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Research in the last few years has indicated that, despite modern algorithms being 

secure against all published mathematical attacks and being far too complex to break by 

brute force, secret key data can be gathered by monitoring the power consumption. This 

is known as a power analysis attack, the most successful has been differential power 

analysis (DPA). Several countermeasures have been proposed for preventing power 

analysis attacks with varying degrees of efficacy. One thing all the countermeasures 

have in common is their large cost in terms of performance and or cost. In this thesis 

several modifications to the AES algorithm are proposed that seek to inherently secure 

it against DPA and their effectiveness and cost are investigated. 

Due to the statistical nature of DPA there is no set amount of power consumption 

data that will always give the correct result for a given device, rather, a value for the 

SNR and the number of power measurements involved in the attack will equate to a 

probability of success. In this thesis a statistical model of the DPA attack is derived and 

it is used to find a method for calculating the probability that a particular attack will be 

successful. 

A more benign use for DPA is also discussed. If the signature of a specific pattern 

of register transitions can be detected in the power consumption of a device then 

designers can add hardware whose sole purpose is to be detectable in a power trace and 

act as a watermark to prove the presence of intellectual property. 
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Chapter 1 Introduction 

1.1 Motivation 

This thesis investigates methods of attacks on secret-key cryptographic systems. 

A current pervasive approach for symmetric encryption is the use of block ciphers and 

specifically the Advanced Encryption Standard (AES) [1]. Research in the last few 

years has indicated that despite modern algorithms being secure against all published 

mathematical attacks and being far too complex to break by brute force, secret key 

data can be gathered by monitoring the power consumption. This is known as a side-

channel attack as instead of attacking the cipher in a traditional manner it is cracked 

using information extracted from the physical implementation of the cryptosystem. 

When the side channel is the power consumption it is known as a power analysis 

attack. In CMOS technology, when the value inside a register changes from 0 to 1 or 

1 to 0 the power consumption is significantly higher than when the value remains 

constant, this leads to a large data dependence in the power consumption. The most 

effective power analysis attack is differential power analysis (DPA), it combines 

power consumption information from several encryptions with predictions about the 

transitions of register values and uses statistical evaluation to determine the most 

likely value of the key [2]. DPA is powerful enough to successfully retrieve the key 

from implementations of AES [3]. 

Several countermeasures have been proposed for preventing power analysis 

attacks, these include balancing the logic there is always the same number of bit 

transitions irrespective of the data that is being processed, masking data to hide 

intermediate values and randomly changing the supply voltage and clock frequency of 

the device [4-11]. The countermeasures have varying degrees of efficacy, but even the 

most successful ones do not offer complete protection from the attack [5]. One thing 
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all the countermeasures have in common is their large cost in terms of performance 

and or area, this is due to the fact that they all add additional hardware to try to defeat 

power analysis. A better approach is needed. Rather than trying to protect the 

implementations of cryptographic algorithms after the fact it would be preferable if 

algorithms were designed in such a way as to already be immune from DPA.  

1.2 Objectives 

It was noted in the previous section that DPA can break even the most modern 

algorithms and that the current techniques for protecting implementations from the 

attack do not offer complete security, rather they simply reduce the correlation 

between the data that is being processed and the power consumption. While this will 

make it harder for an attacker to retrieve the key, if there is any correlation a 

determined enough attacker, who collected enough power consumption data, could 

exploit it. The exact relationship between the amount of power consumption data 

required and the level of correlation between the data and the power consumption is 

not known. This leads to two objectives: the derivation of the relationship between the 

correlation and the level of information required to perform the attack, and the 

development of a new type of countermeasure that defeats DPA. These are described 

in more detail in the following two paragraphs. 

Despite the fact that DPA was developed in 1998 and the mathematical 

concepts that are employed in the attack are well developed there are still elements of 

the attack that are poorly understood. It is clear that the greater the dependence of the 

power consumption on the processed data the lower the amount of power 

consumption data that must be recorded in order to attack the cryptographic device. 

There is no quantitative relationship, however, therefore it is not possible to calculate 

the effect of halving the correlation between the processed data and the power 

consumption. This is one of the aims of this thesis. It will allow the evaluation of the 

effects of a particular countermeasure on the effort involved in performing DPA and 

enable designers to tailor the amount of noise in a design to the particular security 

constraints of the system that they are creating.  

The only countermeasures to DPA that have been proposed so far are ad hoc 

modifications to cryptographic implementations that are costly in terms of the 

design’s speed and area requirements. Only partial protection from DPA is gained for 
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the significant price that is paid. The main goal of this thesis is to develop a 

modification to the AES algorithm that will protect it completely from DPA while 

still allowing efficient implementation. It will then be possible to apply the technique 

to other existing algorithms and, most importantly, new algorithms can be designed to 

be immune from DPA. 

1.3 Thesis Structure 

This thesis is divided into 9 chapters. Chapters 2-4 deal with the background 

material and chapters 5-7 cover the original work. Chapter 8 summarises the thesis 

and Chapter 9 concludes and suggests some further work that can be done on the 

topic. 

Chapter 2 gives an overview of the history of cryptography and cryptanalysis. 

Chapter 3 introduces the basic concepts and techniques in cryptography and the 

goes on to explain block ciphers in greater detail. Three important block ciphers: the 

Data Encryption Standard (DES), Triple DES (TDES) and the Advanced Encryption 

Standard (AES) are described in detail including security concerns surrounding their 

use. 

Chapter 4 deals with attacks on block ciphers. This includes both the perceived 

weaknesses of the AES algorithm and power analysis attacks, specifically DPA. 

Various different approaches for the attacks are described, as are some 

countermeasures. The effectiveness of the attacks and countermeasures are discussed 

using published results of the application of power analysis to real cryptographic 

systems. 

Chapter 5 describes the systems that were developed in the course of this 

research to investigate DPA. First the attack was performed in simulation using 

Modelsim with a post-synthesis VHDL design of AES, and Matlab with a 

mathematical model of the power consumption of a general crypto-device. Also an 

oscilloscope was used to record the power consumption of an FPGA configured to 

perform AES. These systems were used to investigate the basic properties of DPA 

such as the effect of what part of the algorithm was being targeted by the attack. 

Chapter 6 gives a detailed analysis of the statistical properties of DPA and 

develops a model of the attack. Using this model, a method was developed to 
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determine the probability that a particular DPA attack will be successful given the 

number of power traces available to an attacker and the signal-to-noise ratio (SNR) of 

the crypto device being attacked. Also, another use for DPA is proposed, using a 

pseudo-random number generator to add a pattern to the power consumption of a 

design to act like a watermark that will allow the identification of intellectual property 

within a larger system.  

In Chapter 7 a number of modifications were made to the AES algorithm with 

the hope of rendering it impervious to DPA. The most successful of these techniques, 

using the key schedule to change the round keys for each block, was then applied to 

TDES. While it did still protect it from DPA, an implementation of the new algorithm 

used significantly more resources and was slower. The structure of the key schedules 

of a selection of modern algorithms were analysed for their suitability for 

implementing the technique efficiently, and the important properties were identified. 

The algorithm ARIA has these properties and so an implementation of the modified 

algorithm was made. It performed well in terms of both protection from DPA and 

implementational efficiency. 



 

 

Chapter 2 Background 

2.1 Introduction 

Since the invention of writing, people have sought to keep the nature of their 

most sensitive messages secret from their enemies. Failure to do so has led to lost 

battles, revealed secrets and the fall of monarchs. Cryptography is a constant battle 

between code makers and code breakers. Codes are developed and then techniques are 

developed to crack them, when it has become clear that a code is no longer secure 

new methods must be found to restore the protection that was offered previously. 

These new codes are inevitably eventually broken by increases in computing power, 

knowledge of mathematics, or the sheer determination of attackers. 

Historically cryptography has been purely the domain of generals and statesmen 

– and Casanova1 – but in the digital age cryptography has become ubiquitous and an 

important tool for everyone to send data electronically. Members of the public use 

modern encryption techniques, albeit sometimes unknowingly, every time they 


1"Shall I tell you the key?" 

"Pray do so." 

 I gave her the word, which belonged to no language that I know of, and the marchioness was 

quite thunderstruck. 

"This is too amazing," said she; "I thought myself the sole possessor of that mysterious word--I 

had never written it down, laying it up in my memory--and I am sure I have never told anyone of it." 

I might have informed her that the calculation which enabled me to decipher the manuscript 

furnished me also with the key, but the whim took me to tell her that a spirit had revealed it to me. This 

foolish tale completed my mastery over this truly learned and sensible woman on everything but her 

hobby. This false confidence gave me an immense ascendancy over Madame d'Urfe, and I often abused 

my power over her.[12] J. Casanova, "The Complete Memoirs of Casanova," Globusz Publishing, 

New. 
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withdraw money from a cash machine, make a mobile phone call, or even watch a 

DVD. 

2.2 History of cryptography 

2.2.1 Classical ciphers 

There were two main types of cipher that existed in the ancient world, the 

transposition cipher and the substitution cipher. Transposition ciphers hide the 

meaning of a message by rearranging the characters in it, turning it into a large 

difficult anagram. Substitution ciphers change letters for other letters or symbols 

making the message unintelligible unless the reader knows how the letters have been 

changed.  

The first military cryptographic device encoded and decoded messages using 

transposition, it was the Spartan Scytale which dates back to the 5th century BC [13]. 

A Scytale is a wooden rod of fixed diameter, a strip of leather or parchment is wound 

around it and the message is written across the length of the rod so that each 

successive letter appears on a different section of the parchment. When unwound and 

read down the length of the parchment the letters are mixed and can only be read by 

wrapping the parchment around a stick of similar diameter. 

The first recorded use of substitution ciphers dates back to 600-500 BC. 

Invented by Hebrew scholars, it is called the Atbash cipher and substitutes the first 

letter of the alphabet for the last, the second for the penultimate and so on. It is used in 

Jewish mysticism and in some bible passages, its main purpose is probably to create 

an air of mystery rather than actual concealment. 

The Caesar Cipher is named after Julius Caesar as he is reported to have used it 

when sending important military communications by Suetonius, a biographer of the 

first 12 emperors of Rome who was also Emperor Hadrian’s personal secretary. It is a 

very simple substitution cipher, the alphabet is shifted a number of letters in a 

particular direction, for example if it was used on our alphabet and shifted two places 

to the right then ‘a’ would become ‘c’, ‘b’ would become ‘d’ and so on until ‘z’ 

became ‘b’. 
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The weakness with these ciphers is that if the attacker knows the type of cipher 

it is then it becomes very easy to crack, with Atbash, there is only one possible set of 

substitutions, and with the Caesar cipher there are only 26. A slightly more complex 

substitution cipher is one where the letters are randomly substituted for others rather 

than in order. This would give a total of 26! (4*1026) possible combinations. Even 

with this large number of combinations substitution ciphers are still not particularly 

secure as the distribution of letters in the plaintext is unhidden, this leaves it 

vulnerable to frequency analysis. This looks at the frequency of letters in the 

ciphertext and compares them to the frequencies of various letters in the language that 

the plaintext is written in. For example, if a ciphertext contains a large number of ‘w’s 

then trying the substitution ‘e’ = ‘w’ is a reasonable place to start. The first known 

record of this technique is by the 9th century Arabic scholar Abu Yusuf Yaqub ibn 

Ishaq al-Sabbah Al-Kindi. 

Probably the most famous historical demonstration of the weakness of 

substitution ciphers is the Babington plot. In 1568 Mary Queen of Scots fled Scotland 

after a failed attempt to regain the crown of Scotland from her half-brother. She 

sought refuge in England on her way to France, unfortunately for her she had 

misjudged the mood of her cousin Queen Elizabeth, who imprisoned her. She 

remained confined in a series of castles and manors and in 1586 after 18 years in 

prison she was allowed to neither send nor receive letters. Then suddenly, a large 

parcel of correspondence arrived in her possession. They were smuggled into her 

prison by Gilbert Gifford who had placed them in a hollow bung inside a barrel of 

beer. It was through this channel of communication that she was approached by 

Anthony Babington, a charming and charismatic Catholic who hated the current 

protestant rule and wanted to see a Catholic monarch on the throne of England. He 

and six other conspirators informed Mary of a plan to assassinate Queen Elizabeth 

and free her from her prison. Unfortunately for Babington and his co-conspirators 

Gifford was a double-agent working for Elizabeth’s spymaster Francis Walsingham. 

Babington was rightly cautious and had not only hidden his messages, but also 

encrypted them. His cipher had substitutions for all the letters, 35 extra symbols for 

common phrases, four nulls to confuse any potential attacker and one symbol that 

meant that the following letter was double. The messages were delivered to 

Walsingham by Gifford who had them copied and replaced and over the course of the 
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correspondence between Mary and Babington the cipher was broken by his code-

breaker Thomas Phelipes. Even when Walsingham had enough evidence to arrest 

Babington he waited, he wanted Mary to implicate herself so she too could be 

executed. When she sent a message to Babington endorsing the plot Walsingham 

knew he had her, he just had one more thing to do before he sprung his trap. He had 

Phelipes, also an expert forger, add a post-script to the message, encrypted in the 

same cipher, asking for the identities of Babington’s co-conspirators. Now 

Walsingham had everything he wanted he arrested everyone involved, Babington and 

his accomplices were hung, drawn and quartered, and on the 8th of February 1587 

Mary Queen of Scots was beheaded. 

This is a clear example of how once an attacker has the key to a cipher the 

system is completely broken, they can both read any messages and, if they also have 

appropriate access to the channel of communication, can forge messages. This leaves 

the system completely vulnerable. 

2.2.2 Development of Poly-alphabet Ciphers 

Frequency analysis was such a successful technique against substitution ciphers 

that cryptographers had to develop new techniques to counter this. The next most 

significant group of ciphers that was developed were poly-alphabet ciphers. These use 

more than one set of substitutions to encrypt different letters in the message. The basis 

for these was work done by Leon Battista Alberti, a Florentine polymath, in the 

1460s. He wrote an essay on cryptography after a casual conversation with his friend 

Leonardo Dato, the pontifical secretary, in the Vatican gardens. Alberti proposed 

using two substitution ciphers on alternating letters in a message but failed to develop 

the concept into a fully formed cryptographic system. His idea was developed by 

Johannes Trithemius, Giovanni Porta and finally Blaise de Vigenère. Vigenère was 

born in 1523, a French diplomat, his initial interest in cryptography was purely 

professional and he had read the work by Alberti, Trithemius and Porta while on a 

two year diplomatic mission in Rome. In 1562 he decided he had earnt enough money 

to retire and dedicate his life to study. It was then that he developed a powerful new 

cipher. 

The Vigenère cipher consists of 26 alphabets each shifted by an increasing 

number of letters. The key is a code word or phrase repeated over and over until it has 
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the same number of letters as the message. Each letter of the message is then 

substituted using the corresponding letter from the alphabet starting with the current 

letter in the key. In 1586, ironically the same year as Mary Queen of Scots was 

plotting with Babington, Vigenère published Traicte des Chiffres where he detailed 

his cipher. Even if Babington had have read Vigenère’s work it is possible that he still 

would not have used it as the new, more secure, system was largely overlooked for 

another 200 years. 

2.2.3 Adoption of Poly-Alphabet Ciphers 

The main complaint against poly-alphabet ciphers was that they were more 

complicated to encode and decode and hence more prone to errors. In order to 

compromise between the security of polyalphabet ciphers and the simplicity of mono-

alphabet ones a series of other techniques were developed to defeat frequency 

analysis.  

Homophonic ciphers are those that use more than one symbol to encode each 

letter. The number of symbols for a given letter is related to the frequency of that 

letter in the language that the message is written in, each time the letter is then 

encoded a random symbol from the set is chosen and used. This would mask the 

frequencies of the letters. For example, in English, ‘e’ accounts for approximately 

13% of the letters in a given block of text and ‘g’ for about 2%, so the cipher could 

have two symbols for ‘g’ and 13 for ‘e’. The weakness in this system is that pairs of 

letter are not used homogenously, for example ‘q’ is almost always followed by ‘u’. 

This creates another potential avenue of attack for a cryptanalysts.  

In 1626 Antoine and Bonaventure Rossignol, a father and son team, were able 

to quickly decode a message that was captured by the French army. After it was 

revealed that their secret message had been read the opposing force surrendered to the 

French. The Rossigols were appointed senior positions in the court of Louis XIII, they 

also worked for Louis XIV, who was so impressed he moved their office next to his 

own apartment. They were so successful the word Rossignol became slang for a lock 

picking device. Using their knowledge of cryptanalysis they developed the so called 

Great Cipher. After their deaths the cipher was no longer used and the details were 

soon lost. There were lots of historical documents, especially Louis XIV’s personal 

documents, which were only written in this encoded form, they remained unread for 
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hundreds of years. In 1890 some of these documents were passed onto the French 

army’s cryptography department where Etienne Bazeries spent three years trying to 

decode them. After going down several dead ends he discovered that each symbol in 

the code represented a syllable, with other little tricks, such as the symbol that meant 

ignore the previous symbol, added to fool would be attackers. The newly deciphered 

documents were a historical boon, one of them even identifying the Man in the Iron 

Mask as General Bulonde, a French general who had disgraced himself through 

cowardice. 

By the 1700s cryptanalysis in Europe had become an industrial process with 

teams of cryptanalysts working to decode copies of supposedly secret messages that 

were being sent to embassies. It became clear that extra security was required and the 

Vigenère cipher was finally adopted for widespread use. 

Vigenère’s cipher remained unbroken for nearly 300 years until an argument 

between Charles Babbage and the Bristol dentist John Hall Brock Thwaite, who, 

claiming he had invented a new cipher when really he had just re-invented Vigenère’s 

one, inspired the eccentric English polymath to turn his mind to code-breaking. 

Babbage’s main breakthrough came when realising that with a finite length key 

repeated blocks of plaintext could only be encrypted in a finite number of ways, and 

so could repeat in the ciphertext as well. By looking at two repeated blocks in a 

message it would be possible to determine the maximum length for the key, and all 

the possible lengths would be factors of that value. By looking for several repeated 

blocks of characters one would probably be able to find a unique value for the key-

length. After this has been determined the cipher becomes a group of n mono-alphabet 

ciphers that are now susceptible to frequency analysis. Once the frequencies of the 

letters in the n different streams have been noted peaks in the frequencies of letters 

can be matched and the key can be determined. Although Babbage cracked the 

Vigenère cipher in 1854 he didn’t publish his findings and they were only discovered 

when scholars were examining his notes, credit sometimes goes to Friedrich Kasiski, 

a Prussian infantry officer and cryptographer, who independently cracked the 

Vigenère cipher and published his findings in 1863. 
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2.2.4 World War 1 

The invention of the radio created a communication revolution. Previously all 

communication had to be done over fixed lines which had to be laid before any 

communication could occur so could not be used to communicate with mobile units 

such as warships. The advantage of fixed line communication is that it is a lot harder 

for someone to eavesdrop on communication as they also need physical access to the 

line whereas radio transmissions can be listened to by anyone in range with a suitably 

tuned receiver. This meant that encryption became more important than ever for 

military communications.  

