like those in MARS and RC6.

Reusing the entire round function to generate the key schedule is somewhat of a

double edged sword, in order to make a design that can calculate expand the key

schedule and perform the encryption in parallel the area requirements are almost

doubled, whereas if the hardware to expand the key has to be implemented anyway

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 175

that automatically means it can be run in parallel. This is less of a problem with a

traditional algorithm that only has to generate one set of round keys as they can be

pre-calculated and stored, but when new round keys have to be generated for each

plaintext the cost to processing time is incurred for each plaintext. This can be less of

a disadvantage if the key schedule uses an initialisation approach to generating round

keys as less will have to be calculated. In ARIA and Camellia only four intermediate

keys were needed to generate all the round keys.

7.4.3 Conclusion

The majority of modern algorithms have complex enough key schedules to

produce long enough cycles for perpetually expanding keys to be applied to be a

practical countermeasure to DPA. The design and structure of the key schedule

clearly has a vast affect on the performance cost of the modification of the algorithm

in terms of speed and area relative to the original. As a new set of keys must be

calculated for each plaintext having to pre-calculate the expanded key would greatly

reduce the speed of encryption. For a normal algorithm it would have a much lower

effect on the average throughput as the amount of time spent processing the key will

be insignificant compared to the time encrypting all of the plaintexts. The algorithms

described in section 7.4.1 that can generate the round keys in any order do so by using

a two stage process, with a short initialisation phase that generates values which are

then combined into the round keys.

In order to save time it is advantageous to be able to generate keys in parallel

with the main datapath. Conversely in order to make designs smaller it is

advantageous to reuse the hardware from the datapath to also generate the round keys.

Reuse of cryptographic primitives also ensures that round key generation adequately

satisfies the confusion diffusion requirements.

7.5 Case Study: ARIA

Of all of the various key schedules in the algorithms described in section 7.4

designs that use an initialisation phase to generate a relatively small number of values

that are then combined in various ways to generate the round keys appear to be best

suited to being protected from DPA with a modified key schedule. In this section the

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 176

algorithm ARIA is modified and the DPA resistance and performance of the new

version is evaluated.

In order to test the effect the modification had on the speed and area

requirements and to verify the DPA resistance of the new version of the algorithm

four implementations were designed. Two versions were the original ARIA, one that

could only encrypt and one that could both encrypt and decrypt. For each of those a

counterpart implementation was created that used the new key schedule, which is

described in detail in section 7.5.1. For simplicity all of the versions only used 128-bit

keys. The VHDL designs were then synthesised for a Virtex-E 1000 bg560 and the

area and timing requirements were noted, these are discussed in section 7.5.2. Finally

using the post-synthesis VHDL and the method described in section 5.3.1.1 simulated

DPA was performed on the two encryptor designs, the results and analysis of this are

in section 7.5.3.

7.5.1 Design of Key Schedule

The original ARIA key schedule generates four 128-bit intermediate keys. This

is achieved by taking the master key and putting it through a Feistel cipher made from

the round function of the main datapath. The details of precisely how to generate the

four intermediate keys are given in equations (7-6) - (7-9) where R represents the

round function and k is the key used for the process, it is derived from the binary

representation of 1/π. MK is the master key that can have a length of 128, 192 or 256

bits. The right hand 128 bits is used in the generation of w1, if the key is not that long

then it is padded with 0s.

12700 −= MKw (7-6)

255128001),(−⊕= MKkwRw (7-7)

0112),(wkwRw ⊕= (7-8)

1223),(wkwRw ⊕=

(7-9)

These round keys are made by XORing two intermediate keys after a rotation

has been applied to one, as shown in Table 7-5

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 177

Key Formation Key Formation Key Formation

1 w0 ⊕ (w1>>>19) 7 w2 ⊕ (w3>>>31) 13 w0 ⊕ (w1>>>97)

2 w1 ⊕ (w2>>>19) 8 w3 ⊕ (w0>>>31) 14 w1 ⊕ (w2>>>97)

3 w2 ⊕ (w3>>>19) 9 w0 ⊕ (w1>>>67) 15 w2 ⊕ (w3>>>97)

4 w3 ⊕ (w0>>>19) 10 w1 ⊕ (w2>>>67) 16 w3 ⊕ (w0>>>97)

5 w0 ⊕ (w1>>>31) 11 w2 ⊕ (w3>>>67) 17 w0 ⊕ (w1>>>109)

6 w1 ⊕ (w2>>>31) 12 w3 ⊕ (w0>>>67)

Table 7-5 definitions of the round keys for AIRA

The basic concept of the new algorithm is to continue this process in order to

generate four new intermediate keys for each plaintext. Assuming that the round

function can be performing on one clock cycle, calculating the intermediate keys

would take three clock cycles, also the ARIA specification has three 128-bit constants

that are used as round keys for the Feistel cipher. For simplicity, in the new scheme

w3 replaces MK0-127 and w2 replaces MK128-255, by doing this generating a new set of

keys still only takes three clock cycles and requires the three original 128-bit

constants. This is shown in equations (7-10) - (7-13). As w0 becomes the previous

version of w3 some key data is reused, this is not a source of insecurity however as to

generate the round keys two intermediate keys are combined with rotations so no

round keys will be repeated.

30 ww = (7-10)

2001),(wkwRw ⊕= (7-11)

0112),(wkwRw ⊕= (7-12)

1223),(wkwRw ⊕=

(7-13)

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 178

7.5.2 Efficiency of Implementation

Four different implementations of ARIA were produced, one that could only

encrypt, one that could both encrypt and decrypt, and equivalent versions of the

algorithm when modified to be resistant to DPA. There is very little difference in the

overall performance of the hardware. All designs use approximately the same number

of flip flops, this was expected as they all have the same memory requirements, the

slightly larger increase in the Modified Encryptor is due to signal duplicated by the

synthesis tool. The area in general does not change significantly, there is an increase

in the number of slices for the modified algorithm and the designs that can perform

decryption of between 11% and 16%.

The clock speed of the design does not change significantly, it actually slightly

increases for the modified versions. The largest penalty that is incurred from changing

the algorithm is the number of clock cycles used to process a plaintext. It rises from

12 to 15, this is because a new set of sub-keys must be generated each time and as it

uses the same hardware as the main datapath it cannot be calculated concurrently.

This decreases the throughput by nearly 20%.

 ARIA Enc. ARIA Enc/Dec Modified Enc. Modified Enc/Dec

Slices 2,536 2,962 2,825 2,913

DFFs 1,052 1,057 1,070 1,059

Cycles / plaintext 12 12 15 15

Clock speed 20.191 MHz 19.481 MHz 21.116 MHz 19.939 MHz

Throughput 215.37 MB/s 207.80 MB/s 180.19 MB/s 170.15 MB/s

Table 7-6 : Details of the area, clock-speed and throughput for the different versions of

ARIA: with and without decryption and DPA resistance .