Most of the codes developed for use during World War 1 (WW1) were based on 

ciphers from the previous century that had already been cracked. While they had been 

improved there was nothing radically different and they posed little challenge for the 

cryptanalysts at the time. This fact and the massive increase in intercepted 

communications that radio transmission allowed meant that cryptanalysis paid a very 

important part in WW1. Probably the most significant example of its use was the 

deciphering of the Zimmerman Telegram.  

Initially America did not join the war in Europe, their president, Woodrow 

Wilson thought that the conflict could only be resolved through diplomacy and that 

America could best serve the world by acting as mediator to any talks that may occur. 

However, this was threatened when a German U-boat sunk the Lusitania, 1198 people 

were killed including 128 American civilians. Germany agreed to surface their U-

boats before attacking so as to reduce the risk of accidentally attacking civilian ships. 

By 1917 the war was not going well for Germany, they realised that if they 

reinstituted the policy of unrestricted U-boat warfare then Britain would soon starve 

and have to surrender, worried that this would bring America into the war they 

hatched a plan to keep them occupied until their enemies could be defeated. The plan 

was to convince Mexico to declare war on the USA and an encrypted telegram was 

sent to the German ambassador in America with instructions to forward details of the 

plan on to the ambassador in Mexico. 

On the first day of WW1 the British ship Telconia sailed under cover of 

darkness to near the German coast and cut Germany’s transatlantic cables. In order to 

carry out their plan they had to send a message to their Mexican embassy via the 
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American embassy over cables that passed through Britain. Britain intercepted this 

message and decoded it in Room 40, their cryptographic department, named after the 

office that it originally occupied. After decoding the message the British cryptanalysts 

passed it onto Admiral Sir William Hall. Hall realised the significance, he knew that if 

Germany were to reinitiate the full force of their U-boat campaign it would not be 

long before Britain would be forced out of the war. As Britain was reluctant to let the 

Germans know that they could read their secret messages and there was a chance that 

the U-boat attacks would bring the Americans into the war anyway Hall initially did 

nothing. On the 3rd of February, Wilson announced that American would remain 

neutral in spite of the renewed German policy and Britain was forced to act. In order 

to hide their code-breaking activities Britain sent an agent to the German embassy in 

Mexico to steal a copy of the forwarded telegraph and handed it to the Americans. On 

the 6th April America declared war on Germany and cryptanalysis had changed the 

course of WW1. 

2.2.5 Post World War 1 and the Development of the Enigma 

In 1918 Arthur Scherbus and Richard Ritter started an engineering company 

that developed lots of things, from turbines to heated pillows. Probably their most 

famous invention was the Enigma machine that was used to encrypt German Military 

communications during World War 2 (WW2). One of the reasons people were 

reluctant to use the Vigenère cipher was its complexity, this made its use error prone. 

After it was broken it became clear that even more complicated ciphers had to be 

developed, these would be even harder for people to use and particularly impractical 

in the chaos of a battlefield. Scherbus had created a machine that used mechanical and 

electric signals to automate the encipherment of a message, thus eliminating human 

error. The Enigma machine consisted of a keyboard, a plug-board, a series of 

scramblers, a reflector and a series of output lamps. When a button was pressed on the 

keyboard, corresponding to an input character, an electrical signal travelled through a 

complex path until it reached the output lamp signifying a different letter, this 

represented the enciphered character. The path the electrical signal took, and hence 

the output character was determined by the settings of the scramblers and the plug-

board. The plug-board could be used to swap letters, by connecting cables between 

the various plugs, each representing a different letter, they were swapped. For 
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example if the letters ‘a’ and ‘p’ were connected on the plug-board then when ‘a’ was 

pressed on the keyboard it would be the same as pressing ‘p’ on the keyboard when 

there were no plug-board connections. The scramblers were cylinders with a series of 

different mappings between the letters. A large part of the security of the enigma was 

due to the fact that each time a letter was pressed the scramblers would rotate one 

letter so if the same letter was pressed twice it would lead to a different output letter, 

and Enigma behaved like a polyalphabet cipher. The scramblers can also be removed 

so they can go in any order. The reflector sent the electrical signal back through the 

scramblers to the output. This had no cryptographic significance, but was there to 

make encryption the same as decryption. If the letter ‘r’ was entered and the electrical 

signal weaved its way through the plug-board cables and the scramblers via the 

reflector to the letter ‘h’ then someone trying to decode the message could press ‘h’ 

on their machine with the same settings and the electrical signal would do the reverse 

path and light the lamp for ‘r’. The entire machine was 34 * 28 * 15 cm, but weighed 

a hefty 12 kg. 

Scherbus initially had trouble finding anyone to buy Enigma machines, they 

costs the equivalent of £20,000 in today’s money, and most businesses said that they 

could not afford it. The German military was unaware of the damage enemy 

cryptanalysts had done to their war effort and so were initially not interested. 

Fortunately for Scherbus, in 1923 Winston Churchill published The World Crisis 

detailing an early German cryptographic failure, and later that year the Royal Navy 

published their official history of the WW1. The German military realised what their 

weak ciphers had cost them and started ordering Enigma machines. In 1925 they went 

into mass production. 

2.2.6 Cracking Enigma 

Until 1925 the rest of Europe were still receiving a large amount of intelligence 

from Germany via decrypted transmissions. After the German adoption of the Enigma 

machine this rapidly stopped. Previously British and French cryptanalysis had been 

tenacious in their efforts to decipher previously unbreakable codes, but when faced 

with Enigma they quickly gave up. After WW1 Germany’s military was had been 

largely neutralised and the country was in ruins. The French no longer feared her 

might. On the other side of Germany, her neighbours weren’t as complacent. In 1925 
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Poland was caught between a strengthened Germany and Russia, a nation bent on 

spreading communism. Faced with these threats Poland was desperate for intelligence 

and had a very strong cryptanalysis department called Biuro Szyfrów. There was little 

that they could do without first understanding the workings of the cipher. 

On the 8th of November they got their first break. A German working in the 

department responsible for secure communication, Hans-Thilo Schmidt, sold the 

plans to the Enigma machine to a French agent for 20,000 Marks. The French were 

not particularly interested in their new found knowledge, they assumed that even if 

they understood how the Enigma worked they would still not be able to work out a 

way to break the cipher. They did however have a decade old treaty of military 

cooperation with Poland, who had expressed interest in anything to do with Enigma. 

Thinking it of little practical value the French gave the information to Poland. Using 

this information the Biuro was able to create a replica of the Enigma machine to 

study. As well as details of the Enigma machine the French intelligence contained the 

protocol that the Germans were using. Codebooks were distributed amongst the 

German radio operators. The books contained a month’s worth of plug-board settings 

and scrambler arrangement and orientations, one for each day, called day-keys. To 

make the system more secure messages were encrypted with different scrambler 

orientation settings. This was called the message-key and was encrypted twice with 

the day-key and transmitted at the start of the message. This was done to ensure that 

the message-key was received correctly and the message could be decoded without 

error, but it introduced an insecurity into the system as the attacker knew that the 1st 

plaintext character of the message was the same as the 4th although the ciphertext 

characters would be different. The difference between them would be determined by 

the scrambler settings. 

This was studied by the Polish cryptanalyst Marian Rejewski. He had at his 

disposal hundreds of messages every day, the first six characters of each of which 

would be encrypted using the same settings. Although he did not know the plaintext 

characters he studied the way they changed, finding they formed chains with varying 

numbers of links. For example, if the first character of one message was ‘L’ and the 

fourth was ‘W’, in another message the first would be ‘W’ and the forth ‘G’ and then 

in a third ‘G’ would change back to ‘L’, forming a chain with three links. Rejewski 

realised that properties of these chains would be affected only by the scramblers and 
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not by the plug-board settings, they would only change the values individual letters in 

the chain. This meant that the chains could act as a fingerprint for the different 

scrambler settings. He spent a year cataloguing the chain lengths for all of the 105,456 

possible scrambler arrangements, from this he would be able to determine the 

scrambler settings of the day-key, he could then use this to try and decrypt a message 

key and use that to decrypt a message, if the plug-board settings did not affect any of 

the letters in the message-key it would be possible to mostly decrypt the message. The 

plug-board setting could then be determined by looking at the generated message and 

changing letters until it made sense. Using this technique Rejewski could retrieve a 

day-key and read all of that day’s messages. 

When the Germans adapted the way they transmitted messages it made 

Rejewski’s catalogue of chains obsolete. Instead of painstakingly recreating it he 

developed a mechanical device, based on an enigma machine, which was capable of 

trying lots of different scrambler settings until it spotted the correct one. As the 

scramblers could be arranged in six different ways six of the so called bombes were 

required. In December 1938 the Germans augmented the security of Enigma, 

increasing the number of different scramblers to five and the number of plug-board 

cables to ten. This vastly increased the number of possible plug-board permutations 

and increased the number of bombes required by a factor of ten. The cost of 

manufacturing the new bombes was beyond the resources of the Polish cryptographic 

department, and in 1939 the flow of German intelligence into Poland dried up. 

Sensing an imminent German invasion the Polish were willing to share their 

cryptanalysis breakthroughs with their allies. On the 24th of July senior cryptanalysts 

from France and Britain arrived in Poland where they were informed, to their surprise, 

of the Polish successes in reading secure German messages. Spare Enigma machines 

and blueprints for the bombes were shipped to London and Paris where the Polish 

work could continue. On the 1st of September Hitler invaded Poland and WW2 had 

begun. 

In Britain the responsibility for breaking German codes had moved from Room 

40 to Bletchley Park, a large Victorian mansion in Buckinghamshire. The British 

cryptanalysts quickly mastered the polish techniques and with greater resources had 

created the bombes necessary to break the encryption. The Polish technique hinged on 

the fact that the Germans always transmitted the message-key twice at the start of the 
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message, this repetition was the weakness that allowed the cryptanalysts to peer inside 

the Enigma code. Some cryptanalysts at Bletchley Park were responsible for 

continuing the research into weaknesses in the code, in case the Germans 

strengthened their transmission protocol and stopped sending the key twice. One of 

the researchers was Alan Turing, he realised that there was another potential avenue 

for attack due to the fact that Enigma was being used by the military. The military 

thrive on routine, the contents of some parts of the messages would be predictable, for 

example, a weather report would be transmitted shortly after 6 am every day. The 

section of plaintext that was known to the attackers was referred to as a crib. Using 

these cribs Turing developed a new technique for decoding Enigma messages. He also 

studied chains in encipherment of various letters, for example if a ‘w’ was ciphered as 

an ‘e’ and the next plaintext letter was ‘e’ that had been changed to a ‘t’ and later on 

in the message there was a plaintext ‘t’ that was converted to a ‘w’, this was the type 

of chain Turing was interested in. Turing imagined a machine that was a series of 

Enigma machines in parallel. Details of a chain would be entered into it by connecting 

the output of the first one to the input of the second and so on. In between the input of 

the first and the output of the third there was a lamp. The scrambler settings on the 

three machines would rotate. The lamp would only light when the circuit was 

complete, this would only happen when the scrambler settings were correct for all 

three machines. Again the study of these chains allowed the cryptanalysts to divorce 

the plug-board settings from the scramblers. This is because the plug-board settings 

are constant, although in the example chain above it is not known what letter the first 

‘w’ is converted to by the plug-board, it is known that when the ‘t’ is converted to a 

‘w’ the signal has travelled through the plug-board cable twice, cancelling out the 

effect. While the plug-board contributes the majority of the different combinations of 

settings an Enigma machine can have, it is only a mono-alphabetic substitution, and, 

as there were only ten plug-board cables, an incomplete one at that. By decoding the 

original message with the scrambler settings the plug-board settings can soon be 

determined. Turing’s decoding machine was built; it arrived on the 14th of March 

1940 but was a lot slower than anticipated. The design was refined and a new one was 

ordered, but it was going to take four months to build. On the 10th of March 1940 the 

Germans changed their key transmission protocol so that the key was only sent once 

and the decoded Enigma messages dried up until the 8th of August when the new 
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machine arrived. This fulfilled all of Turing’s hopes and messages could be decoded 

for the rest of the war. 

The information that was gained by cracking the Enigma code was of crucial 

value to the wartime effort of the allies. Lessons can be learnt for both cryptanalysts 

and the users of cryptographic algorithms. The Polish code-breakers, motivated by 

desperation, never gave up hope that Enigma could be broken, and through their 

tenacity found a technique that could retrieve German Keys. The real weakness in the 

enigma code wasn’t the code itself but the way it was used. The first method of 

breaking it used the fact that the message-key was enciphered twice and the second 

method relied on knowing sections of the plaintext. While the cipher isn’t secure by 

today’s standards, as it is important to assume that an attacker may have access to 

plaintexts as well as ciphertexts, any code can be made much weaker by using it 

improperly. It is important to minimise any additional information that is leaked to 

any potential attacker. 

2.2.7 Modern Cryptography 

In 1949 Communication Theory of Secrecy Systems was published in the Bell 

Labs Technical Journal by Claude Shannon [14]. It established the mathematical basis 

for modern cryptography and developed two metrics for measuring the security of a 

cipher, confusion and diffusion. Confusion is related to the relationship between the 

key and the ciphertext, this will be very complicated in a cipher with good levels of 

confusion. Substitution, generally performed by so called s-boxes, is a key component 

in ensuring confusion. Diffusion is the effect the plaintext has on the ciphertext, it is 

related to the avalanche effect, a term first used by Horst Feistel [15], which describes 

how changing one bit at the input causes an avalanche of changes through to the 

output. It was developed into the Strict Avalanche Criterion, which states that, for 

optimal diffusion, changing one bit in the plaintext should change on average half of 

the bits of the ciphertext. Diffusion is mostly associated with transposition operations 

in ciphers. Now that the mathematical theory behind encryption had been formalised 

ciphers could be designed in a rigorous way as opposed to the ad hoc methods that 

had previously been used. 
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2.2.7.1 Block Ciphers 

As computing developed the price of computers steadily reduced. By the 1970s 

companies were able to afford computers and they became an important part of 

business. Businesses would often have to send and receive secure messages, these 

would have to be encrypted and so businesses would develop their own encryption 

schemes. This posed no problems if the secure data had to be sent between different 

offices of the same company, but it would be problematic if data had to be sent 

between different companies as the algorithms would not be compatible. To address 

this problem the US government decided to create a standard encryption algorithm 

that could be used by everyone. The new Data Encryption Standard (DES) was based 

on the algorithm Lucifer which was developed by Horst Feistel [15], an engineer 

working for IBM. The NSA examined the algorithm to ensure that it was secure and 

made a couple of changes. They reduced the key length from 64 bits to 56. This 

meddling lead to speculation that the NSA had deliberately weakened the cipher in 

order for them, and only them, to be able to decrypt it. 

As DES was so widely used the security of the algorithm was heavily 

researched. The first attack to be proposed was Differential Cryptanalysis, which uses 

several different, but related, plaintexts to gain information about the key. When it 

was published in 1990 it was discovered that the chosen s-boxes had strengthened the 

cipher against this attack. Differential cryptanalysis was known to IBM researchers in 

1974 but as it is a powerful attack that can be applied to lots of different ciphers the 

NSA asked them to keep it secret. Although the cipher was resilient against this form 

of attack, an attacker with access to 247 chosen plaintexts can still break DES. In 1992 

Linear Cryptanalysis was developed [16], this involved generating linear 

approximations to sections of the cipher with either a high or a low probability of 

correctness. DES can be broken with  243 known plaintexts [17]. 

While in the strictest of senses this means that the security of DES has been 

compromised, the attacks are still not feasible, requiring unrealistically large amounts 

of known or chosen plaintexts. The death knell for DES came in 1997 when RSA 

Security ran a competition to crack DES as a demonstration that with modern 

computers the 56-bit key no longer provided adequate security. The competition was 

won by a distributed computing project called the DESCHALL Project who managed 
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to retrieve the key in 96 days. This has since been improved and DES can now be 

cracked in an average of 7.2 days [18].  

It was clear that a new stronger encryption standard was required and in 1997 

the National Institute of Standards and Technology (NIST) started the search for a 

new algorithm that would be dubbed the Advanced Encryption Standard (AES). In 

2001 the new algorithm was chosen, it was Rijndael, developed by Vincent Rijmen 

and Joan Daemen. There are currently no successful mathematical attacks on AES, 

although it is vulnerable to side channel attacks. 

2.2.7.2 Public Key 

In order for secure communication to work both parties need to have access to 

the key. Transferring this in a secure way can be problematic. In the 1970s couriers 

were used to transfer keys to recipient of the secure data so it could be deciphered. 

While this is more secure than having a courier carry sensitive documents as a 

potential attacker needs to get both the key from the courier and intercept the 

encrypted transmission it is still less than ideal. In 1976 Whitfiel Diffe, Martin 

Hellman and Ralph Merkle developed Diffie-Hellman key exchange. This technique is 

best explained by an analogy. Alice and Bob want to get married and Alice needs to 

send her wedding ring to Bob. She can only send it through the post, but she does not 

trust her postman not to steal it. She locks the ring in a box and sends the box to Bob, 

he unfortunately does not have the key and Alice can’t post it to him for fear of the 

postman getting it. Bob puts his own padlock on the box and sends it back to Alice 

who then unlocks her padlock and sends it back to Bob. The ring is now only 

protected by Bob’s padlock to which he has the key. In this analogy the ring is the key 

to a block cipher and the padlocks are special encryption algorithms. The biggest 

problem in developing this scheme was finding a way to encrypt the data where 

encryption and decryption was commutative, that is to say that it doesn’t matter that 

the second encryption is performed before the first decryption. This was overcome by 

the use of discrete logarithms.  

This form of key exchange does have some problems; it requires three transfers 

of data between the two parties which is not always convenient, if communicating 

from vastly different time zones, for example. In 1975, while developing the idea for 

key exchange, Diffie also published his idea for asymmetric key algorithms. These are 
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group of algorithms where encryption and decryption are performed using different 

keys, the encryption key can be freely distributed so it is called the public key, it can 

be used by anyone to send secure data to the holder of the decryption or private key. 

In this way there needs to be no secure transfer of keys. Although Diffie described the 

concept of public key encryption he could not find any mathematical functions with 

suitable properties. It was left to Ron Rivest, Adi Shamir and Leonard Adleman to 

develop a working system which was patented in 1977. Rivest, Shamir and Adleman 

created the company RSA Security to commercialise the research. 

Cryptography is a world of secrets, just like the invention of the computer at 

Bletchley park, British cryptanalysts were busy researching public key encryption and 

secure key exchange. In the late 60s Peter Ellis was working at GCHQ on the problem 

of key exchange, like Diffie, he came up with the idea of separate keys for encryption 

and decryption, but was unable to think up any suitable function. Then in 1973 a new 

mathematician joined, Clifford Cocks. He had been previously working in number 

theory and recognised the potential of prime numbers and factorisation to solve the 

problem. Unfortunately in the early 70s computers were still quite primitive and the 

amount of processing power required to implement the system was a stumbling block. 

In 1974 Cocks was explaining his idea to his old school and university friend 

Malcolm Williamson, who had also started working at GCHQ. He was suspicious of 

the idea and studied it in detail intent on finding a flaw. Instead, in 1975, he 

discovered the Diffie-Helman key exchange. GCHQ scientists had discovered all of 

the principles of public key encryption before anyone else, but as they were sworn to 

secrecy this was not revealed until 1997 when Cocks was allowed to give a brief 

history of GCHQ’s contribution to public key encryption while presenting some 

unclassified research he had performed on RSA at a conference. 

2.2.7.3 The Digital Revolution 

In the 1970s Phil Zimmerman was deeply concerned about the threat of nuclear 

war and became an anti-nuclear political activist. In the 80s tensions between the US 

and the USSR calmed and Zimmerman’s focus changed to another political cause, the 

public’s right for privacy. Hundreds of millions of emails are sent every day and if 

they are unencrypted then they are particularly vulnerable to eavesdropping. At the 

time there was no software available for members of the public to use to encrypt their 

email. Zimmerman spent years developing Pretty Good Privacy (PGP) a system 
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designed to do just that. At the heart of the software was the public key algorithm 

RSA which is a lot more computationally intensive than a symmetric key system with 

an equivalent level of security. To get round the problem of the software being 

prohibitively slow on the personal computers of the average user PGP only uses RSA 

to encrypt the key for a much faster symmetric key system which encrypts the 

message. By 1991 Zimmerman had a fairly polished product, but there were 

problems. He was worried that Congress were going to try an ban products like PGP 

in order to ensure that law enforcers could read criminals email, so in June he asked a 

friend to upload it to a Usenet bulletin board. 

Zimmerman had released his software and it was being used exactly for the 

purposes that he had intended, human rights groups all over the world were using 

PGP to protect their communications. Unfortunately his problems were not over yet. 

PGP used the RSA algorithm which was protected by a patent for which he did not 

have a licence. More seriously, Zimmerman’s work had attracted the attention of the 

FBI. The US had export controls on cryptographic systems and systems with more 

than 40 bits were considered munitions, in 1993 Zimmerman became the target of an 

investigation into exporting munitions without a licence. Zimmerman found an 

interesting loop-hole to the export controls, he published the source code in a book 

and as the export of books is protected by the First Amendment all someone had to do 

was scan the book with OCR software and compile the program. In 1996 after three 

years of investigation the case was dropped. Zimmerman also managed to reach an 

agreement with RSA Inc. PGP was finally a legitimate program. 

In the 90s the whole cryptographic climate was changing, the internet was 

starting to develop allowing for the development of ecommerce. In order for this to be 

successful customers had to have faith in security of the new medium. In 1995 Hal 

Finney set a challenge to break the 40-bit RC4 encryption that came with the 

international version of the Netscape browser. This was completed in less than two 

weeks, a worrying achievement for anyone buying anything over the internet. The 

government control on encryption had another economically damaging side-effect, the 

weakness of the Content Scrambling System (CSS). CSS is the encryption system 

used to protect the content of DVDs, it was developed in 1996 and in order for DVD 

players to be freely exportable was restricted to 40 bits. This allowed the copy 

protection to be easily cracked, and the free sharing of thousands of movies over the 
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internet, allegedly costing movie studios millions of dollars in lost profits. Due to the 

changing climate and the sense that strong encryption was needed domestically the 

export restrictions were dropped in 1996, paving the way for people all over the world 

to adopt secure ciphers to protect their secrets. 

2.2.7.4 Side Channel Attacks 

It has long been known that the various emissions that real devices make during 

their operation can reveal secret information. The purpose NSA’s TEMPEST 

program, started in the 1960s, was to ensure that electronic emissions that escaped 

from a device would not reveal sensitive information about its operation. It wasn’t 

until the mid 90s that the information gathered through side channels was used to 

break encryption systems.  

In 1996 Paul Kocher developed a radical new type of attack. All previous 

cryptanalysis had relied on weaknesses in the cipher, exposing patterns in the 

ciphertext that could be exploited. The new method used information gained through 

a side channels to determine the internal state of the device performing the encryption. 

The first side channel attack was timing analysis, it exploits the fact that operations 

take a certain amount of time to perform and so information can be gained by timing 

how long it takes a device to respond to a query [19]. Then in 1999 he extended the 

idea to power consumption [2]. In modern transistor technology more power is 

consumed when a value changes from ‘0’ to ‘1’ or ‘1’ to ‘0’ than if it stays the same, 

by measuring the power consumption information can be gathered about the state of 

registers inside a crypto-device. Some information can be gained by examining the 

power trace, the power consumption data for one encryption, and looking for 

significant features, this is called Simple Power Analysis. A much more powerful 

technique is Differential Power Analysis, this combines information from several 

encryptions with the same key and with enough power traces can retrieve the 

complete key, even from a state of the art algorithm such as AES [3]. 

Since the demonstration of the general technique a number of side channels 

have been proposed, from emitted EM radiation [20] to the acoustic noise a processor 

emits [21]. Although several countermeasures have been proposed [9, 22-25] none 

work with complete efficacy and how to protect algorithms against side channel 

attacks is still an open problem. 
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2.2.8 Conclusion 

Over the last 30 years cryptography has become increasingly pervasive in 

modern life. Ciphers no longer just protect state secrets and military plans but trade 

secrets, finances and privacy. Cryptographic hardware has been transformed from 

large cumbersome devices to small sections of existing chips or programs that are 

constantly carried. Since their development block ciphers have provided an efficient 

and conceptually simple way of generating the complex transforms that implement 

the principles of secure communication outlined in Shannon’s seminal 1949 paper. 

The advantages of block ciphers are such that they have become by far the most 

common type of cipher in use today. 

While the increase in public use of cryptography is beneficial, as the general 

public are able to protect their secrets and ensure their privacy with secure encryption. 

There is another side to the coin, cryptanalysis is becoming increasingly more 

important to criminals. Additionally, the increase in mobile cryptography has made 

ciphers increasingly vulnerable to attacks like Differential Power Analysis, which 

requires physical access to the device and does not rely on a mathematical weakness 

in the algorithm. The ability to successfully protect secrets has always been, and will 

continue to be of very high importance to society. 



 

 

Chapter 3 Block Ciphers 

3.1 Introduction 

Block ciphers have been an important area of cryptography since their 

development in the 1970s. They work on a fixed size block of data and use the secret 

key to transform the unencrypted data, or plaintext, into its encrypted form, or 

ciphertext. In the 1970s a standard block cipher was developed by the US called Data 

Encryption Standard (DES). This reigned supreme for over two decades until 

increases in computing power rendered its security questionable. A modification to 

increase the effort an attacker must use to crack it by chaining three DES blocks 

together was developed and given the apt name Triple DES (TDES). Finally, in 2001, 

after the submission and lengthy evaluation of algorithms from the public, they were 

both superseded by the Advanced Encryption Standard (AES), which remains the 

accepted algorithm today. 

In section 3.2 the basic concepts in modern cryptography are introduced. 

Section 3.3 examines the basics of block ciphers in more detail. Sections 3.4 - 3.6 

describe the three most important block ciphers of the last 40 years, DES, TDES and 

AES. 

3.2 Basic Concepts in Cryptography 

3.2.1 Cryptographic Methods 

Cryptographic algorithms seek to make data unreadable by everyone except a 

trusted subset of the population. To achieve this, the data is put through a 

transformation, the output of which is determined not only by the original data, but 
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also by a secret key. The data can then only be decoded by someone who has the 

relevant key to unlock it. 

Figure 3-1 shows an example of a complete cryptographic system. Alice wants 

to send a message to Bob without Eve (or anybody else) being able to read it. She 

takes her unencrypted message, known as a plaintext, and encrypts it with a secret 

key; the enciphered message is called a ciphertext. She can then send this message to 

Bob, who can read it as he also has the secret key. Although Eve is able to intercept 

the message she cannot make sense of it as she does not have the key. 

 

Figure 3-1: An example of an encrypted communication. 

There are two main types of cryptographic algorithm, symmetric and 

asymmetric key. Symmetric key algorithms have symmetry in the sense that the same 

key is used for both encryption and decryption. In order to use a symmetric algorithm 

all parties involved in the communication must have the key. 

Asymmetric key algorithms, also known as public key ciphers, use a different 

key for encryption and decryption. The key used to encrypt the data is called the 

public key and can be freely distributed. Only the private key, which is kept secret, 

can decrypt the message. 

Additionally there are also cryptographic hash functions. These are one-way 

functions that return a fixed length output and do not have a key. Once the data has 

been put through them it cannot be retrieved. They are used for a variety of purposes 

such as password verification and checking the integrity of a message. 

3.2.1.1 Symmetric Key Algorithms 

There are two main types of symmetric algorithms, block ciphers and stream 

ciphers and they are discussed in the following two subsections. 
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3.2.1.1.1 Block Ciphers 

Block ciphers are symmetric algorithms that act on fixed length groups of bits 

called blocks, modern algorithms typically have block sizes of around 128 bits. Block 

ciphers are key dependent, bijective transforms, meaning each plaintext maps 

uniquely to exactly one ciphertext and the particular mapping is determined by the 

key (and the cipher being used). The specific transform is controlled by the secret key. 

Decryption is similar, application of the secret key and the inverse cipher reveals the 

original data. Block ciphers are discussed in more detail in section 3.3. 

3.2.1.1.2 Stream Ciphers 

Stream ciphers work on smaller blocks, typically bits or bytes, and the 

transform for successive blocks does not remain fixed throughout the entire 

encryption. The difference between block and stream ciphers is not always that 

distinct. Block ciphers can be modified to act as stream ciphers, although bespoke 

stream ciphers are generally faster and less complex than block ciphers. 

3.2.1.2 Asymmetric Key Algorithms 

Asymmetric public key cryptography uses two different keys. The encryption, 

or public, key may be freely given to anyone, while the decryption, or private, key is 

kept secret. The keys are related mathematically, but it is not feasible to determine the 

private key from the public key.  

The two main applications of public key cryptography are: 

• Public Key Encryption: used to ensure the confidentiality of communication 

to the owner of the keys. Messages are encrypted with the public key, they 

then cannot be decrypted by anyone unless they possess the corresponding 

private key. 

• Digital Signatures: used to verify the identity of the sender and the 

authenticity of the message. Messages are signed with the sender's private key, 

they can be verified by anyone who has access to the sender's public key  

Probably the most well known system is PGP which was developed by Philip 

Zimmerman in 1991and released free of charge on Usenet. It allows both the 

encryption and signing of messages. 
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3.2.1.3 Cryptographic Hash Functions 

A cryptographic hash function, h, takes an arbitrarily sized message, m, and 

creates a fixed length message digest, h (m), that appears random. Cryptographic hash 

functions have other required properties: 

• Given h (m) it must be difficult to find m.  

• Given h (m) it must be difficult to find m2 such that h (m2) = h (m). 

• It must be difficult to find m1 and m2 such that h (m2) = h (m1).  

Hash functions are one of the most versatile cryptographic primitive and have 

several different applications: 

• Commitment scheme: By concatenating a message with a random 

nonce, a value used to ensure uniqueness of output, and taking its hash a 

user can commit to a message while still keeping it hidden. By later 

revealing the nonce to another user it can be shown that the original user 

did commit to the message. 

• Message integrity: Comparing the hash of a received message to a hash 

that was sent verifies that the message was received correctly. 

• Digital signature: In order to increase performance most digital 

signature algorithms only sign the message digest rather than the entire 

message. 

• Password verification: When a password is entered the hash of the 

entry is taken and compared to the hash of the actual password. Thus the 

actual password does not need to be stored as that would be insecure. 

3.2.2 Cryptanalysis Methods 

If data is worth protecting then it will be of some value, therefore code-breaking 

is as old as codes themselves. This section briefly introduces some techniques to 

break cryptographic algorithms. Different cryptanalysis methods assume that the 

attacker has different levels of knowledge or access to the cipher:  

• Ciphertext-only: the attacker has a list of ciphertexts. 

• Known-plaintext: a set of ciphertexts linked to corresponding plaintexts. 
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• Chosen-plaintext/-ciphertext: a set of ciphertexts (plaintexts) linked to 

corresponding plaintexts (ciphertexts) chosen by the attacker. 

• Related-key attack: like a chosen-plaintext, except the attacker can obtain 

ciphertexts encrypted with different keys. The relationship between the keys is 

known e.g. one bit difference, although the actual values are not. 

Classical cryptanalysis mostly involved looking at the frequencies of various 

letters in ciphertext and comparing those to the frequencies of letters in the plaintext 

language. As cryptographic algorithms got more advanced this was no longer 

possible, so new techniques had to be created. There are several general attacks on 

block ciphers, such as differential cryptanalysis, a chosen plaintext attack that uses 

differentials, pairs of plaintexts related by a constant difference, to detect patterns in 

statistical distribution [26], and linear cryptanalysis, which involves generating linear 

approximations to sections of the cipher that have either a high or low probability of 

being correct [16]. It is also possible to exploit specific weaknesses in algorithms by 

designing bespoke attacks, for example the Davies attack [27], which makes use of 

the fact that adjacent s-boxes, non-linear functions that take a number of bits as input 

whose output  is determined by the value of the input, in the Data Encryption 

Standard (DES) share some input bits.  

The simplest form of attack is to simply go through all possible keys until the 

correct one is discovered. This is called a brute force attack. With current levels of 

computing power it is possible to attack outdated encryption algorithms like the block 

cipher DES [28, 29], which has a key length of 56 bits, giving a total of 7.2 * 1016 

possible key values. Modern block ciphers, like AES generally use between 128 and 

256 bit keys, giving between 3.4 * 1038 and 1.2 * 1077 possible key values. This 

means it is not currently feasible to perform brute force attacks on modern block 

ciphers. 

Another type of attack relies not on information derived from the algorithm, but 

instead information that is leaked from the physical implementation. Real world 

systems are not simple black boxes where the input goes in one end and the output 

comes out the other, but rather are complicated devices that consume power and emit 

electromagnetic radiation and take varying amounts of time to perform different 
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calculations. All of these things can leak information about what is going on inside 

the device and attacks that exploit this are known as side channel attacks.  

The majority of the work presented here is related to side channel attacks, 

specifically Differential Power Analysis (DPA). Power analysis uses the fact that the 

power consumption has a high dependence on the data that is being processed. DPA 

combines the power consumption data from several encryptions using different 

plaintexts and uses statistical techniques to determine the most probable value for the 

key. Power analysis in general and DPA in particular are discussed in more detail in 

sections 4.3 and 4.3.2 respectively. 

3.3 Block Ciphers 

Block ciphers are a bijective transform that take the plaintext as an input and 

convert it into the ciphertext. In order to be secure this transform need to have certain 

mathematical properties. Section 3.3.1 introduces the most important properties 

required for security: confusion and diffusion. While the mathematical properties are 

clearly very important, knowing them and implementing a cipher that satisfies them 

are very different things. Section 3.3.2 describes the structures that make up the 

majority of modern block ciphers. Section 3.3.3 gives details on the various ways that 

a block cipher can be used to encrypt a set of data that is larger than a single block. 

3.3.1 Confusion and diffusion 

In order for a block cipher to be secure against statistical attacks it must 

effectively deal with the redundancy in the plaintext data. In 1949 Claude Shannon 

published a seminal paper that is the mathematical basis for modern cryptography 

[14]. In this he defined two concepts, diffusion and confusion. 

Diffusion means that redundancy in the plaintext and key are dissipated in the 

ciphertext; the influence of the value of a single input bit will be diffused over several 

ciphertext bits and hence it will be difficult for an attacker to gain knowledge about 

the plaintext from the ciphertext. Diffusion is characterised by the Avalanche Effect 

and the Strict Avalanche Criterion (SAC), terms first used by Horst Feistel. The 

Avalanche Effect results in a significant change in the output bits, ideally one half of 

the bits change when a single input bit is complemented. The SAC is an extension of 
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this and it is satisfied if a change in each of the input bits changes each of the output 

bits with a probability of 0.5. This means that the ciphertext will appear to change 

randomly between related messages, hiding message relationships which could be 

used by an attacker. Operations that transpose bits increase the level of diffusion. 

Confusion refers to making the relationship between the inputs and the 

ciphertext as complex as possible, this is to ensure that it is difficult for an attacker to 

discern information about the inputs from the ciphertexts. Ideally it would be 

impossible for an attacker to distinguish a series of ciphertexts from a random bit-

stream. Confusion is ensured by using s-boxes, these are look up tables that 

implement highly non-linear transformations.  

3.3.1.1 Quantifying Confusion and Diffusion 

Diffusion is the distribution of the effect of the value of the plaintext in the 

ciphertext, in the ideal situation a change in any bit of the plaintext would affect each 

bit of the ciphertext with a probability of 0.5. This can be determined by calculating 

the ciphertexts for a large number of random plaintexts and counting the number of 

ciphertext bits that are affected by changing one bit of the plaintext. The distribution 

of the number of affected bits can then be compared to the theoretical distribution of 

the ideal case using the Kolmogorov-Smirnov (KS) test [30]. The KS test is a 

statistical test used specifically to test the equivalence of two probability distributions 

using a finite number of samples. This is then repeated for each bit of the plaintext 

and then the entire process is repeated for the key.  