7.5.3 Countermeasure Efficacy

In order to verify the efficacy of the algorithm modification, first a DPA attack

was attempted on the standard implementation of ARIA. This was performed using

the Modelsim simulation method as described in section 5.3.1.1. The attack was

successful. Figure 7-16 shows the correlation values for each of the 256 key

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 179

hypotheses for the first byte of the first round key, the value of which was 198 or

0xC6. In Figure 7-16 a large peak at the correct value is unambiguously identifiable.

679 traces were required to correctly identify all 16 round key bytes.

DPA was then attempted on the modified algorithm, the first byte of the first

round key was again 198. After 4,096 traces the correct value was not identifiable.

The correlation for all 256 key hypotheses are shown in Figure 7-17, the largest peak

is at 224 with a value of 0.05314 while the correct value of 198 is close to zero and

slightly negative. The plot gives no indication that the 198 is the correct value. The

modified algorithm is not susceptible to DPA.

Figure 7-16: Graph showing the correlation of the 256 key guesses for a 1,000 trace DPA

attack on a Modelsim simulation of an FPGA running ARIA.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 180

Figure 7-17 : Graph showing the correlation of the 256 key guesses for a 1,000 trace DPA

attack on a Modelsim simulation of an FPGA running ARIA.

7.5.4 Conclusion

It can be seen from the results in section 7.5.3 that the modified ARIA key

schedule provides protection from DPA. The protection also comes at a modest cost,

for the encryptor there is approximately a 10% increase in area. There is even a slight

increase in clock speed, although this is more than compensated for by the 25%

increase in the number of clock cycles required to process a plaintext. It is worth

noting that the percentage increase in the number of clock cycles would fall as longer

keys are processed as they require more encryption rounds but the same number of

key expansion rounds.

The structure of the key schedule of ARIA is much more suited to being a

perpetually expanding one than that of AES as the cost in terms of speed and area is

comparable between encryptors and decryptors. The key property of the key schedule

that allows this is its ability to generate the round keys in any order, making pre-

calculating the decryption keys unnecessary. While key initialisation occurs before

encryption and decryption fewer sub-keys are needed than the number of round keys

so the penalty is both consistent and less.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 181

7.6 Improved Modified TDES

Drawing from the conclusions of examining the key schedules of other modern

cryptographic algorithms and modifying the key schedule of ARIA to protect it from

DPA it is possible to vastly improve the modified version of TDES described in

section 7.3. That version was significantly larger than the original TDES, using

nearly six times the number of slices on a FPGA. This was largely due to the

additional registers that were needed to store two sets of round keys. This was needed

as the round keys need to be provided in reverse order for decryption and so have to

be pre-calculated. If only one set of round keys could be stored it would have doubled

the amount of time taken to decrypt and one DES block is used in decryption mode

during TDES encryption. Additionally as TDES contains three DES blocks any

increase in area in a DES block is tripled for TDES.

Adopting a key schedule design similar to that of ARIA a much smaller

modified TDES was implemented that still has inherent resistance to DPA. There is a

greater throughput penalty as the initialisation phase uses the main datapath so it

cannot be performed in parallel without nearly doubling the amount of hardware

required. Section 7.6.1 describes the new key schedule in more detail, section 7.6.2

details the effects of the changes to the algorithm on the speed and area requirements

and section 7.6.3 shows the new design is also immune to DPA.

7.6.1 Design of Key Schedule

The improved modification to the TDES key schedule calculates the round keys

in two phases, initialisation and generation, each DES block uses 64-bit keys, giving a

total TDES key length of 192 bits. The initialisation phase is heavily based on the key

schedule of ARIA, it splits the master key into two 32-bit halves and uses the Feistel

structure to expand the master key into the four sub-keys. As the initialisation phase

uses the DES round function it needs round keys. The actual values of these are not

particularly important, it is important that the chosen values do not insert a backdoor

into that algorithm that only the designers are aware of, for this reason numbers like

this are generally chosen to be binary expansions of irrational numbers. In ARIA the

key initialisation round keys come from the value of 1/π, these is no advantage for

choosing different ones here.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 182

633203100),(−− ⊕= MKkMKRw (7-14)

6332101),(−⊕= MKkwRw (7-15)

0212),(wkwRw ⊕= (7-16)

1323),(wkwRw ⊕=

(7-17)

Like the ARIA modification, the key generation is extended across multiple

plaintext encryptions by using sub-keys 3 and 2 to replace the first and second halves

of the master key respectively, i.e. equations (7-14) and (7-15) are replaced with

(7-18) and (7-19) respectively.

2030),(wkwRw ⊕= (7-18)

3101),(wkwRw ⊕=

(7-19)

In DES the size of the Feistel datapath, and hence the length of the sub-keys

derived from this scheme, is 32 bits, but, due to the expansion function, the size of the

round keys must be 48 bits. Each round key is split into three 16-bit blocks and these

are made out of the combination of two halves from two different sub keys. To ensure

that all sections of the round keys are unique the sub-keys are bit shifted either left or

right by 5 bits. This is summarised in table Table 7-7, where w signifies the sub-key

and the a or b determining whether it is the first or second half.

Key Formation Key Formation

1

0 - 15 w0a ⊕ w1b

9

0 - 15 w0a ⊕ (w1)>>>5b

16 - 31 w1a ⊕ w2b 16 - 31 (w1)>>>5a ⊕ (w2)<<<5b

32 - 47 w2a ⊕ w0b 32 - 47 (w2)<<<5a ⊕ w0b

2

0 - 15 w1a ⊕ w3b

10

0 - 15 w1a ⊕ (w3)<<<5b

16 - 31 w2a ⊕ w1b 16 - 31 (w2)>>>5a ⊕ w1b

32 - 47 w3a ⊕ w2b 32 - 47 (w3)<<<5a ⊕ (w2)>>>5b

3
0 - 15 w2a ⊕ w3b

11
0 - 15 w2a ⊕ (w3)>>>5b

16 - 31 w3a ⊕ w0b 16 - 31 (w3)>>>5a ⊕ (w0)<<<5b

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 183

Key Formation Key Formation

32 - 47 w0a ⊕ w2b 32 - 47 (w0)<<<5a ⊕ w2b

4

0 - 15 w3a ⊕ w1b

12

0 - 15 w3a ⊕ (w1)<<<5b

16 - 31 w0a ⊕ w3b 16 - 31 (w0)>>>5a ⊕ w3b

32 - 47 w1a ⊕ w0b 32 - 47 (w1)<<<5a ⊕ (w0)>>>5b

5

0 - 15 (w0)>>>5a ⊕ (w1)<<<5b

13

0 - 15 (w0)<<<5a ⊕ w1b

16 - 31 (w1)<<<5a ⊕ w2b 16 - 31 w1a ⊕ (w2)>>>5b

32 - 47 w2a ⊕ (w0)>>>5b 32 - 47 (w2)>>>5a ⊕ (w0)<<<5b

6

0 - 15 (w1)>>>5a ⊕ (w3)<<<5b

14

0 - 15 (w1)<<<5a ⊕ (w3)>>>5b

16 - 31 (w2)<<<5a ⊕ w1b 16 - 31 w2a ⊕ (w1)<<<5b

32 - 47 w3a ⊕ (w2)>>>5b 32 - 47 (w3)>>>5a ⊕ w2b

7

0 - 15 (w2)>>>5a ⊕ (w3)<<<5b

15

0 - 15 (w2)<<<5a ⊕ w3b

16 - 31 (w3)<<<5a ⊕ w0b 16 - 31 w3a ⊕ (w0)>>>5b

32 - 47 w0a ⊕ (w2)>>>5b 32 - 47 (w0)>>>5a ⊕ (w2)<<<5b

8

0 - 15 (w3)>>>5a ⊕ (w1)<<<5b

16

0 - 15 (w3)<<<5a ⊕ (w1)>>>5b

16 - 31 (w0)<<<5a ⊕ w3b 16 - 31 w0a ⊕ (w3)<<<5b

32 - 47 w1a ⊕ (w0)>>>5b 32 - 47 (w1)>>>5a ⊕ w0b

Table 7-7: The combination of intermediate keys that makes up the round keys for the second

version of the modified TDES.

7.6.2 Efficiency of Implementation

The area requirements, clock-speeds and throughputs of the three versions of

TDES are compared in Table 7-8. The new modified version of TDES is much

smaller and has a significantly faster clock-speed than the first modified version,

although the extra clock cycles required to initialise the key mean the throughput is

lower. Compared to the original TDES the modified algorithm uses 75% more area

and the throughput falls by 15%. These penalties are still lower than those incurred by

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 184

the majority of hardware countermeasures and it is important to note that while the

increase in area is significant TDES, using the DES key schedule, has one of the

simplest key schedules of all algorithms, it consisting merely of a selection of bits

from the master key. All other algorithms would have a key schedule that requires

more hardware and so there would be a smaller relative penalty when it was replaced.

 TDES Modified TDES 1 Modified TDES 2

Slices 1,201 6,940 2,101

DFFs 1,215 6,323 1,680

Clock Speed (MHz) 49.478 43.537 50.769

Cycles / Plaintext 19 19 23

Throughput (MB/s) 166.66 MB/s 146.65 MB/s 141.27 MB/s

Table 7-8: The area requirements, clock-speeds and throughputs of the three different

versions of TDES.

7.6.3 Countermeasure Efficacy

Figure 7-18 : The correlation for all 64 possible key values of the first 6-bit word of the first

round key for the second version of the modified TDES.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 185

The new version of the modifications to TDES also protects the algorithm from

DPA. In order to show this DPA was attempted using the Modelsim simulation

method described in section 5.3.1.1. The first 6-bit word of the first round key was 20,

or 0x14, it was not revealed after 4,096 traces. Figure 7-18 shows the correlation for

all 64 of the key hypotheses after 4,096 traces, the largest peak is at 18 with a value of

0.04824 and the correct key value is very close to zero and slightly negative at -

0.00856. There is no realistic way an attacker could discern the correct value of the

key word from this correlation data.

7.6.4 Conclusion

As expected, as it is a combination of the countermeasures proposed in sections

7.2.3 and 7.5, this modification protects TDES from DPA. The design is much smaller

than the original TDES modification in section 7.3, only being 75% bigger rather than

nearly 500% bigger. Out of the three designs it does have the lowest throughput, even

though the clock speed is the highest, this is because it required an additional four

clock cycles to initialise the key. If a faster design is required it would be possible to

remove the increase in clock cycles by adding an additional DES datapath that would

initialise the other three DES blocks’ keys while they processed the input. A single

DES datapath is approximately 400 slices as the original TDES is 1,201, also an

additional 768 bits of memory would be required to store the next set of sub-keys.

7.7 Conclusion

Hardware countermeasures to DPA come with a high cost in terms of area

requirements and the throughput of cryptographic designs, sometimes increasing them

by a factor of four. Additionally, as discussed in section 4.3.8, they do not offer

complete protection, only requiring an attacker to collect more traces before

successfully performing DPA. A much better solution is to have algorithms that are

already immune to DPA so no costly countermeasures are needed. This chapter

proposed three different alterations to AES to protect it from DPA. The only one that

was effective was the perpetually expanding key schedule which generated a new set

of round keys for each plaintext. This technique is effective as it removes the main

strength of DPA which is the ability to exploit power consumption data from several

encryptions based on the knowledge that the round keys are always the same.

Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 186

Other than its effectiveness, a big advantage of this countermeasure is the low

overhead, when it was applied to AES the throughput only fell by 28% and the size

only increase by 5%. The modification can be easily applied to most modern

algorithms, and even when the key schedule is unsuitable, such as TDES, it can

simply be replaced before the technique is applied. If this is done it is important to

select a suitable key schedule structure to replace the original with. The key schedule

of ARIA has properties that work well with this technique, and conform to the

definition of a good key schedule given by May et al. in [30], as, after initialisation,

the round keys can be generated in any order, making the overhead consistent

between encryptors and decryptors. Modifying existing algorithms is not the most

significant use of this technique, rather, the next generation of algorithms could

eliminate DPA entirely as a potential problem.

Chapter 8 Summary

The current state of cryptography is that there are no published mathematical

attacks that can break the full versions of modern algorithms, and with 3.4 * 1038

different values for even 128-bit keys it is not feasible to use brute force to get a key

either. With the development of side channel attacks in 1996 [19] another avenue for

breaking encryption was opened. Side channel attacks exploit the fact that encryption

is performed by a physical device which is subject to other physical processes, and by

monitoring those “side channels” it is possible to discern information about the data

that is being processed by the device. This thesis is mostly concerned with power

analysis, where power consumption is the channel that leaks information about the

internal state of the device, specifically, Differential Power Analysis (DPA). DPA

performs a statistical test on a set of power consumption data from several

encryptions and predictions about the contents of registers, based on the plaintext and

a guess about the value of a byte of the key, in order to determine which of the key

value hypotheses is the most likely.

DPA requires calculating the correlation between the predictions of register

transitions inside the device and the measured power consumption of the device.

There are a number of sources of random variability in the result of this calculation.

Firstly there is noise in the circuit, from the power consumption of other parts of the

circuit and random thermal noise, and the measurements will also contain errors. All

of these contribute to the noise in the SNR and will decrease the correlation between

the prediction and the power consumption. The other source of variation in the results

is due to the fact that any calculation of the correlation using a series of samples, the

sample correlation, is only an estimation of the true population correlation. The

difference between the two values is the sampling error. The variance in the sample

Chapter 8 Summary 188

correlation is controlled by the number of samples, in this case the number of power

traces available to an attacker.