Determining whether or not sufficient levels of confusion have been reached in 

a cryptographic algorithm can be achieved by testing for statistical randomness. A 

simple frequency test, checking that there is an approximately equal number of 1s and 

0s, can give an indication whether or not a cipher provides adequate confusion  [30].  

3.3.2 Block Cipher Structure 

Although block ciphers represent a very complicated transformation most are 

composed of repeating iterations of simpler functions. By combining simple 

operations that mix in key data or increase either confusion or diffusion and having 

several iterations of sequences of these blocks, commonly referred to as rounds, a 

secure cipher can be built up out of small, easily implementable blocks. When taken 
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as a whole, the combination of simple operations that forms a round is called the 

round function. Two popular schemes for designing block ciphers are Substitution-

Permutation Networks (SPN) and Feistel ciphers. 

As the name implies, Substitution-Permutation Networks based ciphers are 

mainly made up of operations that either substitute values, or permute bits. During 

substitution the data is separated into smaller blocks and the values in these blocks are 

substituted for others, typically using a non-linear s-box, this increases the confusion. 

Permutation works across several blocks and mixes the data, swapping bits or 

combining values so the influence of data from one part of the plaintext is diffused 

through the whole ciphertext. An example of an algorithm based on SPN is AES. 

Using an SPN approach it is easy to design ciphers with sufficient levels of confusion 

and diffusion to be secure using a fairly simple set of cryptographic primitives. 

 

Figure 3-2: The structure of a Feistel cipher. 

Feistel networks were first used in the cipher Lucifer, developed at IBM by Don 

Coppersmith and the eponymous Horst Feistel. They are a subset of SPN so are also 

made up of a series of simple functions repeated in rounds. The plaintext is split into 

two equal halves. The round function is applied to the right hand half which is then 

XORed with the left hand side and it becomes the new right hand side, the original 
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right hand side becomes the left. This is shown in Figure 3-2. An advantage of Feistel 

networks is that encryption and decryption is very similar, often requiring little more 

than a reversal of the key schedule. An example of an algorithm based on a Feistel 

structure is DES. 

3.3.3 Cryptographic Modes of Operation 

Block ciphers only work on fixed length blocks of data, but the actual data that 

needs to be encrypted can be of any arbitrary length. Several different modes of 

operation for block ciphers have been devised. The most common ones are described 

in this section, they are: Electronic Code Book, Cipher Block Chaining, Cipher 

Feedback, Output Feedback and Counter. 

3.3.3.1 Electronic Code Book 

The simplest mode is called Electronic Code Book (ECB), the input data is 

separated into blocks and each is encrypted individually. A block diagram is shown in 

Figure 3-3. Plaintexts with the same value will always give the same ciphertext, this 

means that patterns in the data can still be seen in the encrypted data. Also this 

method is susceptible to the replay attack, a network attack where an attacker repeats 

valid data that was gained from eavesdropping on a previous session.  

 

Figure 3-3: Block diagram of the ECB cryptographic mode of operation. 

3.3.3.2 Cipher Block Chaining 

In Cipher Block Chaining (CBC) the plaintext is XORed with the previous 

ciphertext before encrypting it; the first plaintext is XORed with an initialisation 

vector, see section 3.3.3.6. A block diagram is shown in  Figure 3-4. Each ciphertext 

is now dependent on all previous plaintexts so 1 bit error in the plaintext corrupts all 

following ciphertexts, one bit error in the ciphertext corrupts the corresponding 
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plaintext block and flips the corresponding bit in the next block. Encryption must be 

done sequentially as the output from each block is needed at the input to the next, but 

as the converse is true, i.e. the only data required from the previous block is the input 

and it is only needed to convert the output of the decryption to the actual plaintext, 

decryption can be parallelised. 

 

Figure 3-4: Block diagram of the CBC cryptographic mode of operation. 

3.3.3.3 Cipher Feedback 

 In Cipher Feedback (CFB) an initialisation vector is encrypted, the plaintext is 

then XORed with the output from the encryption to form the ciphertext, this 

ciphertext is then encrypted and XORed with the next plaintext and so on, a block 

diagram is shown in Figure 3-5. 1 bit error in the plaintext corrupts the entire cipher 

stream; 1 bit error in a ciphertext flips the corresponding bit in the corresponding 

plaintext and the entire next block. Encryption must be done sequentially, but 

decryption can be parallelised. It is important to realise that as the plaintext interacts 

with the output of the block cipher in both the encryption and the decryption forms 

the block cipher is used in encryption mode. 

 

Figure 3-5: Block diagram of the CFB cryptographic mode of operation. 
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3.3.3.4 Output Feedback 

Output Feedback (OFB) is similar to CFB, an initialisation vector is encrypted 

and is XORed with the plaintext data to form the ciphertext, the difference is that the 

output of the encryption is fed back before the plaintext is added. A block diagram is 

shown in Figure 3-6. Neither encryption nor decryption using OFB can be 

parallelised, but unlike CFB and CBC modes errors do not propagate and will only 

affect the bits in question. As in CFB, both encryption and decryption use block 

ciphers in their encryption mode, in fact the encryption and decryption modes are 

exactly the same, simplifying any implementation. It is very important to not use the 

same initialisation vector with the same key; this will result in an identical random 

bit-stream and will leak a lot of information about the plaintexts. Another possible 

insecurity with OFB is that if the output of the block cipher happens to give the same 

value as the initialisation vector then the random bit-stream will repeat. The 

probability of this happening is related to the number of plaintexts that are encrypted 

with the same key and so this problem can be mitigated by changing the key 

regularly. 

 

Figure 3-6: Block diagram of the OFB cryptographic mode of operation. 

3.3.3.5 Counter 

Counter mode (CTR) is similar to CFB and OFB in the sense that it uses the 

output of a block cipher to generate a random bit-stream that is then XORed with the 

plaintext to form the ciphertext. The input to the block cipher is a unique number, 

called a nonce, a contraction of number used once, concatenated with a counter. It is 

important not to use the same key / nonce combination as it will leak information 

about the plaintext. 
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Figure 3-7: Block diagram of the CBC cryptographic mode of operation. 

3.3.3.6 Initialisation Vector 

The choice of initialisation vector (IV) can have a significant impact on the 

security of an encrypted message. If the same IV is used across several messages and 

those messages start with the same block, the first block of ciphertext will be the 

same, this will reveal information to any potential attacker. A random block of data 

can be generated and used as the IV, this will require the encryption algorithm to have 

access to a source of randomness, and also, in order to perform the decryption the IV 

must be known. If it is random then it must be sent along with the message, this 

increases the size of the ciphertext by 1 block. If there are a large number of relatively 

short messages this can form a significant overhead. 

A better method is to use a cryptographic nonce (a number used only once) to 

generate the IV, typically this takes the form of a message counter. The nonce must 

also be sent with the message, this still creates an overhead, but it can be much shorter 

than a block. It is converted into an entire block by encrypting it with padding. 

3.3.3.7 Summary of Modes of operation 

As the ciphertext of a constant plaintext is always the same with ECB it can leak 

some information about the data, additionally it is susceptible to a replay attack and it 

is generally suggested that it not be used [31]. OFB is very similar to CFB, it does 

have a number of advantages though, errors do not propagate, and both encryption 

and decryption are exactly the same, significantly simplifying an implementation, this 

more than makes up for the fact that the decryption cannot be parallelised. CTR, in 

turn, is preferable to OFB as the random bit-stream generated using CTR will not 

repeat unless the same nonce, counter and key are re-used; no matter how many times 
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the encryption is performed. There are also a number of advantages to using CTR 

over CBC. CTR does not require padding, it can be parallelised arbitrarily and it has a 

simpler structure. The advantage of CBC is that it is more robust and leaks less 

information if it is not setup securely.  

3.4 Data Encryption Standard 

3.4.1 Introduction 

The Data Encryption Standard (DES) was developed in the early 1970s by 

cryptographers at IBM, it is a Feistel cipher based on Lucifer. The National Bureau of 

Standards (renamed to the National Institute of Standards and Technology (NIST) in 

1988) identified a need for an encryption standard to protect unclassified but sensitive 

government information. After consulting the NSA they solicited proposals for a 

cipher on 15th May 1973, none of the algorithms were suitable, IBM made their 

submission after the second request was issued on 27th August 1974. DES uses a 56-

bit key and works on 64-bit blocks of data [32]. 

3.4.2 Structure of DES 

 As DES is a Feistel cipher the structure is very much like that shown in Figure 

3-2, the only difference is there is an initial permutation that re-orders the bits and a 

final permutation that performs the inverse.  

The round function for DES is shown in Figure 3-8. The first stage is the 

expansion operation that converts the 32-bit half block into 48 bits. This is achieved 

by duplicating some bits, each 4-bit block of the input provides the middle 4 bits in a 

6-bit block of the output, the 2 remaining bits at the edge of the block come from the 

bits at the edge of the adjacent 4 bit input blocks. This is shown in detail in Table 3-1. 

The expanded data is then mixed with the key and divided into 8 6-bit blocks which 

are each put through a different s-box with 4-bit outputs. The 8 4-bit blocks are then 

re-arranged by a fixed permutation, as shown in Table 3-2. There are a total of 16 

rounds in DES 
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Figure 3-8: The overall structure of DES and its round function. 

The 56-bit key is expanded into 16 48-bit blocks, a total of 768 bits. This is 

achieved by separating the initial 56 bits into two halves, each 28-bit half is then 

rotated left by either 1 or 2 bits depending on the round, 24 bits are then selected from 

each half by a fixed permutation. The process is repeated for each round. 

Output Bit Input Bit Output Input Output Input Output Input 

0 31 12 7 24 15 36 23 

1 0 13 8 25 16 37 24 

2 1 14 9 26 17 38 25 

3 2 15 10 27 18 39 26 

4 3 16 11 28 19 40 27 

5 4 17 12 29 20 41 28 

6 3 18 11 30 19 42 27 

7 4 19 12 31 20 43 28 

8 5 20 13 32 21 44 29 

9 6 21 14 33 22 45 30 

10 7 22 15 34 23 46 31 

11 8 23 16 35 24 47 1 

Table 3-1: The DES Expansion function. 
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The inverse of the cipher is very similar, the final permutation is applied first, 

after that the algorithm is exactly the same except the round keys are provided in the 

reverse order, finally the initial permutation is applied to the data [33]. 

Output Bit Input Bit Output Input Output Input Output Input 

0 15 8 0 16 1 24 18  

1 6 9 14 17 7 25 12 

2 19 10 22 18 23 26 29 

3 20 11 25 19 13 27 5 

4 28 12 4 20 31 28 21 

5 11 13 17 21 26 29 10 

6 27 14 30 22 2 30 3 

7 16 15 9 23 8 31 24 

Table 3-2: The DES Permutation function. 

3.4.3 Security of DES 

There have been a few attacks that can reduce the complexity of attacking full 

round DES to lower than that of a brute force attack, although generally not by much, 

and often they involve collecting large numbers of known or chosen plaintexts. These 

attacks are discussed briefly in section 3.4.3.1. DES is no longer considered secure as 

the key length is not long enough to make brute force attacks infeasible with current 

levels of processing power available.  

3.4.3.1 Theoretical Attacks 

There have been several attacks published on DES. Differential cryptanalysis is 

a chosen plaintext attack that uses differentials, pairs of plaintexts related by a 

constant difference, to detect patterns in statistical distribution. It was known to IBM 

in 1974 and resistance to this type of attack was one of the design goals of the 

algorithm [34]. When applied to DES differential cryptanalysis requires 247 chosen 

plaintexts. 

Linear cryptanalysis was developed by Matsui in 1992 [16]. It involves 

generating linear approximations to sections of the cipher that have either a high or 

low probability of being correct. If bits were chosen at random there would be an 
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expected probability of ½. It is the deviation from this that provides the cryptanalyst 

with information. To attack DES using a linear cryptanalysis approach requires 243 

known plaintexts [17]. 

The Davies attack is a statistical attack designed specifically for DES, it was 

developed by Davies in 1987 [27]. It is a known plaintext attack that exploits the fact 

that each adjacent s-box shares two input bits that are XORed with different key bits. 

After collecting enough known plaintext / ciphertext pairs some bits of the key can be 

calculated. This reduces the complexity of a brute force attack. There is a trade-off 

between the number of plaintexts, the number of key bits recovered and the 

probability of success. With 252 plaintexts 24 key bits can be recovered 53% of the 

time. 

3.4.3.2 Brute Force Attacks 

DES only uses a 56-bit key; this gives 7.2*1016 possible combinations. In the 

1970s this was adequate for brute force to be infeasible. Computers are currently fast 

enough for this to no longer be true. To highlight this fact RSA Security created a 

series of contests called the DES Challenges. The first one was in 1997 and was 

solved by the DESCHALL Project in 96 days, a distributed computing project 

designed to crack DES. DES Challenge II-1 was solved in 41 days in 1998 by 

distributed.net, a worldwide distributed computing project that uses the idle time of 

lots of machines to solve large, computationally intensive problems. DES Challenge 

II-2 was solved in just 56 hours using Deep Crack, a custom built machine made by 

the Electronic Frontier Foundation. DES Challenge III was solved as a joint effort 

between Deep Crack and distributed.net in 22 hours and 15 minutes [29]. Additionally 

in 2006 the universities of Bochum and Kiel developed COPACOBANA, this 

retrieves DES keys in an average of 7.2 days and all keys can be tested in 14.4 days 

[28]. The aim was to get the best cost to performance ratio, as such it is built entirely 

from off the shelf components. It uses 120 FPGAs (Xilinx Spartan3-1000) and can be 

built for less than $10,000 [18].  

Clearly DES does not provide adequate security against brute force attacks by 

modern computers and DES is no longer considered secure. In order to increase the 

security against brute force attacks without having to change to a completely different 

algorithm a variant of DES was developed called Triple DES, which is discussed in 



Chapter 3 Block Ciphers  40 

 

section 3.5. In 1997 NIST announced the development of a new standard. It was 

published in 2002 and is called the Advanced Encryption Standard; it is discussed in 

section 3.6. 

3.4.3.3 Conclusion 

Even though they have a lower theoretical complexity than a brute for attack, 

the three attacks discussed in section 3.4.3.1 all require a large number of known 

plaintexts. Linear cryptanalysis requires 243, differential cryptanalysis requires 247, 

and the Davies attack requires 252 just to retrieve 24 key bits 53% of the time, these 

numbers of plaintexts are not realistic for a real attacker. However, in the strictest 

sense the algorithm can be described as being broken. Also, the relatively small size 

of the key compared to the availability of modern processing power enables brute 

force attacks to be successful in an average of 2 weeks. DES can therefore no longer 

be considered secure. 

3.5 Triple DES 

3.5.1 Introduction 

Triple DES (TDES) is a derivative of DES that is essentially 3 DES blocks in a 

row. It was developed as a way to increase the size of the key space provided by DES 

when it was realised that 56 bits was not enough to ensure security against brute-force 

attacks with the levels of computing power that had been developed. As it is derived 

from DES the security of a system can be vastly improved while not having to change 

the underlying algorithm. TDES is slowly being replaced by the current standard 

algorithm AES. A notable exception is within the electronic payments industry, which 

still makes extensive use of TDES. 

3.5.2 Structure of Triple DES 

The simplest form TDES can take is simply the linking of 3 DES encryption 

blocks, this is commonly known as EEE, as all steps are encryptions. Generally, in 

order to make TDES systems more backwards compatible with DES ones, an EDE 

structure is used, this is one where the 2nd DES block is in decryption mode, so that if 

all blocks are given the same key the output is the same as that of a single DES block. 

The structure of EEE and EDE are given in Figure 3-9 a. and b. It is important to note 
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than when decrypting not only does the operation of each block have to change, but 

also k1 and k3 must be swapped, the structure of EDE decryption is given in Figure 

3-9 c. Additionally there are 2 other variants of TDES, a 2-key version where k1 = k3 

and a 3-key version where k1, k2 and k3 all have different values. 

 

Figure 3-9 : The Structure of TDES for EEE Encryption (a), EDE Encryption (b) and  

decryption (c). 

3.5.3 Security of Triple DES 

When trying to increase the key space of an algorithm by using more than one 

independent key and performing a number of encryption algorithms it might be 

assumed that the security would square each time the number of encryptions doubled, 

as an exhaustive search of all possible keys would take 22n attempts for each key n 

bits long. In 1977 Diffie and Hellman showed that this wasn’t true by developing the 

Meet-in-the-Middle Attack [35]. It is a known plaintext attack where the attacker 

calculates one encryption of the plaintext for all possible n keys and stores the results. 

Then the attacker calculates one decryption of the ciphertext for each key in turn, if 

the result is also in the previous list of results then it is likely that the correct keys 

have been found, this can then be verified with another plaintext / ciphertext pair. For 

this reason double DES would not increase the security from 22n, but to 2n+1. 
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3-key TDES has a key size of 168 bits, but due to the Meet-in-the-Middle 

Attack the effective security it provides is only 112 bits. 2-key TDES is susceptible to 

certain chosen-plaintext [36] or known-plaintext attacks [37] and thus it is officially 

designated to have only 80-bits of security. 

In 1998 Lucks improved the Meet-in-the-Middle attack on triple encryption 

algorithms in general and TDES in particular [38]. His version requires around 232 

known plaintexts, 290 single DES encryptions, and 288 memory.  

3.6 Advanced Encryption Standard  

3.6.1 Introduction 

 

Figure 3-10: The structure of the forward and inverse AES algorithm. 

In January 1997 the National Institute of Standards and Technology (NIST) 

body announced the initiation of the Advanced Encryption Standard (AES) 

development effort, to create a new standard for a block cipher that would provide 

secure encryption well into the next century. In September of that year NIST officially 

announced a call for algorithms to be submitted by the public and evaluated for their 

appropriateness. NIST stipulated that the algorithm had to work on a 128-bit block 

size and support key-lengths of 128, 192 and 256 bits. In October 2001 the algorithm 
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Rijndael, developed by Vincent Rijmen and Joan Daemen [1], was selected to be AES 

and the standard was published in November 2002 [39]. The structure of AES is 

shown in Figure 3-10: 

The 128-bit input is split into a 4*4 matrix of 8 bits called a state, an example is 

given in Figure 3-11 and it is put through a number of rounds of operations designed 

to encrypt the data, the number of rounds being determined by the size of the key, 10 

for 128, 12 for 192 and 14 for 256.  

 

Figure 3-11: An example of a state. 