The results of a DPA attack on a single key byte will be made up of 256

correlations, one for the correct key and 255 for the incorrect ones. The population

correlation for the predictions based on the correct key guess will be directly related

to the SNR. The population correlation of the incorrect values will be the correlation

between their predictions and the predictions from the correct guess (controlled by the

structure of the s-box) multiplied by the population correlation for the correct

predictions; this means the correct guess will always have the highest population

correlation. That does not mean that DPA will always be successful. Superimposed on

the population correlations is the sampling error. This is a random variable with a

variance controlled by the number of samples. If there is a low SNR then the

difference between the correct and incorrect correlation will be small (in terms of

absolute value rather than ratio), and easily overwhelmed if not enough samples are

taken to ensure a small sampling error.

Even though all the factors in the shape of a set of DPA results are controlled by

two variables, the SNR and the number of traces, the random element added due to

the sampling error means that there is a stochastic element to the results and hence it

is never definite that a particular attack will give the correct value. A method to

calculate the probability of success from the SNR and number of traces was derived in

Chapter 6 of this thesis. An attacker may like to know how many traces would be

required to ensure a certain probability of success for a given system with a known

SNR. A designer may like to know the value of the SNR that will ensure a particular

number of traces are required to give a chosen probability of success. Methods for

determining both of these have also been developed in this thesis.

As is the nature of cryptography, whenever a new cryptanalysis technique is

developed cryptographers work to develop ways to protect against it. There have been

several ideas for modifications to chip designs that will help combat DPA, from

balancing the logic so there is always the same number of transitions [82], to masking

the intermediate variables in secret shares [8, 23, 88], and using Dynamic Voltage and

Frequency Scaling (DVFS) to stop the attacker sampling the power consumption at

the correct time [11]. None of them are completely effective. There are ways of

defeating some of the countermeasures, such as targeting logic gates with DPA [93],

Chapter 8 Summary 189

or using High-Order DPA (HODPA) [22]. In the cases of DVFS and balanced logic,

the countermeasures frustrate attempts at DPA by reducing the SNR and requiring an

attacker to record more power data to give themselves a reasonable chance of success

[5, 95]. Apart from not offering complete protection from DPA, the other

disadvantage of the proposed countermeasures is that they often come with a high

cost, significantly increasing the area of the design or decreasing the data throughput

sometimes by up to a factor of 4 [5, 23].

All these countermeasures are modifications to the hardware implementations of

algorithms. A better solution would be to design algorithms in a way that defeats

DPA. In Chapter 7 the DPA mitigation potential of several alterations to the Advanced

Encryption Standard (AES) algorithm are investigated. The most successful one

protects the algorithm by using the key schedule to generate a new set of round keys

for each plaintext rather than reuse the same set each time. In DPA the attacker

combines the changing, but known, plaintext with a guess about one byte of the round

key, which is constant, so the validity of the guess is the same for each plaintext. This

is no longer true, and while it would still be possible to correlate predictions about the

contents of registers with power consumption, with the correct set of predictions

giving the highest value, it becomes infeasible as a way to discover the key. There are

only two ways an attacker could be ensured to have a set of predictions that contains

the correct answer. Firstly, by trying all possibly combinations of different values of a

round key byte for each plaintext, this gives 256number of plaintexts, which quickly

becomes impossibly large. Secondly, as the influence of the value of a particular byte

of the master key is diffused through the entire round key more with each successive

key schedule operation, accurate predictions about the value of a given round key byte

can only be made when the entire master key is known. An attacker could make a

guess at the entire master key and they would still be able to use DPA to determine

which of their guesses was correct, but DPA no longer offers any advantage over

brute force.

Other than offering full protection from DPA the other main advantage of an

algorithmic approach to DPA countermeasures is efficiency of implementation. When

AES was modified the size of the implementation of an encryptor increased by 5%

and the speed fell by 17%. For a design that could also decrypt the area increased by

28% and the speed fell by 15%. Some key schedules are not suitable for direct

Chapter 8 Summary 190

modification, the key schedule for DES (and hence TDES) generates the different

round keys by selecting different bits from the master key in different arrangements

so it can only produce a limited number from a given key schedule. Even the AES key

schedule has some disadvantages with the design, it can only produce round keys

forwards, but decryption needs the round keys in reverse order. In order to perform

decryption an implementation needs to either interleave round key generation with

decryption, which would reduce the throughput of the design, or calculate and store

the next set of round keys while one set is being used, which would require more area.

As TDES uses three DES key schedules they all had to be replaced with a more

complex one and TDES always needs to be able to perform decryption. This meant

the modifications came at a significant penalty, especially in terms of area which

increased by 230%. Throughput fell by 12%.

After examining a series of modern algorithms a set of design principles for

efficient implementation of a modified key schedule was identified. The main

disadvantage with the AES key schedule in this context is its inability to generate the

round keys in any order. AES decryption always needed the round keys pre-

calculated, but in the original algorithm they were only calculated once so it was not a

large overhead. Rather than using an iterative approach to generating round keys it

would be better to take the master key and apply a series of transforms to it to

generate a small number of values and combine these in different ways to get the

round keys. This would save both time and area as fewer calculations are required to

get the smaller number of values and they require less memory to store. If the key

schedules reuse the cryptographic primitives that make up the algorithm then this

reduces the amount of hardware that is needed and it ensures good levels of confusion

and diffusion, important measures of the strength of a cipher, in the expanded key.

The efficiency of key schedules designed with the rules was confirmed by

implementing a modified version of ARIA and an updated modified TDES. The DPA

protection cost no extra area for ARIA and 75% extra for TDES and reduced the

speed of ARIA by 18% and TDES by 16%.

The ability of DPA to extract information from the power consumption of an

electronic device does not have solely cryptanalytic applications. Using DPA as a

means for detecting a particular pattern of register transitions can be used to detect a

“watermark” in the power consumption, proving the device contains a particular piece

Chapter 8 Summary 191

of intellectual property. This can be achieved by adding a block of circuitry whose

sole purpose is to produce a known set of register transitions. There are slight

differences between this technique and cryptographic DPA. When trying to break

encryption there are a set of correlations, one of them definitely corresponds to the

correct key and it is assumed to be the one with the highest value. With watermark

detecting there is only one value if it above a threshold then the watermark is likely to

be there. As it is unlikely that it would be possible to determine the SNR of the

watermark without first knowing that it is present, it is not possible to know what

value for the correlation to expect, making it difficult to set the threshold. Fortunately,

there is another important difference that helps, with cryptographic DPA the

correlations for the incorrect key guesses were non-zero, if the watermark is not there

then the correlation will be between two completely unrelated sets of numbers so the

population correlation will be zero. The probability that the measured value is above a

particular value, if the watermark is not there, is based on the sampling error, and

hence the number of power traces that are taken. In section 6.5 of this thesis a

statistical test is described that is able to determine whether it is reasonable to assume

that a watermark is present. In situations where the SNR of the potential watermark is

known, a method of calculating the number of traces required to get a given

probability of successfully detecting it is also derived.

This thesis presents a novel approach to DPA countermeasures that are both

efficient to implement in hardware and prevent rather than impede the attack. Also a

statistical model of DPA is derived and used to find a method to calculate the

probability that a particular attack will be successful. From this it is also possible to

calculate the SNR or number of traces that would be required to ensure a given

probability of success, useful for the designers of either crypto-systems or DPA

attacks. A benign use for DPA was also explored, and a method for detecting a

watermark for protecting intellectual property was derived.

Chapter 9 Conclusion and

Future Work

9.1 Conclusion

DPA is a statistical attack, by understanding the statistics behinds how the

results are generated knowledge about how they are affected by changes in the SNR

and number of traces used in the attack can be gained. This is important as it allows

the analysis of potential countermeasures and attacks before they are implemented. In

this thesis a statistical model of the DPA attack was created. From the model a

method for calculating the probability of successfully retrieving a single byte of a key

based on the SNR of the system and the number of traces. Using this it is possible to

assess whether an attack is likely to succeed before performing it. The method can

also be modified to calculate the number of traces required to ensure a given

probability of success for an attack on a particular system, or the amount of noise

required to ensure an attacker must take a minimum number of traces in order for

them to guarantee a given probability of success. These can be used as tools for either

an attacker to plan his attack in advance (assuming he has knowledge of the SNR), or

for the designer of a cryptographic device to guarantee a particular level of security

against the attack.

There are two problems with previous attempts at adding DPA countermeasures

to cryptographic hardware, they are very expensive, reducing the performance and

increasing the size of designs, and that, generally due to inevitable imperfections in

their implementation, they can never offer complete protection from DPA, only

reduce the correlation between the data being processed and the power consumption.

Chapter 9 Conclusion and Future Work 193

As can be shown from the statistical model of DPA, this reduction can never

completely stop DPA but only make it more inconvenient, requiring an attacker to

record more power traces. The main innovation in the countermeasure developed

during the course of this research was where to put it, instead of adding the

countermeasure to the completed implementation of the hardware it was added to the

algorithm itself. This has two potential advantages, the algorithm can still be

implemented in an efficient way, and by using a suitable technique it will offer

complete protection from DPA. Clearly there is no algorithmic way to divorce the

power consumption from the data being processed, but by attacking the assumption

on which DPA is based a technique to prevent it can be found.

To retrieve a key using DPA the correlation is calculated and used as a test to

determine which hypothesis about the value of a single byte of the key is correct. This

is only possible because multiple samples are available, all with the same value for a

given byte of a round key. If this is rendered untrue then the entire attack falls apart.

This can be achieved by creating a key schedule that constantly changes the value of

the round key. The technique was used to modify AES, TDES and ARIA. It always

offered protection from the attack and during the course of adapting the technique for

these algorithms rules for ensuring the key schedules could be implemented

efficiently were developed. Thus it has been demonstrated that algorithmic

countermeasures to DPA can completely remove the threat of DPA which still

allowing efficient implementations of the algorithm.

The uncanny ability of DPA to divine the internal state of a device can be put to

other, more benign, tasks. This can be seen in the development of a method for adding

a watermark to intellectual property by including hardware that will produce a known

set of register transitions, and hence power consumption, that can then be detected

using a DPA-like technique.

9.2 Summary of Contributions

This work has resulted in a conference paper and a journal paper (under

consideration). The specific contributions are outlined below.

• A novel, algorithmic based method for defeating DPA was devised.

Chapter 9 Conclusion and Future Work 194

• Identification of the design principles of key schedules for efficient

implementation of algorithms that use the new technique.

• A statistical model of the DPA attack was derived.

• A method for calculating the probability that an attack will be successful given

the number of traces that were recorded and the SNR of the system.

• A technique for using the above method to calculate the SNR or the number of

traces required to give a particular probability of success.

• A method for determining if it is reasonable to believe that a specific

watermark is present in the power consumption of a design.

• A method for calculating the number of traces required to get a given

probability of being able to detect the watermark present in the power

consumption do a design given the SNR of the watermark.

9.3 Future Work

9.3.1 A method for calculating the probability that a set of results from a DPA

attack gives the correct value.

DPA does not always give the correct result. When the attack is being

performed in the lab this is of little practical concern, generally the researcher has set

the value for the key so already knows the value and can tell if the value is correct or

not. For an actual attacker this is not true and if the highest peak is small it is not

always clear whether that is the correct result. The accuracy of a DPA attack can be

judged approximately by eye, but only with any accuracy when the cases are extreme,

either with one large, obvious peak or when there are several peaks of approximately

the same height. If DPA were ever to be used in a real world situation it would need a

formal method to determine the validity of results.

9.3.2 A method for estimating the SNR of a system using only the results from

a relatively small set of DPA results

Both the population correlation of the correct key guess (which the highest peak

is in theory an estimate of) and the standard deviation of the results are related to the

Chapter 9 Conclusion and Future Work 195

SNR of the system. The SNR is a very useful piece of information to have as it

enables an attacker to determine how many traces would be required to have a good

chance of cracking the system, and it would help in evaluating the correctness of any

results. In theory it is possible to take either the highest peak in the DPA or the

standard deviation of the results and estimate a value for the SNR. The population

correlation can be converted into the SNR using equation (6-4). The standard

deviation of the DPA results is given by the following formula:

 22

6.93
1)(

+

−
=

SNR

Traces
DPAstd

(9-1)

The value 9.6 was determined empirically, Figure 9-1 shows a graph of the

standard deviation of DPA results from a Matlab simulation vs. SNR, and the

modelled relationship using the above formula.

Figure 9-1 : The standard deviation of DPA results vs SNR for the results from Matlab

simulations and a model of the relationship.

The problem is that the estimate will only be accurate if the number of traces is

fairly large compared to the SNR, and in this case knowing the value of the SNR is

less useful as the attacker generally has a clear, unambiguous peak that generally

indicates a correct result. Finding a way of accurately determining the SNR from the

Chapter 9 Conclusion and Future Work 196

results when there are not enough traces to give an accurate key value would enable

an attacker to better plan and evaluate his attack.

9.3.3 Improving the accuracy of DPA by tuning the power consumption model

to a particular device.

If there is any non-linear behaviour in the power consumption model, i.e. if not

all bits make the same contribution to the power consumption, or a 0 to 1 transition

consumes a different amount of power to a 1 to 0 transition, then the population

correlation of the correct guess could be reduced making it more difficult to perform

DPA. If this is the case then it might be possible to improve the accuracy of DPA on a

particular device by measuring this and then compensating for it in the power

consumption model.