Each round consists of a number of operations; Sub Bytes, Shift Rows Mix 

Columns and Add Key, all of the manipulation in these operations are performed in 

the finite field GF (28). GF (28) mathematics is explained in section 3.6.2 and the 

operations are described in detail in sections 3.6.3 - 3.6.7. 

3.6.2 Finite Field Mathematics 

A finite field is a field, an algebraic construct in which addition, subtraction, 

multiplication and division can be performed, in which there is a finite number of 

elements. The order of a field, the number of elements in it, is of the form pn where p 

is a prime number called the characteristic and n is a positive integer. There is more 

than one forms of notation for finite fields, for example. , the notation used in this 

document is GF (pn). In this notation GF stands for Galois Field, an alternative name 

for finite fields named after Évariste Galois who discovered them shortly before his 

death in a duel in 1832 aged 20 [40]. AES makes use of finite field mathematics, and 

as previously stated all the normal arithmetic operations can be performed on finite 

fields. The next section details the specific finite field that is used in AES, explains 

how it is used and gives examples of its manipulation. 
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3.6.2.1 GF (2
8
) and AES 

When performing mathematical operations in AES the data is interpreted as 

being in the finite field GF (28). In the normal representation of numbers in binary 

notation the i
th

 bit of number represents 2i and the resultant values from all the 

individual bits are summed to give the total. In GF (28) the number represents a 

polynomial where the ith
 bit represents bix

i where b is a modulo-2 coefficient and i can 

range from 0 to 7. An example is given in equation (3-1) with its hexadecimal and 

binary equivalents; it represents the hexadecimal number A7. 

 x
7 + x5 + x2 + x +1 = 0xA7 = 10100111 (3-1) 

When performing addition the coefficients are added, as it is modulo 2 this is 

equivalent to an exclusive or (XOR), an example is given in lines 2 – 4 of the example 

in Figure 3-12. When performing multiplication each term in one operand is 

multiplied by each term in the other by adding the indices and multiplying the 

coefficients. Coefficients with the same index are then summed modulo-2. The new 

polynomial might have an order greater than 7; if this is the case then it could not be 

represented in 1 byte and the order needs to be reduced. This is achieved by 

representing all results modulo an irreducible polynomial of degree 8. A polynomial 

is irreducible if its only divisors are one and itself. The irreducible polynomial for 

AES is shown in equation (3-2). 

 x
8 + x4 + x3 + x +1 = 0x011B (3-2) 

An example multiplication between the values 0x18 and 0x09 is shown below 

in Figure 3-12. 

1. (x5 + x3) * (x3 + x) Initial multiplication  

2. (x5+3 + x5+1) + (x3+3 + x3+1) Multiply out brackets  

3. x
8 + x6 + x6 + x4   

4. x
8 + x4 Addition is XOR so x6 cancels  

5. (x8 + x4) + (x8 + x4 + x3 + x + 1) Result has order greater than 8  

6. x
3 + x + 1 Result is reduced by the irreducible 

polynomial 

Figure 3-12: An example multiplication in GF (28). 
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3.6.3 Sub Bytes 

The Sub Bytes operation is a data dependent substitution of the values in the 

state. The transform is made up of 2 steps, finding the multiplicative inverse in the 

finite field GF (28) and adding an affine transform. The multiplicative inverse is the 

number that when multiplied by the original in GF (28) and reduced by the relevant 

irreducible polynomial, gives the value 1 as the answer. An affine transform is a linear 

transform followed by a translation. A general affine transform is shown in equation 

(3-3) and the particular one used by AES is shown in equation (3-4). 

 CAxx +→  (3-3) 

 x→ 0x1F * x + 0x63 (3-4) 

The affine transform is implemented by calculating each bit in turn using the 

formula given in equation (3-5) it required XORing bits from the original number 

together and then one bit from the constant C. 

 b'i = bi ⊕ b(i + 4) mod 8 ⊕ b(i + 5) mod 8 ⊕ b(i +6) mod 8 ⊕ b(i + 7) mod 8 ⊕  ci (3-5) 

3.6.4 Shift Rows 

The Shift Rows operation rotates the rows in the state one byte to the left for 

each row there is above it, i.e. the top row remains the same but the one below it is 

rotated one byte to the left.  

 

Figure 3-13: The effect of the Shift Rows operation. 

3.6.5 Mix Columns 

The Mix Columns operation performs a vector dot product on each column in 

turn with a constant matrix. This is shown in Figure 3-14. 
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Encryption Matrix: 
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Figure 3-14: The matrices for the encryption and decryption versions of the Mix Columns 

operation in hexadecimal. 

3.6.6 Add Key 

Add Key adds the 128-bit round key to the state using an XOR, an example of 

this is shown in Figure 3-15. 

 

Figure 3-15: An example of the Add Key operation in AES. 
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3.6.7 Key Expansion 

The round key for each round is different and is derived from the secret key by 

the key scheduler. The number of encryption rounds that a block must go through is 

determined by the key length, 10 rounds for a 128-bit key, 12 for 192-bit and 14 for a 

256-bit key, there is also an initial Add Key operation at the start of the encryption 

process. The size of the key used in each round key is 128 bits, and the original secret 

key data is always used first. This means that for a key size of 128-bits a total of 11 

keys are needed, as the original secret key is always used first the key scheduler needs 

to create only another 10 keys, or 1280-bits of data. For a 192-bit key length 13 round 

keys are required, equivalent to 1472 bits of expanded data. For a key length of 256-

bits 15 round keys are needed, requiring 1664 bits of expanded data. 

 

Figure 3-16: Examples of the key matrices for the three different key lengths in AES. 

During the expansion process the original key is arranged into a matrix similar 

in structure to that of the state. Each element has 8 bits and there are 4 rows, the 

number of columns is determined by the key length, a 128-bit key has 4, a 192-bit key 

had 6 and a 256-bit key has 8, examples are shown in Figure 3-16. Each expansion 

round produces a block of data equal in size to the key matrix, so although longer 

keys need to generate greater amounts of round keys they produce more data in each 

key expansion round and hence require less of them. 10 rounds are needed for 128 

bits, 8 for 192 and 7 for 256 bits.  

To perform one round of the key expansion the last column of the previous 

matrix is rotated downwards, i.e. the bottom byte becomes the top one and the rest are 

shifted down by one; the values are substituted using the same s-box as during 

encryption, that column is then XORed with the first column in the key matrix and a 

column from the constant RCON, as shown in Figure 3-17. To get the rest of the key 

matrix the previously generated column is XORed with the new columns counterpart 

from the previous matrix, e.g. the 3rd column in the new block is the 2nd column in the 
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new block combined with the 3rd column in the old one. An example of the generation 

of the first 2 columns of a round key is shown in Figure 3-18.The only exception to 

this is when there is a 256-bit key, in this case another substitution performed on the 

data in the forth generated column before it is XORed it with the previous matrix’s 

column.  

 

Figure 3-17: The constant RCON. 

 

Figure 3-18: Example of the expansion of the first two columns of the first round key of a 

128-bit key. 

3.6.8 Inverse Cipher 

To decrypt data using AES the inverse of the cipher has to be performed, this 

requires performing the inverse of each operation in the reverse order to the forward 

cipher. The structure of the inverse cipher is also shown in Figure 3-10. The inverse 

of Sub Bytes is again a substitution, the inverse of the affine transform is applied and 
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then the multiplicative inverse of the value is found. The inverse of the Shift Rows 

operation is exactly the same except the rows are shifted to the right instead of the 

left. The inverse of the Mix Columns has a similar structure; the only difference is the 

values in the matrix are now the multiplicative inverses of the original ones. The XOR 

operation is its own inverse so Add Key remains the same; the only difference is that 

the first inverse Add Key that is performed has to cancel out the last Add Key that 

was performed during encryption so the round keys are used in the opposite order.  

3.6.9 Implementing the Algorithm 

The following sections give details on implementing the various blocks that 

make up the algorithm and describe some of the reported implementations. 

3.6.9.1 Shift Rows 

The Shift Rows operation is a simple remapping of the order of bytes within the 

state. This can be accomplished by the way the bytes are wired between the Sub Bytes 

and Mix Columns operations, e.g. the first byte on the second row of the output of the 

Sub Bytes becomes the input to the second byte of the second row of Mix Columns. 

Changing the order of the wiring between blocks does not increase the delay and so 

there are no reasonable improvements that can be made to this approach. 

3.6.9.2 Sub Bytes 

Sub Bytes is the hardest operation as it involves calculating the multiplicative 

inverse in GF (28), which can be computationally intensive [41]. It is possible to 

calculate it using Euclid’s algorithm [42], but this is an iterative process so would 

require several clock cycles [43]. In order to perform the substitution in one clock 

cycle a look up table (LUT) is required, this is commonly referred to as an s-box. This 

approach is not very area efficient. If a standard LUT is implemented in ROM then it 

requires 256 bytes of memory. The s-box is potentially the most replicated element in 

an AES implementation as 16 are needed to perform a complete Sub Bytes operation 

in one clock cycle and an additional four are used to expand the key, this represents a 

significant proportion of the area. The s-box is also the slowest function [41]. There is 

an optimisation that is commonly used in software implementations of AES that 

merges the Sub Bytes and Mix Columns stages of the algorithm by storing modified 
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s-boxes that give the result of the substitutions multiplied by the relevant constant. 

The modified s-boxes are called t-boxes [41].  

In order to improve the timing performance of the LUT for the AES s, or t-box, 

Morioka and Satoh [41] developed a twisted binary decision diagram (BDD). They 

reported an increase in speed by a factor of between 1.5 and 2 compared to 

conventional implementations. A BDD is a rooted, directed, acyclic graph, where 

each non-terminating node has two directed edges. Each level of nodes represents a 

different variable and by following the graph to a terminating node it is possible to 

determine a value for the function represented by the graph. An example BDD is 

shown in Figure 3-19. 

There are a number of characteristics of the s-box that would decrease the 

performance if it was implemented in a standard BDD form. A large sharing of 

selectors in the first and second stages of the diagram causes a large fan-out. In the 

proposed twisted BDD architecture, eight BDDs are arranged in parallel, each 

corresponding to an output bit. No node is shared between them and their variable 

ordering is twisted so that each primary input i drives the ((8 – i + j mod 8) +1)th 

input of BDD j. This causes the fan-out to be greatly reduced. Morioka and Satoh 

reported a delay of 440 ps using 2815 gates in a 0.13-µm technology. This fast s-box 

allowed them to achieve encryption rates of 11.6 Gbits/s without using pipelining.  

 

Figure 3-19: An example Binary Decision Diagram and associated Truth Table. 

There are other more space efficient implementations of the s-box. Rijmen [44] 

suggested calculating the multiplicative inverse of a GF (28) value by converting it 

into a polynomial of degree 1 with coefficients in GF (24). Denoting the irreducible 

polynomial used for multiplication as x2
 + Ax + B and the converted polynomial as bx 

+ c, the multiplicative inverse is given by: 
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 1221221 ))(()()( −−− ++++++=+ cbcABbbAcxcbcABbbcbx  (3-6) 

A flow diagram showing the required operations is given in Figure 3-20. This 

approach still requires calculating the multiplicative inverse of a GF (24) value. This is 

a much easier problem requiring a smaller LUT as there are only 16 possibilities for 4 

bits. This creates a much smaller s-box, but greatly increases the critical path. This 

optimisation was developed further by Hodjat and Verbauwhede [45] by adding 

pipelining inside the s-box. Pipelining is discussed in section 3.6.9.7. The speed area 

trade-off that they reported on a 1.8-µm technology is shown in Figure 3-21. 

 

Figure 3-20: Calculating the multiplicative inverse in GF (28) using GF (24). 

 

Figure 3-21: The speed area trade-off for different s-boxes using a 1.8-µm technology. [45] 
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3.6.9.3 Add Key 

The Add Key operation is only an XOR, there is no reasonable way that is can 

be further optimised. 

3.6.9.4 Mix Columns 

Mix Columns is made up of multiplications and additions. Additions, as in the 

Add Key module are simply XOR gates and as stated in section 3.6.9.3 additions are 

too simple to be further optimised. Multipliers are more complicated and the design of 

them is discussed in the following section. 

3.6.9.5 Multiplication 

c7 (a7.b0) ⊕ (a6.b1) ⊕ (a5.b2) ⊕ (a4.b3) 

c6 (a6.b0) ⊕ (a5.b1) ⊕ (a4.b2) ⊕ (a3.b3) ⊕ (a7.b3) 

c5 (a7.b3) ⊕ (a7.b2) ⊕ (a6.b3) ⊕ (a5.b0) ⊕ (a4.b1) ⊕ (a3.b2) ⊕ (a2.b3) 

c4 (a7.b2) ⊕ (a6.b3) ⊕ (a4.b0) ⊕ (a3.b1) ⊕ (a2.b2) ⊕ (a1.b3) 

c3 (a7.b3) ⊕ (a7.b1) ⊕ (a6.b2) ⊕ (a5.b3) ⊕ (a3.b0) ⊕ (a2.b1) ⊕  (a1.b2) ⊕ (a0.b3) 

c2 (a7.b3) ⊕ (a7.b2) ⊕ (a6.b3) ⊕ (a2.b0) ⊕ (a1.b1) ⊕ (a0.b2) 

c1 (a7.b2) ⊕ (a6.b3) ⊕ (a7.b1) ⊕ (a6.b2) ⊕ (a5.b3) ⊕ (a1.b0) ⊕ (a0.b1) 

c0 (a0.b0) ⊕ (a7.b1) ⊕ (a6.b2) ⊕ (a5.b3) 

Table 3-3: The equations for a generic 8-bit by 4-bit GF (28) multiplier. 

In order to design a multiplier it is important to understand how multiplication 

in GF (28) is performed, this is described in detail in section 3.6.2. When two finite 

field elements are multiplied together they cause an effect in the element representing 

the sum of the value of their individual elements, e.g. x
3
 * x

4
 = x

7. Therefore each 

element is the addition (XOR) of each possible combination of pairs of bits, one from 

each multiplicand, whose element numbers sum to the value of the element in 

question. This could give a number that is larger than 28 so it has to be reduced 

modulo an irreducible polynomial, the one that is used is given in equation (3-2). The 

8th element of the irreducible polynomial is ‘1’; this means by adding it to a number 

that is too large it can be used to cancel the 8th element. Any other values can be 
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cancelled by multiplying it by the relevant power of x. The equations for a generic 8-

bit by 4-bit GF (28) are shown in Table 3-3. 

It is important to note that when performing the multiplication in the mix 

columns operation one of the operands is a constant. This can lead to a slightly 

smaller design by creating a series of separate fixed value multipliers. The bits of the 

polynomial x that must be XORed together for each bit of the polynomial y for each 

of the constant multipliers are given in Table 3-4 [46]. This only reduces area if the 

multipliers are going to be replicated enough times to mix at least one column in a 

clock cycle. 

 02 03 09 0b 0d 0e 

y7 x6 x6 x7 x4 x7  x4 x6 x7 x4 x5 x7 x4 x5 x6 

y6 x5 x5 x6 x3 x6 x7  x3 x5 x6 x7 x3 x4 x6 x7 x3 x4 x5 x7 

y5 x4 x4 x5 x2 x5 x6 x7  x2 x4 x5 x6 x7 x2 x3 x5 x6 x2 x3 x4 x6 

y4 x3 x7 x3 x4 x7 x1 x4 x5 x6 x1 x3 x4 x5 x6 x7 x1 x2 x4 x5 x7 x1 x2 x3 x5 

y3 x2 x7 x2 x3 x7 x0 x3 x5 x7 x0 x2 x3 x5 x0 x1 x3 x5 x6 x7 x0 x1 x2 x5 x6 

y2 x1 x1 x2 x2 x6 x7  x1 x2 x6 x7 x0 x2 x6 x0 x1 x6 

y1 x0 x7 x0 x1 x7 x1 x5 x6 x0 x1 x5 x6 x7 x1 x5 x7 x0 x5  

y0 x7 x0 x7 x0 x5 x0 x5 x7 x0 x5 x6 x5 x6 x7 

Table 3-4: The bits that must be XORed together to calculate each bit for the constant 

multipliers. 

3.6.9.6 Key Scheduler 

There are two main types of key scheduler that have been reported, offline and 

online. In an offline approach all of the round keys are generated at the start and 

stored in memory, whereas in an online approach round keys are generated as they are 

required. If the encryption architecture is unrolled then all the round keys are needed 

on any given clock cycle. An offline key scheduler can reduce the area requirements 

if the key does not change very often compared to the data. This is because the 

advantage gained by unrolling the key scheduler is minimal so it is more efficient to 

calculate the values once and store them. If the encryptor is not unrolled then there is 
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no space advantage to making the key scheduler offline as there would only be the 

need to generate one key at any given time anyway so storing them would only waste 

space. Also the memory access time could potentially be greater than the time it takes 

to generate the keys online. It is important to note that as the keys are needed in the 

reverse order when performing decryption the online key scheduler is only 

appropriate for a device that only performs encryption.  

3.6.9.7 Pipelining 

There are two approaches to pipelining, outer-pipelining and inner-pipelining. 

Outer-pipelining involves the addition of registers between rounds so that multiple 

blocks of data can be processed in parallel. An architecture is said to be fully 

pipelined if the number of pipeline stages, k, is equal to the number of rounds. If an 

architecture is only partially pipelined it can process k blocks in the same number of 

clock cycles as there are rounds, and after k clock cycles data has to be fed back round 

from the final stage. For this reason k is generally chosen to be a factor of the number 

of rounds otherwise when one block has been completely processed the new data 

would have to be added to a non-constant point in the pipeline and this would increase 

the complexity of the controller. Due to the need to replicate round blocks in order to 

process more than one data block at once the area of the pipelined architecture is 

proportional to k. 

Inner-pipelining is similar except the registers are inserted inside the 

combinational logic of a round block. If there are n blocks with the same delay then 

the inner pipelining can achieve an increase in speed of almost a factor of n, with only 

a marginal increase in area. The minimum clock period is determined by the longest 

critical path between registers, so dividing blocks that are not the longest has no effect 

on the clock speed. 

The effects of pipelining on the performance of an AES implementation were 

investigated by Hodjat and Verbauwhede in [47]. They designed and simulated 

different implementations for an AES processor using a 1.8-µm technology. One with 

both inner and outer pipelining, one with only outer pipelining and a third design that 

has 5 pipeline stages that each contain 2 rounds and take 2 clock cycles to complete. 

The rounds and key generators were split into four sections for the inner pipelining. 

The throughput and area for different implementations are shown in Figure 3-22. The 
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effect that pipelining has on the area is less than the effect that pipelining has on the 

speed, this can be seen from the graph below. When moving up to an implementation 

with more pipelining the throughput is increases by a greater factor than the number 

of gates. For example, the difference in the number of gates for the largest multi-

round pipeline implementation and the largest inner and outer round pipelined 

implementation is slightly greater than 2 while the throughput increases by nearly a 

factor of 4. 

  

Figure 3-22: The Area-throughput trade-off for a 1.8-µm AES implementation. [45] 

It is important to note that if pipelining is used it limits the cryptographic modes 

of operation that can be used with the device to ECB only. With modes like CBC the 

previous ciphertext is XORed with the plaintext, so an entire encryption must be 

complete before the next one is started. This is the reason that pipelining was not 

included in the design reported by Morioka and Satoh in [41].  

3.6.10 Reported Performance of Hardware Implementations 

There have been several implementations of AES developed that use different 

optimisations in order to improve the performance of the hardware in some. The 

results for ASIC implementations are summarised in Table 3-5 and the FPGA 

implementations in Table 3-6. 

The implementations using t-boxes rather than s-boxes produced faster chips, an 

increase in throughput of nearly 30% compared to similar implementations that used 

s-boxes [41]. There is a price to pay in area though, as it increased by 350%. This is 

because in order to run one column through the Sub Bytes and Mix Columns requires 

4 s-boxes and 8 multipliers, or 12 t-boxes and t-boxes are much larger than 
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multipliers. To perform decryption 4 s-boxes and 16 multipliers, or 16 t-boxes are 

required. 

Description Throughput 

(Gbits/s) 

Clock 

(MHz) 

Gates Tech. 

(µm) 

LUT s-box full AES offline key [48] 1.64 465 28626 0.18 

GF (24) s-box, offline key, full AES [49] 2.381 200 58430 0.35 

GF (24) s-box, offline key, full AES [50] 2.977 250 63400 0.25 

BDD s-box 128 bit dec. no pipe [41] 8.9 699 61841 0.13 

BDD t-box 128 bit dec. no pipe [41] 11.3 885 282494 0.13 

BDD t-box 128 bit enc. no pipe [41] 11.6 909 167566 0.13 

128 bit enc. multi pipelining [47] 23.1 362 222000 0.18 

128 bit enc. outer pipelining [47] 48.2 377 482000 0.18 

128 bit enc. both  pipelining [47] 77.6 606 471000 0.18 

Table 3-5: Reported ASIC implementation performances. 

In both [51] and [52] they have made a similar encryptor / decryptor 

combination and encryptor pair. In [51] the throughput of the implementation is 

reduced by a factor of 4 and the area requirements increase by two thirds. In [52] the 

area more than doubles and the speed halves although it is later implemented on a 

more complex FPGA. Supporting more than one key length can also significantly 

reduce the performance of AES chips due to increased complexity.  

Description Throughput 

(Gb/s) 

Clock 

(MHz) 

Slices FPGA 

Small low cost Enc/Dec [53]  0.208 71.5 163 XC3S50 

Small low cost Enc/Dec [53] 0.358 123 146 XC2V40 

Generic 128 bit Enc. [52] 0.310 25.4 4681 XCV600E 

LUT s-box 128 bit enc/dec  [51] 0.463 76 5150 XCV1000E 

LUT s-box 128 bit enc [51] 1.604 125.38 1857 XCV1000E 
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Description Throughput 

(Gb/s) 

Clock 

(MHz) 

Slices FPGA 

Full pipeline 128 bit enc/dec [52] 3.239 25.3 7576 XCV3200E 

Full pipeline 128 bit enc [52] 6.956 54.35 2222 XCV812E 

GF (24) 3 stage inner pipeline [54] 9.184 71.8 9406 XCV800 

GF (24) 3 stage inner pipeline [54] 11.965 93.5 9406 XCV812E 

GF (24) 7 stage inner pipeline [54] 16.032 125.3 11014 XCV1000 

GF (24) 7 stage inner pipeline [54] 21.556 168.4 11022 XCV1000E 

Full pipe online key 128 bit enc [55] 16.54 129.2 11719 XCV1000E 

Full pipe online key 128 bit enc [55] 17.8 139.1 10750 XC2V2000 

Table 3-6: Reported FPGA implementation results. 

3.6.11 Testing and Validation of AES 

In order to check the validity of an AES implementation NIST created the 

Advanced Encryption Standard Algorithm Validation Suite (AESAVS) [56]. It is 

designed to perform automated testing of an implementation, using Known Answer 

Test (KAT), the Multi-block Message Test (MMT), and the Monte Carlo Test (MCT). 

The KATs can be split into four groups GF s-box, key s-box, variable key and 

variable plaintext. In variable key tests the plaintext is always made entirely of zeros 

and the key is made of increasing number of contiguous ones starting from the left 

hand side. The relevant ciphertexts are given for all of these, for all of the possible 

key lengths. Similarly the keys for the variable plaintext tests are made entirely of 

zeros and the plaintext is made of an increasing number of ones.  

MMT tests the implementation’s ability to correctly process multi-block 

messages. These require the chaining of information between consecutive blocks. 

Several different modes of operation are tested by MMT, namely: ECB, CBC, OFB, 

and Cipher Feedback with 128, 8 and 1 blocks of data (CFB128, CFB8 and CFB1). 

The block length is 8 bits for CFB8, 1 bit for CFB1 and 128 bits for the others. For 

each supported mode 10 messages are supplied with lengths of i * blocklength, where 

1≤ i ≤ 10. 
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In the MCT, the implementation under test encrypts 100 plaintexts iteratively 

1000 times, by feeding the generated ciphertext back round using the appropriate 

method for the cryptographic mode under test. Hence any MCT test involves 100,000 

encryption, or decryption, operations, this requires a long simulation. 

To perform the test a request file is generated that contains all of the plaintexts, 

keys and initialisation vectors, for the tests. The implementation then reads in this 

data, processes it and creates a response file. The data in the response file is then 

verified with a trusted implementation of AES. 

3.6.12 Security of AES 

There have been no attacks of full strength AES, however there have been some 

concerns voiced over its security. AES has a simple algebraic structure and while this 

has not yet led to the discovery of any vulnerabilities it has been criticised as a 

potential weakness [57]. AES is based on the algorithm Square, also designed by 

Rijmen and Daemen [58], in the specification they include a potential attack that 

utilises the byte oriented structure of the algorithm, this is described in more detail in 

section 4.2.1. The basic square attack can only break four rounds but it can be 

extended to up to eight [30]. It is possible that it could be potentially be extended 

further in the future. The algorithms itself achieves good levels of confusion and 

diffusion, the same cannot be said for the key-schedule [30], this is discussed further 

in section 4.2.2. Finally, like all block ciphers, AES is susceptible to power analysis 

attacks and Differential Power Analysis is able to retrieve the key [3, 59-61], this is 

discussed further in section 4.3.2. 

3.7 Conclusion 

Block ciphers were the first type of cipher to be developed in the modern era of 

digital cryptography. The foundations were laid by Shannon in the 1949 and they 

have evolved significantly since the 1970s, increasing in size and complexity and 

becoming immune to several different classes of attacks along the way. They are a 

valuable and versatile weapon in the cryptographer’s arsenal, being able to secure 

messages sent to trusted recipients, protect files and even encrypt arbitrary length 

streams of data.  
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In the 1970s DES was developed and it remained the standard block cipher for 

nearly three decades, until computing power and cryptanalysis had advanced to such a 

degree that it was no longer deemed secure. After the cracks started to appear its 

successor was developed, the Advanced Encryption Standard (AES). There have been 

no published mathematical attacks on full round AES and although there have been 

criticisms of some elements of the design it is accepted to be currently secure. There 

is one class of attacks that no algorithm can currently claim to be immune from and 

that is side channel attacks, these are explored in chapter 4.3. 



 

 

Chapter 4 Security of 

Algorithms 

4.1 Introduction 

There are several different techniques for cryptanalysis. The attacks all make 

assumptions about how much information can be observed by the attacker and what 

kind of access he has to the device. It is generally assumed that the structure of the 

algorithm is known by the attacker. Keeping the algorithm secret is a dangerous way 

to try and ensure security, there is no real guarantee that an attacker could not acquire 

an implementation of the algorithm and reverse engineer it, or find some other way to 

get the details. The complete details of AES have been published and are in the public 

domain. When it was being developed as well as being evaluated by various US 

government security agencies it also went through a system of public review to ensure 

it was secure. If an algorithm stands up to public review then there is more faith in its 

security and if a weakness is discovered then it reported.  

The majority of analyses focus on algorithmic weaknesses. There is another 

group of attacks called side channel attacks; these use information gained from 

analysis of emissions from the physical cryptosystem, and can result in the extraction 

of the secret key or some important intermediate values. As the attacks use 

information generated during the specific encryption an attacker, or some of their 

equipment, must be present when that encryption was performed. Generally side 

channel attacks fall into one of the following groups: 
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• Timing attacks – the attacker exploits the fact that some computation time for 

some operations is data-dependent. This attack applies more to asymmetric 

ciphers [19]. 

• Power consumption based attacks – the attacker uses variations in the power 

consumption during the encryption to try and retrieve key data from the chip. 

• Emitted electromagnetic radiation attacks – the attacker uses the emitted 

electromagnetic radiation to try and gain information about what is going on 

inside a cryptographic chip [20]. 

• Acoustic cryptanalysis – the attacker uses the acoustic noise emitted by the 

keyboard during data entry [62], or by the hum of the processor during a 

cryptographic operation [21]. 

Section 4.2 reviews the general security of AES, it contains details of a 

proposed attack, outlines a possible weakness and an improvement for the key 

schedule. The rest of the section gives the background theory and some examples of 

power analysis attacks. This chapter is mostly a review of current research with some 

analysis to draw the ideas together. 

4.2 Security of AES 

Although no successful attacks on a complete implementation of AES have 

been published some concerns have been expressed over its security. Section 4.2.1 

describes the square attack, an attack that was identified in the original paper about 

the square algorithm on which Rijndael, and hence AES, is based [58]. Section 4.2.2 

is about the security of key schedules in general and the AES one in particular. 

4.2.1 The Square Attack 

While no attacks on full round AES have been published, there have been some 

concerns of the security of AES due to the simplicity of its algebraic structure [57]. 

The byte-oriented structure of AES causes it to be susceptible to an attack known as 

the Square Attack. It was published in the original paper that proposed the algorithm 

Square, on which AES is heavily based [58]. It is a chosen plaintext attack that 

recovers the last round sub-key of a reduced round AES [1], the basic attack can break 

four rounds but it can be extended to up to eight [30].  
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The plaintexts are chosen to have a specific number of active and passive bytes, 

where in this context all passive bytes have the same value and all active ones have a 

different value. The plaintexts are chosen in groups of 256 so that the active bytes 

vary over the range of all possible values. The sub bytes and add key operations do 

not change the positions of the active bytes. The mix columns operation creates a 

column of active bytes if there is at least one active byte in the column, the next shift 

rows operation then spreads these active bytes into all four columns so after the 

second mix columns there are four columns of only active bytes. As the values of 

active bytes range over all possible values, the inputs to the third round are balanced 

over each input set, i.e. the bitwise XOR of all the values of an active byte in the set 

of chosen plaintexts is 0. As it is a reduced round AES and the 4th round is the final 

round it does not include a Mix Columns operation. This means the output bytes of 

the 4th round each depend on a single input byte of the 4th round and are given by the 

following formula: 

 
jijiji bytekeysubinputthSboxoutputth ,',', __)_4(_4 ⊕=  (4-1) 

The input bytes to the 4th round are balances over the set of chosen plaintexts. 

By assuming a value for the sub-key byte, the value of the input byte for each chosen 

plaintext in the set can be calculated from the ciphertexts. If these values are not 

balanced, the hypothesised sub-key byte was incorrect. This can then be repeated for 

all possible values of all bytes of the sub-key. 

By increasing the number of plaintexts the attack can be extended up to an 

eight-round attack. The key schedule of AES is not a one way function and exhibits 

bit-leakage, this means that the Square Attack can be used to recover all the sub-keys 

including the master key from knowledge of a single n-round sub-key.  

4.2.2 The Security of the Key Schedules 

When designing cryptographic algorithms, lots of care is given to the design of 

the cipher itself, assuring it quickly reaches sufficient levels of diffusion and 

confusion, two properties related to the overall cryptographic strength of a cipher, 

defined by Shannon in [14]. Key schedule design receives much less attention, with 

the majority of block ciphers having ad hoc designed ones [63]. This is despite the 

fact that the complexity of the key schedule can have a significant impact on a 
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cipher’s susceptibility to linear and differential cryptanalysis. Knudsen and 

Mathiassen  [63] demonstrate using experiments on small, simplified ciphers that the 

complexity of the key schedule influences the probability of differentials and linear 

hulls (the linear hull of a set S is the intersection of all subsets in a field that contain 

S). These affect a cipher’s susceptibility to differential and linear cryptanalysis. They 

argue that the more complex the key schedule the greater the resistance to these types 

of attack. 

In [30], May et al provide a list of three properties that are necessary for a key 

schedule to be efficacious, they are as follows:  

1. Collision-resistant one-way function: If the key schedule is a one-way 

function then it will not be possible for an attacker to gain information about 

the master key or other sub-keys from a known sub-key. It may also be easier 

to find weak keys and related keys for key schedules which are not one-way 

[64].  

2. Minimal mutual information: This property aims to eliminate bit leakage 

between sub-keys and the master key. Leakage of information to an adjacent 

sub-key is impossible if property 1 is satisfied. The direct use of master key 

bits in sub-keys gives worst case bit leakage; however this can be easily 

avoided. 

3. Efficient implementation: The cipher algorithm and the key schedule should 

complement each other in implementation aspects as well as security. By re-

using already optimised components of the encryption algorithm and with 

some careful consideration during the key schedule design, a fast 

implementation is attainable, without the necessity for major additional cost in 

circuitry or code size due to design constraints. 

4.2.2.1 Analysis of AES Key Schedule  

The main weakness in the AES key schedule is that given knowledge of a sub-

key (or part of one), knowledge of other sub-keys (or parts) is derivable, i.e. there is 

significant bit leakage. This is due to the fact that a column is XORed with its 

equivalent in the previous sub-key to get the next column, and hence knowledge of 

two adjacent columns leads to knowledge about the previous sub-key. The iterative 
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nature of the sub-key generation leads to good computational efficiency but the 

iteration is too simplistic leading to the bit leakage problem. 

Sub-key Freq SAC 

1 0.0000 125.053 

2 0.0000 105.433 

3 0.0000 72.563 

4 0.0000 46.858 

5 0.0593 31.840 

6 0.0000 28.057 

7 0.0000 28.153 

8 0.0034 28.237 

9 0.0000 28.161 

10 0.0110 28.215 

Table 4-1: AES key schedule Crypt-X 

statistical test results [30]. 

Round Freq SAC 

2 0.0000 96.083 

3 0.0048 20.687 

4 0.7560 1.183 

Table 4-2: AES cipher Crypt-X statistical 

test results [30]. 

 

 

 

 

 

 

 

As well as not fulfilling the three necessary properties for a strong key schedule 

defined in section 4.2.2, the AES key schedule performs poorly, in contrast to the rest 

of the cipher, in terms of quickly achieving acceptable levels of confusion and 

diffusion. To show this May et al used two statistical tests, the frequency test and the 

Strict Avalanche Criterion (SAC) test, available in the software package Crypt-X. The 

frequency test is used to test the randomness of a sequence of zeroes and ones, more 

specifically in this context it is being used to test the level of confusion, the influence 

of each key bit on the output bits, achieved by the algorithm. The result of this test is a 

probability, where a value greater than 0.01 / 0.001 indicates that bit mixing is 

satisfied with a confidence of 99% / 99.9%. The SAC test measures the level of 

diffusion, the degree of change in the output after the change of a single bit of the 

input. This is tested with the Kolmogorov-Smirnov test (KS test). The KS test is a 

goodness-of-fit test used to determine whether two sets of samples come from the 

same probability distribution. It can be used to determine whether the underlying 
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probability distribution for a finite set of samples differs from a hypothesized 

distribution, in this case, that the probability of each output bit changing is 0.5 after 

the change of a single input bit.  A value less than 1.628 / 1.949 indicates that bit 

diffusion is satisfied with a probability of error of 1% / 0.1%. 

It is evident from the above tables that the AES cipher achieves confusion and 

diffusion by round 4 but the majority of the sub-keys do not achieve complete bit 

mixing and hence do not achieve significant levels of confusion. Additionally none of 

the sub-keys satisfy the SAC test. 

4.2.2.2 Improved AES Key Schedule 

In order to combat these weaknesses May et al [30] designed a new key 

schedule for AES. In order to maximise the efficiency of the new design, functions 

from the AES cipher are used in the new key schedule. The key schedule takes the 

master key, adds a round constant, and this value is put through three rounds of AES 

using itself as the key, a more detailed description of the algorithm is given in Figure 

4-1. 

for round = 0 to 10 

for j = 0 to 15 

KS Plaintext j = KS Round Key j = Master Key j ⊕ Sub Bytes ((round * 16) + j) 

for i = 0 to 2 

Sub Bytes 

Shift Rows 

Mix Columns 

Add Key 

Figure 4-1: Pseudo-code for the improved AES key schedule [30]. 

The performance of both the cipher with the new key schedule and the schedule 

itself were measured in Crypt-X and the results are reported in Table 4-3 and Table 

4-4, Table 4-5 repeats the results for AES without the key schedule modifications. 

The results show that both confusion and diffusion in the new key schedule reached 

significant levels after three rounds, and this increased the speed with which the new 

algorithm also meets these criteria. 
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Round  Freq SAC  

2  0.1557 15.775 

3 0.8757 1.212 

4 0.3498 1.689 

Table 4-3: Crypt-X results for the new 

128-bit key schedule [30].  

Round  Freq SAC 

2 0.0000 21.113 

3 0.2663 1.282 

4 0.3110 1.347 

Table 4-4: Crypt-X results for 128-bit 

AES with new key schedule [30] 

 

Round Freq SAC 

2 0.0000 96.083 

3 0.0048 20.687 

4 0.7560 1.183 

Table 4-5: Crypt-X results for normal AES 

[30]. 