References

[1] J. Daemen and V. Rijmen, "AES Proposal: Rijndael," 1999.
[2] P. Kocher, J. Jaffe, and B. Jun, "Differential Power Analysis," in International

Cryptology Conference on Advances in Cryptology, 1999, pp. 388-397.
[3] A. Schuster, "Differential Power Analysis of an AES Implementation," Institut

for Applied Information Processing and Communications – IAIK25/6/2004
2004.

[4] E. Oswald and K. Schramm, "An Efficient Masking Scheme for AES
Software Implementations," in Workshop on Information Security

Applications—WISA 2005, 2005, pp. 292 - 305.
[5] K. Tiri, D. Hwang, A. Hodjat, B.-C. Lai, S. Yang, P. Schaumont, and I.

Verbauwhede, Prototype IC with WDDL and Differential Routing - DPA

Resistance Assessment, 2005.
[6] J. Blömer, J. Guajardo, and V. Krummel, "Provably Secure Masking of AES,"

in Selected Areas in Cryptography Workshop, 2004, pp. 69-83.
[7] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen, A Side-Channel

Analysis Resistant Description of the AES S-Box, 2005.
[8] E. Trichina, D. De Seta, and L. Germani, "Simplified Adaptive Multiplicative

Masking for AES," in CHES 2002, Cryptographic Hardware and Embedded

Systems, Redwood Shores, CA, USA, 2002, pp. 187 - 197.
[9] N. Pramstaller, F. K. Gurkaynak, S. Haene, H. Kaeslin, N. Felber, and W.

Fichtner, "Towards an AES crypto-chip resistant to differential power
analysis," in European Solid-State Circuits Conference, 2004, pp. 307-310.

[10] S. Chari, C. Jutla, S., J. Rao, R., and P. Rohatgi, "Towards Sound Approaches
to Counteract Power-Analysis Attacks," in Advances in Cryptology, 1999, pp.
398-412.

[11] S. Yang, W. Wolf, N. Vijaykrishnan, D. Serpanos, and Y. Xie, "Power Attack
Resistant Cryptosystem Design: A Dynamic Voltage and Frequency Switching
Approach," Design, Automation and Test in Europe, vol. 3, pp. 64 - 69, 2005.

[12] J. Casanova, "The Complete Memoirs of Casanova," Globusz Publishing,
New.

[13] S. Singh, The code book: Delacorte Press, 2002.
[14] C. E. Shannon, "Communication Theory of Secrecy Systems," Bell System

Technical Journal, vol. 28, pp. 656-715, 1949.
[15] H. Feistel, "Cryptography and Computer Privacy," in Scientific American. vol.

228, 1973, pp. 15 - 23.
[16] M. Matsui and A. Yamagishi, "A new method for known plaintext attack of

FEAL cipher," in EUROCRYPT, Balatonfǔred, Hungary, 1992.
[17] M. Matsui, "The First Experimental Cryptanalysis of the Data Encryption

Standard," in EUROCRYPT Santa Barbara, California, USA, 1994.
[18] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler, "Breaking Ciphers

with COPACOBANA - A Cost-Optimized Parallel Code Breaker," in CHES

2006, Yokohama, Japan, 2006.

 References 198

[19] P. Kocher, "Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems," in CRYPTO, 1996, pp. 104-113.

[20] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, "The EM Side-
Channel(s)," in Cryptographic Hardware and Embedded Systems, 2002, pp.
29-45.

[21] A. Shamir and E. Tromer, "Acoustic cryptanalysis - On nosy people and noisy
machines," http://www.wisdom.weizmann.ac.il/~tromer/acoustic/ Accessed:
17/6/07

[22] L. Goubin and J. Patarin, "DES and Differential Power Analysis The
Duplication Method," in Cryptographic Hardware and Embedded Systems

International Workshop, 1999, pp. 158-172.
[23] N. Pramstaller, E. Oswald, S. Mangard, F. K. Gürkaynak, and S. Häne, "A

Masked AES ASIC Implementation," in Austrochip 2004, Villach, Austria,
2004, pp. 77 - 82.

[24] Y. Shengqi, W. Wayne, N. Vijaykrishnan, D. N. Serpanos, and X. Yuan,
"Power Attack Resistant Cryptosystem Design: A Dynamic Voltage and
Frequency Switching Approach," 2005, p. 64.

[25] K. Tiri and I. Verbauwhede, "A Logic Level Design Methodology for a Secure
DPA Resistant ASIC or FPGA Implementation," in Design Automation and

Test in Europe, 2004, pp. 246-251.
[26] E. Biham and A. Shamir, "Differential cryptanalysis of DES-like

cryptosystems," Journal of Cryptology, vol. 4, pp. 3-72, 5/2/91 1991.
[27] E. Biham and A. Biryukov, "An Improvement of Davies' Attack on DES,"

Journal of Cryptology, vol. 10, pp. 195 - 205, 1997 1997.
[28] "COPACOBANA - Special-Purpose Hardware for Code-Breaking,"

http://www.copacobana.org/ Accessed:
[29] "RSA Laboratories - DES Challenge III,"

http://www.rsa.com/rsalabs/node.asp?id=2108 Accessed:
[30] L. May, M. Henricksen, W. Millan, and G. Carter, "Strengthening the Key

Schedule of the AES," in Information Security and Privacy, 2002, pp. 226-
240.

[31] N. Feguson and B. Schnier, Practical Cryptography, 2003.
[32] N. I. o. S. a. Technology, "DATA ENCRYPTION STANDARD (DES),"

FIPS1999.
[33] "FIPS PUB 46 - Data Encryption Standard," National Bureau of

Standards1977.
[34] D. Coppersmith, "The Data Encryption Standard (DES) and its strength

against attacks," IBM Journal of Research and Development, vol. 38, pp. 243 -
250, May 1994 1994.

[35] W. Diffie and M. E. Hellman, "Special Feature Exhaustive Cryptanalysis of
the NBS Data Encryption Standard," Computer, vol. 10, pp. 74-84, 1977.

[36] R. C. Merkle and M. E. Hellman, "On the security of multiple encryption,"
Commun. ACM, vol. 24, pp. 465-467, 1981.

[37] P. van Oorschot and M. Wiener, "A Known-Plaintext Attack on Two-Key
Triple Encryption," in Advances in Cryptology — EUROCRYPT ’90, 1991, pp.
318-325.

[38] S. Lucks, "Attacking Triple Encryption," Fast Software Encryption, vol.
LNCS 1372, pp. 239–253, 1998.

[39] "Announcing the ADVANCED ENCRYPTION STANDARD (AES)," FIPS,
Ed.: NIST, 2001.

 References 199

[40] E. T. Bell, Men of Mathematics: Simon & Schuster, 1937.
[41] S. Morioka and A. Satoh, "A 10-Gbps Full-AES Design with a Twisted BDD

S-Box Architecture," IEEE Transactions on VLSI Systems vol. 12, pp. 686-
691, 2004.

[42] H. Brunner, A. Curiger, and M. Hofstetter, "On computing multiplicative
inverses in GF(2m)," IEEE Transactions on Computers, vol. 42, pp. 1010-
1015, 1993.

[43] R. W. Ward and T. C. A. Molteno, "Efficient Hardware Calculation of
Inverses in GF (28)," in Electronics New Zealand, 2003.

[44] V. Rijmen, "Efficient Implementation of the Rijndael S-box," 2005.
[45] A. Hodjat and I. Verbauwhede, "Minimum Area Cost for a 30 to 70 Gbits/s

AES Processor," in IEEE Computer Society Annual Symposium on VLSI

Emerging Trends in VLSI Systems Design, 2004, pp. 83-88.
[46] X. Zhang and K. Parhi, "Implementation Approaches for the Advanced

Encryption Standard Algorithm," IEEE Circuits and Systems Magazine, vol. 2,
p. 24, 2002.

[47] A. Hodjat and I. Verbauwhede, "Speed-area trade-off for 10 to 100 Gbits/s
throughput AES processor," in Asilomar Conference on Signals, Systems and

Computers,, 2003, pp. 2147-2150.
[48] N. S. Kim, T. Mudge, and R. Brown, "A 2.3 Gb/s Fully Integrated and

Synthesizable AES Rijndael Core," in IEEE Custom Integrated Circuits

Conference, 2003.
[49] T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu, "A High-Throughput Low-

Cost AES Cipher Chip," in Asia-Pacific Conference on AISIC, 2002, pp. 85-
88.

[50] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, "A Highly Efficient AES
Cipher Chip," in Asia and South Pacific Design Automation Conference, 2003,
pp. 561-562.

[51] S. S. Wang and W. S. Ni, "An Efficient FPGA Implementation of Advanced
Encryption Standard Algorithm," in IEEE International Symposium on

Circuits and Systems. vol. 2, 2004, pp. 597-600.
[52] M. McLoone and J. V. McCanny, "High Performance Single Chip FPGA

Rijndael Algorithm Implementations," in Cryptographic Hardware and

Embedded Systems, 2001, pp. 65-76.
[53] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat, "Compact and

Efficient Encryption/Decryption Module for FPGA Implementation of the
AES Rijndael Very Well Suited for Small Embedded Applications," in
Information Technology: Coding and Computing, 2004, pp. 583-587.

[54] X. Zhang and K. Parhi, "High-speed VLSI Architectures for the AES
Algorithm," in IEEE Transactions on VLSI Systems. vol. 12, 2004, pp. 957-
967.

[55] K. Jarvinen, M. Tommiska, and J. Skytta, "A Fully Pipelined Memoryless
17.8 Gbps AES-128 Encryptor," in International Symposium on Field-

Programmable Gate Arrays, 2003.
[56] L. E. Bassham, "The Advanced Encryption Standard Algorithm Validation

Suite (AESAVS) ": National Inst.of Standards and Technology, 2002.
[57] N. Ferguson and B. Schneier, "Practical Cryptography," John Wiley & Sons,

2003, pp. 56-57.
[58] J. Daemen, L. Knudsen, and V. Rijmen, "The Block Cipher SQUARE," in

Fast Software Encryption, 1997, pp. 149-156.

 References 200

[59] F.-X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and J.-J.
Quisquater, "Power Analysis of FPGAs: How Practical Is the Attack," in
Field-Programmable Logic and Applications, Lisbon, Portugal, 2003, pp. 707-
711.

[60] F.-X. Standaert, S. B. Örs, and B. Preneel, "Power Analysis of an FPGA
Implementation of Rijndael: Is Pipelining a DPA Countermeasure," in
Cryptographic Hardware and Embedded Systems, Cambridge, MA, USA,
2004, pp. 30-44.

[61] S. B. Örs, F. Gürkaynak, E. Oswald, and B. Preneel, "Power-Analysis Attack
on an ASIC AES implementation," in International Conference on

Information Technology: Coding and Computing (ITCC'04), 2004, p. 546.
[62] D. Asonov and R. Agrawal, "Keyboard Acoustic Emanations," 2004.
[63] L. R. Knudsen and J. E. Mathiassen, "On the Role of Key Schedules in

Attacks on Iterated Ciphers," Lecture Notes in Computer Science, vol. 3193,
pp. 322-334, Jan 2004 2004.

[64] R. Bevan and E. Knudsen, "Ways to Enhance Differential Power Analysis," in
Information Security and Cryptology, 2002, pp. 327-342.

[65] A. Rastogi, K. Ganeshpure, and S. Kundu, "A Study on Impact of Leakage
Current on Dynamic Power," in Circuits and Systems, 2007. ISCAS 2007.

IEEE International Symposium on, 2007, p. 1069.
[66] L. Lang and W. Burleson, "Leakage-based differential power analysis (LDPA)

on sub-90nm CMOS cryptosystems," in Circuits and Systems, 2008. ISCAS

2008. IEEE International Symposium on, 2008, p. 252.
[67] E. Oswald, "Differential Power Analysis Attacks - A New Generation?,"

IAIK.
[68] E. Brier, C. Clavier, and F. Olivier, "Correlation Power Analysis with a

Leakage Model," LECTURE NOTES IN COMPUTER SCIENCE, pp. 16-29,
2004.

[69] P. Fahn and P. Pearson, "IPA: A New Class of Power Attacks," in
Proceedings of the First International Workshop on Cryptographic Hardware

and Embedded Systems, 1999, pp. 173-186.
[70] T. Messerges, "Using Second-Order Power Analysis to Attack DPA Resistant

Software," in Cryptographic Hardware and Embedded Systems, 2000, pp.
238-251.

[71] J. Waddle and D. Wagner, "Towards Efficient Second-Order Power Analysis,"
Lecture Notes in Computer Science, p. 1, 2004.

[72] R. A. Fisher, "Frequency distribution of the values of the correlation
coefficient in samples of an indefinitely large population," Biometrika, vol. 10,
pp. 507-521, 1915.

[73] S. Mangard, "Hardware Countermeasures against DPA-A Statistical Analysis
of Their Effectiveness," LECTURE NOTES IN COMPUTER SCIENCE, pp.
222-235, 2004.

[74] E. Prouff, "DPA Attacks and S-Boxes," in Fast Software Encryption, 2005,
pp. 424-441.

[75] B. Preneel, R. Govaerts, and J. Vanderwalle, "Boolean Functions Satisfying
Higher Order Propergation Criteria," in EUROCRYPT '85, 1985, pp. 141 -
152.