Instead of adding Round Keys to the cipher round in the key schedule, which 

would require a separate key schedule, the Master Key is used. This does not 

adversely affect the security. One potential worry might be that it adds a vulnerability 

to power analysis attacks (for a detailed description of these see section 4.3), but this 

is unfounded as these attacks require the interaction of key data with chosen or known 

data. In the case of the new key schedule it is only XORed with KSPlaintext, which is 

ultimately derived from the Master Key anyway. 

The use of the cipher assures that the key generation is one way. Also as each of 

the sub keys are generated independently and the master key is not used as one of 

them, there is no bit leakage and knowledge of one sub-key does not give knowledge 

of the others. 

Although the main aim of the work was to make a key schedule that fulfilled the 

properties outlined in section 4.2.2 May et al [30] also report that the new key 
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schedule improves the resistance to several reduced round cryptanalysis techniques 

such as differential cryptanalysis and the Square attack. 

4.3 Power Analysis Attacks 

Currently the vast majority of electronics are made using CMOS technology. 

This has the advantage of having low static power consumption; the dynamic power 

consumption is a much more significant component. This means that there is a 

relatively high amount of correlation between the power consumption and both the 

operations that the chip is performing and the data that is being operated on. This 

allows a cryptanalysis technique called power analysis, where by observing the power 

consumption of a device when performing encryption or decryption can yield 

information about the algorithm, implementation and the secret key. Most of the 

different techniques for performing power analysis involve measuring the power 

consumption while encrypting or decrypting a large number of known plaintexts or 

ciphertexts, combining the input with a guess at a byte of the key, and using the fact 

that there is a large data set to enable a statistical test as to the correctness of the 

guess. This is then repeated for all guesses of all bytes of the key, the values that 

appear to be the most correct are assumed to be the key. More detailed descriptions of 

specific power analysis techniques are given in the following sections. 

4.3.1 Simple Power Analysis 

Simple power analysis (SPA) involves directly interpreting power consumption 

measurements collected during a cryptographic process [2]. It is possible to identify 

which instruction is being executed by a microprocessor by inspecting the power 

consumption trace. This can provide an attacker with information about the key if the 

execution path is data dependent, for example if there are conditional branches based 

on key data, multiplication and exponentiation can also leak significant amounts of 

data via SPA. Some microprocessors also have heavily operand-dependent power 

consumption features. These systems can have serious SPA vulnerabilities, even if the 

execution path is not key dependent [2]. 

There are several techniques for the prevention of SPA that are fairly easy to 

implement. Avoiding the use of secret intermediate values or key values as the 

conditions for branching will remove a lot of the useful information that is leaked. If 
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such branches are inherent in the algorithm this can require a coding techniques that 

can negatively affect performance. Most ASIC implementations of symmetric 

cryptographic algorithms have sufficiently small variations in power consumption to 

not leak information about the key material via SPA [2]. 

4.3.2 Differential Power Analysis 

Differential power analysis (DPA) is a statistical attack that uses power 

consumption data from a large number of encryptions to retrieve secret information 

about the key. DPA has proved to be a powerful cryptanalysis technique that  has 

been able to extract the secret key from several DES implementations [2]. The DPA 

algorithm is presented below [2]: 

1. A set of N plaintexts are randomly generated. 

2. The power consumption during the encryption of the N plaintexts is measured. 

The attacker gets N traces each containing n values. 

3. A hypothetical model of the chip is fed with the plaintexts (or ciphertexts) and 

a guess at one byte of the first (or last) sub-key. 

4. A selection function, D, is applied to the output of the hypothetical model 

which separates the traces into two sets. 

5. The average of both sets is computed and the difference between the averages 

is calculated. 

6. Steps 3 to 5 are repeated for each sub-key guess. This will give 28 differential 

traces. 

7. For each differential trace the peak and mean value is determined and the ratio 

between the two is calculated. 

8. For a correct sub-key guess there will be large peaks seen in an otherwise flat 

differential trace. 

9. To get all the sub-keys, steps 2 to 8 are repeated 16 times (for a 128-bit key). 

The choice of hypothetical model determines the section of the algorithm that is 

being attacked. It takes the input or output to that section, generally a section of the 

plaintext or ciphertext, and a guess at one byte of the relevant sub-key and outputs 
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either the output or the input to section. The selection function separates the plain- or 

ciphertexts, and therefore their associated power traces, into two sets. Kocher’s 

original hypothetical model and selection function D (C; b; Ks) [2] attacked the left 

hand intermediate at the beginning of the 16th round. It accepted the ciphertext, C, a 6-

bit sub-key guess, Ks, to predict the output and a value between 0 and 31 representing 

which bit of the DES intermediate was being attacked, b, as inputs. The selection 

function applies the ciphertext and sub-key guess to an inverse DES algorithm and 

returns either a 1 or a 0 depending on the value of the bth bit that would give these 

values. Varying the value of b modulus 4 targets different sub-bytes of the key, as in 

DES there are 8 s-boxes each with a 4-bit output. Kocher was using DPA to analyse 

DES; Schuster reported that while the original selection function used by Kocher on 

DES works with the AES power consumption model it was unsuccessful with real test 

data [3] and proposes a new one based on the Hamming weight of the output of the s-

box, if it is greater than four then the trace is added to one set, if it is not then it is 

added to the other. Schuster uses this to successfully crack an AES implementation 

that is being run on an 8-bit microcontroller 

4.3.2.1 Leakage Based Differential Power Analysis 

As CMOS technology shrinks in size the leakage power becomes a more 

significant portion of overall power consumption. While leakage power is mainly 

dependent on physical parameters its dependence on input patterns becomes 

significant in sub-90 nm technology [65], therefore leakage power needs to be 

considered when evaluation a system for susceptibility to DPA. Lin and Burleson 

took this into account and developed “Leakage-based” DPA (LDPA) [66]. 

The LPDA algorithm is essentially the same as the regular DPA algorithm 

except the power traces that are recorded capture both the dynamic power and the 

leakage power. The attack was tested on a SPICE simulation of an implementation of 

DES and it revealed the correct key after 120 traces using 45 nm CMOS, compared to 

200 traces for regular DPA using 180 nm CMOS.  

4.3.2.2 Correlation as the Statistical Test in DPA 

The DPA attack described in section 4.3.2 uses a statistical test called the 

difference-of-means. The distance-of-mean test simply takes the difference between 

the mean of two sets of data, it assumes that the variances of the two data sets are the 
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same and not much information from the model can be included. Other tests have 

been proposed, including analysis of variance (ANOVA), which can simultaneously 

compare the means of several sets of data and works better than the distance-of-mean 

test [67]. This section discusses the use of correlation in DPA using the Pearson 

correlation coefficient. It was first described by Brier et al in [68]. This coefficient 

reflects the degree of linear relationship between two random variables, it can be used 

to provide a direct comparison between the real and hypothetical model of the device. 

It is defined as the sum of the products of the standard scores of the two measures 

divided by the degrees of freedom. This is equivalent to dividing the covariance 

between the two variables by the product of their standard deviations as shown in 

equation (4-2).  

 

YX

YX

σσ
ρ

),cov(
=  

(4-2) 

 

In order to calculate an estimate of the correlation from a number of samples the 

formula in equation (4-3) must be used. 
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The coefficient ranges from −1 to 1, the sign indicating the direction of the 

relationship. If the coefficient has the value 1 then a linear equation describes the 

relationship perfectly and positively, all data points lie on the same line and Y 

increases with X. A value of −1 means a linear equation describes the relationship 

perfectly but negatively, i.e. all data points lie on a single line but Y increases as X 

decreases. A correlation value of 0 means that there is no linear relationship between 

the variables. 

The technique described by Kocher in [2] attacks an algorithm by predicting the 

value of one bit and partitions the traces accordingly. The method proposed by Brier 

is a multi-bit attack; it predicts the number of bits that change in a byte of registers. 

This means that the technique involved is slightly different from regular DPA. It has 

three stages, prediction, measurement and correlation, a description is given below 

[61]: 

1. Prediction Stage 
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a. Predict the number of bit changes inside a number of targeted registers 

in a specific clock cycle.  

b. Repeat this for all 28 possible values of a byte of the key and for N 

different randomly chosen plaintexts. 

c. Put them in N * 28 matrix. This is called the Prediction Matrix 

2. Measurement Stage 

a. Measure the power consumption over all (C) clock cycles in the 

encryption process 

b. Record the highest power consumption in each clock cycle in an N * C 

matrix. This is called the Consumption Matrix 

 

3. Correlation Stage 

a. Calculate the correlation between the column representing the clock 

cycle that was targeted in the prediction phase in the Consumption 

Matrix and each column in the Prediction Matrix. 

b. The column of the Prediction Matrix that shows the greatest 

correlation is the one that represents a correct key guess. 

It is possible to perform this type of attack using purely simulated data. This 

requires using a more detailed hypothetical model of the device that can be used to 

predict the bit changes in all of the registers in the device for all cycles and entering 

the data into an N * C Prediction Matrix. This is then used instead of the Consumption 

Matrix in the Correlation Stage. 

4.3.2.3 Choice of Target in Differential Power Analysis 

Both forms of power analysis attack a specific point in an algorithm. In DPA the 

position of this is selected by the choice selection function and in a correlation attack 

the choice of which register to target is explicitly made. This section defines the 

properties that determine whether a particular register is an appropriate target for the 

attack. Figure 4-2 shows a diagram of the AES algorithm with all the possible 

positions of registers between the stages. It shows which of the registers in the design 

have the properties that make them suitable for the target of a DPA attack. 
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Figure 4-2: Diagram showing the predictability and fullness of registers at different points in 

AES. 

Both forms of power analysis find the correct key value by testing all possible 

key values and finding the value whose result best fulfils the attack’s selection 

criterion, the target must therefore be determined by a small enough number of key 

bits for this to be computationally feasible. In practise this limit is assumed to be 16 

bits [60], below this a register is said to be predictable. In AES the s-boxes are 8 bits 

wide; this gives 256 different key values to test which is easily performed. The Mix 

Columns operation mixes the data from 4 bytes; this means the output depends on 32 

key bits, above the predictability limit. 
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A register is described as full if it leaks information about the key via its 

transitions. This is also a property required in order to make a register a valid target. 

As seen in Figure 4-2 register 1 does not leak information as it only contains plaintext 

data. Interestingly, registers 2 and 3 do not necessarily leak information either as the 

influence of the key on the transition cancels out over two successive plaintexts as 

illustrated in equation (4-4). They can be made to be full by resetting the contents to 

0s between plaintexts. Also they can be full in smart card implementations where 

there is a constant instruction address loaded. 

 Reg21 ⊕ Reg22 = (plaintext1 ⊕ key) ⊕ (plaintext2 ⊕ key) 

 = plaintext1 ⊕ plaintext2 

(4-4) 

 

Registers after the s-box will all be full as the non-linearity of the substitution 

stops the influence of the key on the transition value over 2 successive plaintexts 

cancelling. 

4.3.3 Inferential Power Analysis 

Fahn and Pearson have also developed a type of power attack that is similar to 

DPA [69]. It is called inferential power analysis (IPA) and consists of two stages, a 

long, computationally intensive profiling stage and a shorter key extraction stage. It 

has the advantage over DPA that the attacker does not need to know the plain or 

ciphertexts relating to the recorded power traces in order to perform the attack. The 

first step in the profiling stage is to record a large number of power consumption 

traces, between 100 and 1000 are generally required. The traces do not need to have 

the same key, although for simplicity when it was performed in [69] the key was kept 

constant.  

1. The traces are aligned so that the power consumptions are all matched. 

2. These matched traces are averaged to create a Mean Trace. 

3. The Mean Trace is chopped into rounds to give Mean Rounds. 

4. The Mean Rounds are averaged to give a Super-Average Round. 

5. The difference between each Mean Round and the Super-Average Round is 

computed, this gives the Differential Traces. 

6. The mean squares of the Differential Traces are calculated. 
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The first averaging of all the traces that have been collected removes the effect 

of the plaintext, but, in the case of the constant key example, leaves the key bits. 

Averaging the different rounds removes the effect of the key bits on the data; this will 

leave only the code features. These are cancelled out by calculating the difference 

between the average round and the super-average. After this, only the effects of the 

specific sub-key ki remain. The mean square of the differential traces contains peaks 

at the locations of the key bits. The number of peaks that can be seen in the final 

traces can differ from the number of bits in the sub-key, but there should be a simple 

mathematical relationship determined by the specific implementation details of the 

device, for example, the binary compliment of the value.  

After the locations of the key bits have been identified each key bit has to be 

connected to its specific position. How this is actually achieved depends on the 

algorithm that is used and can be quite complicated. For an algorithm like DES where 

there are no fixed rules about the order inherent in the algorithm it can get very 

complicated if the most obvious guesses as to the order have failed. In situations like 

that it can be useful to examine the specification of the key scheduling in the 

algorithm to gain additional information that can help, although this obviously negates 

the advantage that details of the algorithm do not need to be known. 

It is useful to observe the distribution of recorded power levels at the peaks that 

are indicated by the first stage of the profiling. If the peak is in the correct place and it 

represents the manipulation of a single bit of key data, which will be either 0 or 1 with 

a probability of ½, then it should have a bimodal distribution, with each mode 

representing either a 0 or a 1. If more than one bit is being handled then there should 

be a binomial distribution, the shape of which indicates how the bits are being 

handled and gives information relating to the Hamming weight of the key bit 

grouping. 

IPA has several advantages over DPA, the attacker does not need to know the 

plaintext (or ciphertext), removing the possibility of simply shielding this data in 

order to prevent the attack. DPA is restricted to examining points where the plaintext 

and key interact directly, generally limiting analysis to the first few rounds whereas 

IPA can probe all rounds of an algorithm. After a lengthy profiling stage IPA can 

simply perform a fast key extraction phase on all similar hardware, greatly reducing 



Chapter 4 Security of Algorithms  75 

 

the computational overhead when attacking data that has been encrypted with several 

different keys. 

There are a few countermeasures that can make performing IPA harder. 

Avoiding handling key data one bit at a time will remove some of the data. 

Randomising the order of execution of the code and adding random delays to the 

system will cause problems with alignment and creating a system with an offline key 

scheduler may offer some resistance to IPA. 

4.3.4 High-Order DPA 

High order differential power analysis (HODPA) is a variation of DPA in 

which instead of finding the statistical properties of the signal at each sample time the 

attacker can use the joint statistics across several sample times to use data from 

multiple intermediate values [70]. 

This can be used in order to defeat whitening DPA countermeasures. In order to 

try and defeat DPA intermediate values can be masked by XORing them with 

randomly generated numbers, this de-correlates the Hamming weight from any key 

data and so information about it is not leaked. Obviously in order to still give the 

correct result for the calculation the data must be unmasked, this is again achieved by 

XORing the data with the previously generated number. By combining information 

gathered from the power consumption trace at the point where mask is generated and 

the point where it is removed it is possible to compensate for the masking and 

uncover information about the key. If a duplication countermeasure with k shares is 

used then the attacker needs to mount a kth order attack. 

Although using a higher order approach to DPA has its advantages it also has a 

number of disadvantages, if the standard deviation of the noise is the same at all of the 

n sample positions then the product has the standard deviation of the original raised to 

the power of n, this increases the amount of noise and hence the number of traces that 

is required to recover information. In order to extract information using DPA it is 

important to know which point in the samples relates to the intermediate value that is 

being attacked. In HODPA the effect of the intermediate value that is being attacked 

exerts influence on several points in the traces, but to take advantage of this the 

positions of all of these correlated points must be known. In first order DPA this 

problem is avoided by calculating the entire differential trace, a computationally un-
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intensive operation. The natural higher order generalisation of this technique, to 

calculate the differential traces with each sample correlated to every other sample in 

turn, can quickly become prohibitively expensive. 

Waddle and Wagner proposed two methods for second order DPA, one for 

where the correlation time is zero, or known, and one for when it is non-zero and 

known [71]. Zero-Offset 2nd Order DPA is based on the assumption that the 

intermediate values that are the point of attack occur at the same time. This is not 

necessarily an unrealistic assumption, for example a parallel processor that calculates 

both the random and the masked bits simultaneously. It works by squaring the values 

of the samples in the power traces before performing regular DPA. This leads to a 

related attack, Known-Offset 2nd Order DPA [71], where instead of calculating the 

square the lagged product is calculated, i.e. the sample multiplied by the value of the 

sample one offset later. 

If the offset is non-zero and is not known then a Fourier transform can be used 

to auto-correlate the trace. This is achieved by calculating the squared L2-norm of the 

Fourier transform of the DPA trace; this involves multiplying the complex value 

generated by the FFT by its complex conjugate. The inverse Fourier transform of this 

data set is then calculated. This is repeated for all traces and this is summed for all of 

the traces within a particular bit-guess group. Values are only non-zero for correct 

correlations. The noise from the other traces significantly contributes to the standard 

deviation, so this attack is only practical for short traces.  

4.3.5 Mathematics of Differential Power Analysis 

DPA uses statistical techniques to gain information about the encryption key. 

This section discusses the mathematics behind the way secrets are leaked. Section 

4.3.5.1 defines the leakage model for DPA and discusses the way XORing known 

data with an unknown constant reveals data. Also the correlation for a system with a 

given signal to noise ratio is derived and it is shown that, assuming the correlations 

are worked out to a high enough level of accuracy, the attack will always give the 

correct answer. Section 4.3.5.3 defines a new property of s-boxes called the 

transparency order it is the degree that an s-box leaks information about the key, then 

it is shown that an s-box that prevents linear and differential cryptanalysis in an 

optimal way has a very poor transparency order. 
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4.3.5.1 Statistics of Secret Leakage 

Power analysis attacks use statistical techniques to exploit the leakage of secret 

data via the power consumption. As they are statistical attacks it is important to 

understand the statistics of the secret leakage model which is shown in equation (4-5) 

and was investigated by Brier et al. in [68]. 

 bRDaHW +⊕= )(  (4-5) 

Where R is the information the attacker is trying to extract, D is the state the 

target register was in from the previous clock cycle, H represents the Hamming 

distance  function, a is the linear gain between the Hamming distance and the power 

consumption of the register, b is the noise and W is the power consumption of the 

device. As the noise is, by definition, uncorrelated with the data dependent power 

consumption, and the variance of the sum of two independent variables is the sum of 

the component variances we get equation (4-6). 

 2222
bHW a σσσ +=  (4-6) 

The Brier et al.’s model requires a number of assumptions: 

• The same amount of energy is required for the transition from 0 to 1 and 1 to 

0. 