[76] C. Carlet, "On highly nonlinear S-boxes and their inability to thwart DPA
attacks (completed version)," Cryptology ePrint Archive, Report 2005/387,

2005.

 References 201

[77] L. Bohy, M. Neve, D. Samyde, and J.-J. Quisquater, "Principal and
Independent Component Analysis for Crypto-systems with Hardware
Unmasked Units," 2003.

[78] J.-J. Quisquater and D. Samyde, "Automatic Code Recognition for smart cards
using a Kohonen neural network," in Smart Card Research and Advanced

Application Conference, San Jose, CA, USA, 2002.
[79] R. Novak, "Sign-Based Differential Power Analysis," Lecture Notes in

Computer Science, pp. 203-216, 2004.
[80] A. Yu and D. S. Bree, "A clock-less implementation of the AES resists to

power and timing attacks," in Information Technology: Coding and

Computing, 2004, pp. 525-532.
[81] K. Tiri and I. Verbauwhede, A VLSI Design Flow for Secure Side-Channel

Attack Resistant ICs: IEEE Computer Society, 2005.
[82] K. Tiri and I. Verbauwhede, "Securing Encryption Algorithms against DPA at

the Logic Level: Next Generation Smart Card Technology," in Cryptographic

Hardware and Embedded Systems

2003, pp. 125-136.
[83] K. Tiri and I. Verbauwhede, "Place and Route for Secure Standard Cell

Design," in CARDIS 2004-Sixth Smart Card Research and Advanced

Application IFIP Conference, Toulouse, France, 2004
[84] K. Tiri and I. Verbauwhede, "Charge recycling sense amplifier based logic:

securing low power security ICs against DPA," in ESSCIRC 2004, European

Solid-State Circuits Conference, 2004, pp. 179 - 182.
[85] D. Suzuki and M. Saeki, "Security Evaluation of DPA Countermeasures Using

Dual-Rail Pre-charge Logic Style," in Cryptographic Hardware and

Embedded Systems - CHES 2006, 2006, p. 255.
[86] L. Goublin and J. Patarin, "DES and Differential Power Analysis The

Duplication Method," in Cryptographic Hardware and Embedded Systems

International Workshop, 1999, pp. 158-172.
[87] M.-L. Akkar and C. Giraud, "An Implementation of DES and AES, Secure

against Some Attacks," in CHES 2001, Cryptographic Hardware and

Embedded Systems, Paris, France, 2001, pp. 309 - 318.
[88] E. Oswald, S. Mangard, and N. Pramstaller, "Secure and Efficient Masking of

AES - A Mission Impossible?," 2004.
[89] M.-L. Akkar and L. Goubin, "A Generic Protection against High-Order

Differential Power Analysis," in Fast Software Encryption, 2003, p. 192.
[90] N. Prarnstaller, F. K. Gurkaynak, S. Haene, H. Kaeslin, N. Felber, and W.

Fichtner, "Towards an AES crypto-chip resistant to differential power
analysis," in European Solid-State Circuits Conference, 2004, pp. 307-310.

[91] J. D. Golic and C. Tymen, "Multiplicative Masking and Power Analysis of
AES," in Cryptographic Hardware and Embedded Systems - CHES 2002,
Redwood Shores, CA, USA, 2003, pp. 198 - 212.

[92] M.-L. Akkar, R. Bévan, and L. Goubin, Two Power Analysis Attacks against

One-Mask Methods, 2004.
[93] S. Mangard, N. Pramstaller, and E. Oswald, "Successfully Attacking Masked

AES Hardware Implementations," in Cryptographic Hardware and Embedded

Systems – CHES 2005, 2005, pp. 157-171.
[94] F. K. Guürkaynak, A. Burg, N. Felber, W. Fichtner, D. Gasser, F. Hug, and H.

Kaeslin, "A 2 Gb/s balanced AES crypto-chip implementation " in ACM Great

Lakes symposium on VLSI Boston, MA, USA pp. 39 - 44

 References 202

[95] K. Baddam and M. Zwolinski, "Evaluation of Dynamic Voltage and
Frequency Scaling as a Differential Power Analysis Countermeasure," 2007,
p. 854.

[96] H. Chang and K. Kim, "Securing AES against Second-Order DPA by simple
Fixed-Value Masking," in Computer Security Symposium, 2003, pp. 145-150.

[97] M.-L. Akkar and L. Goubin, "A Generic Protection against High-Order
Differential Power Analysis," in Fast Software Encryption, Lund, Sweden,
2003, p. 192.

[98] D. D. Hwang, K. Tiri, A. Hodjat, B. C. Lai, S. Yang, P. Schaumont, and I.
Verbauwhede, "AES-Based Security Coprocessor IC in 0.18-µm CMOS With
Resistance to Differential Power Analysis Side-Channel Attacks," IEEE

Journal of Solid-State Circuits, vol. 41, pp. 781- 792, April 2006 2006.
[99] S. Levy, Crypto, 2001.
[100] Y. Alkabani and F. Koushanfar, "Active hardware metering for intellectual

property protection and security."
[101] I. Hong and M. Potkonjak, "Behavioral synthesis techniques for intellectual

property protection," 1999, pp. 849-854.
[102] M. Ward, "EMV card payments–An update," Information Security Technical

Report, vol. 11, pp. 89-92, 2006.
[103] OpenCores, "3DES (Triple DES) / DES (VHDL) (3des_vhdl)," OpenCores,

http://opencores.org/?do=project&who=3des_vhdl Accessed: 10/10/2007
[104] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla,

S. Matyas Jr, L. O’Connor, M. Peyravian, and D. Safford, "MARS-a candidate
cipher for AES," NIST AES Proposal, Jun, 1998.

[105] R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, "The RC6 Block Cipher,"
NIST AES Proposal, Jun, 1998.

[106] R. Rivest, "The RC5 encryption algorithm," LECTURE NOTES IN

COMPUTER SCIENCE, pp. 86-86, 1995.
[107] R. Anderson, E. Biham, and L. Knudsen, "Serpent: A Proposal for the

Advanced Encryption Standard," NIST AES Proposal, Jun, 1998.
[108] M. Matsui, "New Block Encryption Algorithm MISTY," LECTURE NOTES

IN COMPUTER SCIENCE, pp. 54-68, 1997.
[109] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T.

Tokita, "Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms–
Design andAnalysis."

[110] K. Ohkuma, H. Muratani, F. Sano, and S. Kawamura, "The block cipher
Hierocrypt," Lecture notes in computer science, pp. 72-88, 2001.

[111] D. Kwon, J. Kim, S. Park, S. Sung, Y. Sohn, J. Song, Y. Yeom, E. Yoon, S.
Lee, and J. Lee, "New Block Cipher: ARIA," LECTURE NOTES IN

COMPUTER SCIENCE, pp. 432-445, 2004.