• All bits in the target register are balanced and require the same amount of 

energy for transitions. 

These are reasonable assumptions to make. If these assumptions are incorrect 

then this will reduce the linear correlation between the registers’ power consumption 

and the total power consumption, which is analogous to there being more noise. An 

important point is that (D ⊕ R) is a uniform variable; this means that the Hamming 

weight is binomially distributed, the binomial distribution being a discrete 

approximation to the normal distribution, with an average value of m/2 and a variance 

(σH
2) of m/4, where m is the number of bits in R. 

From the signal to noise ratio of the power consumption it is possible to 

calculate the population correlation of the leakage and power consumption. As the 

number of traces used in a correlation attack increases the correlation of the power 

consumption with the predictions made using the correct value of the key becomes a 
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more accurate estimate of the population correlation of the system. The correlation 

between two variables is defined as the ratio of their covariance to the product of their 

standard deviations (equation (4-2)), hence: 
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The noise is assumed to be uncorrelated to the Hamming distance, leading to: 
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The SNR is given by the ratio of the standard deviations of the signal and the 

noise as defined in equation (4-11). 
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Combining with equations (4-6) and (4-10) the relationship between correlation 

and SNR can be derived. 
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Correlation based DPA analysis is based on the assumption that the correlation 

of the correct key value with the power consumption will have the greatest value. This 
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can be shown to be true by examining the correlation of an incorrect value denoted by 

H' with the power consumption. 
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As Hʹ and b are independent: 
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As the correlation between an incorrect key guess and the power consumption 

(ρWH’) is equal to the correlation for a correct key guess (ρWH) scaled by the correlation 

between the correct and incorrect guess (ρHH’), which is necessarily less than 1, the 

correct guess will always have the highest correlation. Assuming that value that gives 

H' has the same value as the one that gives H except for k bits, e.g. for H (0xE4 ⊕ R) 

and H’ (0xE3 ⊕ R), k is 3, then the Hamming weights of the two values are given by 

equations (4-20) and (4-21). 

 
kkm HHH += −  

kHHHHH kkmkkm +−=+= −− '''  

(4-20) 

(4-21) 

Where Hm-k is the Hamming weight of the bits that are the same in both and Hk 

is the Hamming weight of the bits that are different. As k is constant: 

 ),cov()',cov()',cov( kkmkkm HHHHkHHHH −+=−= −−  

From the expected values this gives 

2222)',cov( kkmkkm HHHHHH +−−= −−  

(4-22) 
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We know that 
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as the mean of the Hamming weight 

of a word will always be half of the number of bits in the word assuming the values 

are evenly distributed. Additionally, 
222
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k

+= σ
 
is a standard result that can 
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be derived from the definition of variance. Substituting these values into equation 

(4-23) gives: 
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And hence: 
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As stated earlier with an increasing number of traces the estimate of the 

population correlation becomes more accurate. The sampling distribution of 

correlation, how much the correlation will vary with the number of samples, is 

approximately normally distributed when the correlation is close to zero. As the value 

of the correlation is bounded between -1 and 1 there is a skew. If the value is positive 

then it can extend further in the negative direction than in the positive and vice versa. 

After Fisher’s transform is applied it becomes normal with a standard error of 

3
1

−N
where N is the number of traces. Fisher’s transform is given in (4-26) [72]. 
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As the population correlation decreases with the addition of more noise, the 

margin between a correct and an incorrect key guess decreases and it is more likely 

that the variation due to the random nature of the variables will overshadow it. 

Therefore the more noise there is in the system the greater the number of traces that 

must be used in order to get the same level of confidence in the accuracy of a result. 

4.3.5.2 Lower Bound for the Number of Traces Needed to Perform DPA 

In [73] Mangard uses a statistical model of DPA to determine a lower bound for 

the number of traces required to successfully identify the key from a system that 

implements DPA countermeasures. He considers countermeasures that reduce the 

SNR and countermeasures that change the time the intermediate result is processed. 

The maximum correlation between the correct key hypothesis and the power 

consumption is defined in equation (4-27): 
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Where p’ is the probability that the power consumption at the sampling point is 

due to the processing of an attacked intermediate, P is the power consumption due to 

the processing of an attacked intermediate and P’ is the power consumption of the 

device at the sample time.  

Mangard reasoned that the number of samples required to correctly identify the 

key is determined by the distance between the sampling distributions with means of 0 

and ρmax as all of the values will be taken from one of these distributions, the greater 

the overlap between the two distributions greater the chance of the incorrect 

correlation appearing higher than the correct one. The amount of overlap can be 

reduced by increasing the number of traces used as this will reduce the standard 

deviation of the distributions. Using equation (4-28) Mangard calculated the 

probability of value drawn from ρ = ρmax distribution being higher than one from the 

distribution ρ = 0. 
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Equation (4-28) can be transformed into (4-29) to directly calculate the number 

of samples required, where Zα is the quantile that determines the distance between the 

distributions. Quantiles are evenly spread points in a cumulative probability 

distribution, this marks the boundaries between consecutive sub-sets. There is a 

probability of k / n that a value drawn from a distribution is lower that its kth n-tile. In 

actual DPA several values are drawn from the distributions, for AES 255 are drawn 

from ρ = 0 for each ρ = ρmax, these values are not independent so getting an exact 
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probability for a peak is difficult. Based on a series of experiments with different 

values of α it was determined that α = 0.9 is a reasonable lower bound for the number 

of samples, α = 0.9999 leads to a number of samples that has a high probability of 

revealing the attacked sub-key. Between those two values it is less clear. 

4.3.5.3 S-Boxes and DPA 

In [74] Prouff studied the effects the s-box has on the resistance of an algorithm 

to DPA. He defined a new property called the transparency order for an s-box. He 

showed that when s-boxes are optimally resistant to linear and differential 

cryptanalysis they perform inherently poorly in terms of their transparency order.  

In order to derive the transparency order for a function first we must introduce 

some mathematical and notational preliminaries. F is an (n, m) function, that is a 

function that maps from GF (2n) to GF (2m), v is a vector in GF (2m) and u is a vector 

in GF (2n). The sign function is defined in equation (4-30), it is a Boolean function, 

the output of this function is either 0 or 1. 

 Fv
Fv

⋅−−=⋅ )1(
2

1

2

1
 (4-30) 

The Fourier transform of the sign function of F is defined by the Walsh function 

W. 

 ∑
∈

⋅+⋅−=
)2(

)()1(),(
nGFx

xuxFv

F vuW  (4-31) 

A mapping function F is balanced if the weight of the function, the sum of the 

outputs of the function across all inputs, equals 2n-1, i.e. there is an equal number of 1s 

and 0s at the output. This is a requirement for a function to be a secure cryptographic 

primitive. A function is balanced if and only if WF (0, v) equals zero for every vector v 

∈ GF (2m). Bent functions are another set of Boolean functions, they are maximally 

non-linear and have only balanced non-zero derivatives. They are not balanced so 

they can not be used as cryptographic primitives but they do resist linear and 

differential cryptanalysis in an optimal way [74]. Another important concept is that of 

a derivative, they are used in differential attacks. The derivative of a function F with 

respect to the vector a is an (n, m)-function that maps x to F (x) + F (x + a): 

 )()(: axFxFxFDa ++→  (4-32) 
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As stated in section 4.2.2.1 in order to have good levels of diffusion a function 

must satisfy SAC, it was generalised to the Propagation Criterion (PC) by Preneel in 

[75]. In order for a function F to satisfy PC (l) at a high level DaF must be balanced 

for every vector a of weight at most l. The correlation coefficient between two 

functions Boolean f and g is given by: 

 ∑
∈

+−=
)2(

)()()1(),(
nGFx

xgxf
gfcorr  (4-33) 

It is also important to note that the correlation coefficient between the function 

that maps x to v.F (x) and the function that maps x to v.F (x + a) is the Walsh function 

of the derivative of F. This relationship is also expressed in equation (4-34). 

 ),0())(),(( vWaxFvxxFvxcorr FDa
=+⋅→⋅→  (4-34) 

The rest of this section derives the transparency order for an s-box and describes 

the properties of the transparency of a few important functions. For the purposes of 

this section the power consumption of a cryptographic device is defined as: 

 bXFKXcHXC KK ++= ))(),(()( α  (4-35) 

 Where b is the noise, c is the energy required to switch one bit from 0 to 1 or 1 

to 0, α is the data on the device before the targeted transition and FK is the data that 

replaces it K is the key and X is the plaintext.  

We can define the single bit correlation attack as follows: 
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In this case u is a vector where only 1 bit is 1 and the rest are 0, these serve to 

select a single bit in the vector (Fk + α), K is a round key guess and 
•

K  is the correct 

value of the key. This can be generalised to a multi-bit attack by summing the 

contributions of each bit in v. 
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It becomes much more difficult to perform a successful DPA attack on an s-box 

when the peaks are not high enough for the correct values to be distinguished from the 
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incorrect ones. This is the case if the error in the computation of the correlation δ is 

larger than the average value given in equation (4-38). 
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In order to prevent differential and statistical attacks, cryptographic algorithms 

are designed so that round functions with different keys are as uncorrelated as 

possible, hence it is reasonable to assume that corr (v.FK, u. •

K

F ) equals zero, unless u 

= v. Also if we assume that α and F are independent corr (v.F+ u. •

K

F , u.α) is equal to 

zero unless v.F+ u. •

K

F  is constant. Taking equation (4-31) and (4-33) into account this 

leads us from equation (4-36) to equation (4-39) 

 
),0(

2

)1(
)(

).(

,
vW

c
K

n

FFv

KK

K
K

α

•

•

+

−
=∆  

(4-39) 

Hence: 
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This leads us from equation (4-38) to equation (4-41). 
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Now if we assume that the function α equals the constant value β, then due to 

equation (4-31), equation (4-42) is true. This is a realistic assumption if the device 

uses pre-charge logic, where the registers are cleared between operations, or the 

previous value represent the op-code for a microprocessor. 

 nv
vW 2*)1(),0( β
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Hence:  
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As 1 is not added but subtracted for each non-zero bit in β, the total is has a 

maximum value of n. Also, if α is a constant, then from equation (4-36) we get 

equation (4-44), as constants make no contribution to the correlation. 
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Due to equation (4-34), equation (4-44) becomes:  
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From equations (4-37), (4-41), (4-43) and (4-45) we can derive (4-46). 

 
∑ ∑

∈ =∈

•

−
−

−−=
n n

a

GF vHGFv

FD

v

nn
vW

c
HncKD

2 1)(,2

.
2

),0()1(
22

)(2)(
α

ββ  
(4-46) 

Thus we come to the definition of the transparency order shown in equation 

(4-47), it is generalised for (n, m)-functions. This gives an idea of how susceptible an 

s-box is to DPA attacks. It is the highest value of D (
•⋅

K ) across all possible values of 

β. This is because the peak will have to be small enough not to be discernable for all 

values of both the round keys and β. 
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The transparency order can vary from 0 to m. If the function F is bent then WDaF 

will be 0 for all values of v and hence TF will equal m. Bent functions are not balanced 

so are never used as cryptographic primitives, but they do resist linear and differential 

cryptanalysis in an optimal way. More generally if a function satisfies PC (l) at a high 

level it does not have a good transparency order. If F satisfies PC (l) then DaF is 

balanced, and hence WDaF (0, v), for every vector H (a) ≤ l. This means: 
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The number of values of a for which the Walsh function of the derivative of F 

with respect to a is not zero is given by: ∑
=

−
l
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2 . As WDaF is lower than 2n then: 
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Finally: 
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It is also shown by Carlet in [76] that the inverse function, which is used as the 

basis of the AES s-box, the Gold functions and the Kasami functions also have large 

transparency orders. Carlet discovers that in the case of the AES s-box, for which m = 

n = 8, the transparency order is ≥ 7.8, this is close to the maximum, hence the AES s-

box has a very poor transparency order. 

4.3.6 Signal Processing Techniques 

It is possible to combine power analysis with other signal processing techniques 

in order to improve the performance. Bohy et al [77] used principal component 

analysis (PCA) and independent component analysis (ICA), statistical pre-processing 

techniques more commonly associated with neural networks, to increase the signal to 

noise ratio and improve the performance of power analysis attacks. PCA searches for 

linear combinations of variables with the largest variances, when several linear 

combinations are needed it orders the variances in decreasing importance, thereby 

allowing the attacker to ignore less relevant measurements. This technique was used 

to remove noise that was added to the power consumption by masking 

countermeasures on a smart card. This enabled the Hamming weight to be read from 

power traces at the point when a PIN being entered was compared to the stored one. 

They reported results of approximately a 65% chance of being able to recover a PIN 

from a Microchip PIC 16F84 smart card using this technique with SPA. ICA is a more 

powerful technique that separates a complex data set into independent sub-parts. The 

aim was to use it to separate the effects of different parts of the chip from the power 
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trace, thereby reducing the noise. It was able to unmask the power traces as long as 

the added noise was independent of the power consumption. It also allowed the 

recovery of the clock pulse, which would be useful when performing attacks like 

differential fault analysis. 

4.3.7 Other Uses for Power Analysis 

The most widely used cryptographic algorithms are open to public review, so 

any insecurities in algorithms are more likely to be identified and fixed. Some 

algorithms are kept secret under the assumption that if the details are not publicly 

known then any insecurities cannot be exploited. This is not necessarily true, as power 

analysis techniques can be used to reverse engineer algorithms.  

Quisquater and Samyde [78] used the analysis of power consumption and 

electromagnetic emissions to determine the instructions that were being executed on a 

smart card processor. The processor that was being analysed contained a four stage 

pipeline; this means that each instruction influences the power trace of the following 

three clock cycles after it starts. Each instruction gives a different power analysis trace 

and it is a function of its address in memory, the data that is handled and, if relevant, 

the address where that data will be stored and the Hamming weight of the instruction 

is clearly visible. Additional data can also be recovered by measuring the electric 

field. The concept was shown to be workable by creating a dictionary of the power 

consumption for various instructions and then recording the power consumption and 

electric field data for a set of instructions and correlating them with the dictionary 

entries. A success rate of higher that 87% was reported, it was better for CISC 

processors that for RISC ones. On the Z80 95% of the software was recovered. Neural 

networks were then employed in order to automate the process. 

When performing DPA the sign of the peaks in the differential power traces are 

not given any significance, Novak proposed Sign-Based Differential Power Analysis 

(SDPA), which can be used to reverse engineer secret algorithms [79]. The basic 

method is to perform DPA and to record the signs of the power bias in a SDPA 

vector. A SDPA vector is a vector with n elements, where n is equal to the number of 

peaks in the DPA trace. Each element has either a 1, representing a positive bias, or a 

0, representing a negative bias. This can then be converted into a SDPA value by 

calculating the vector dot product of the SDPA vector with a vector with elements 
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numbered 0 to m, each containing the value 2m. It is difficult to directly interpret the 

sign data, as there are several different possible explanations, so cross-iteration 

analysis is used. This is where the SDPA data from several iterations of the algorithm 

are combined and stored in a SDPA matrix, which can be more conveniently written 

in the form of a vector containing SDPA values. This makes it easier to interpret how 

the data relates to each other. New intermediate values can then be identified. These 

intermediates can then be subjected to SDPA, this new information can then be 

combined with other methods such as SPA and the algorithm is gradually revealed. 

Novak successfully applied this attack and reverse engineered an unknown GSM 

authentication algorithm. 

4.3.8 Countermeasures 

Various countermeasures have been proposed for power analysis attacks with 

varying degrees of efficacy. These countermeasures can be broadly separated into 

several groups: balanced logic styles, these seek to avoid leaking information by 

making the power consumption of transitions the same as non-transitions, masking 

techniques, these seek to hide details of the internal variables from an attacker and 

Dynamic Voltage and Frequency Switching (DVFS) that confuses the attacker by 

randomly changing the clock frequency and supply voltage of the chip. Sections 

4.3.8.1 – 4.3.8.3 outline these techniques and describe the effectiveness of the 

countermeasures as well as the cost in terms of area and performance, the 

performance costs for the various countermeasures are also summarised in section 

4.3.8.5. Section 4.3.8.4 discusses countermeasures to higher order DPA. 

4.3.8.1 Balanced Logic 

Section 4.3.8.1.1 discusses the use of Sense Amplifier Based Logic (SABL), this 

is a logic style that has exactly one transition per clock cycle irrespective of the data 

that is being processed. Tiri et al report an AES processor made using this technique 

where the full key cannot be retrieved even after 1.5 million traces [5]. Section 

4.3.8.1.2 discusses Yu and Bree’s attempts to prevent DPA by using an asynchronous 

design that has no clock [80]. This approach offers no DPA resistance unless it also 

uses a dual rail balanced logic approach. Section 4.3.8.1.3 discusses the effectiveness 

of the countermeasure and methods for defeating it. Section 4.3.8.1.4 details the effect 

on performance. 
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4.3.8.1.1 Sense Amplifier Based Logic 

Tiri and Verbauwhede have investigated the possibility of using a different logic 

style that does not leak information in order to defeat DPA [25, 81-84]. The style they 

suggested is Sense Amplifier Based Logic (SABL). In every cycle SABL charges a 

capacitance with a constant value and uses this constant amount of charge for every 

transition, including those where the inputs of a gate do not change in value. This is 

because SABL is based on the Dynamic and Differential Logic (DDL), where there is 

exactly one switching event irrespective of the input pattern. This is achieved by using 

DeMorgan’s law to create a gate with two halves, one that calculates the result and 

one that calculates the complement, this assures that there is always one output high 

and one low. Additionally there is an AND gate on each output and a pre-charge 

signal that sets the outputs of the gate to 0 for half of each cycle. The design of the 

AND and OR gates and their truth tables are shown in Figure 4-3. 

 

Figure 4-3: The basic design of DDL AND and OR gates and their respective truth tables. 

There is no guarantee that there will only be one switching event per cycle if 

this approach is used to build DDL versions of compound gates, e.g. XOR gates. 

Fortunately all logic functions can be made with AND, OR and NOT gates, 

additionally the inverter is unnecessary in this style as both the result and its 

complement are calculated, so to invert a signal the Z and Zconnections are switched. 

During the pre-charge phase of the cycle the output of both halves of the gate 

are 0, due to the lack of inverters this means the output of any gates connected to them 

are 0, so there is no need to pre-charge them. This means that the pre-charge signal 

propagates as a wave through the block, this reduces the load on the pre-charge signal. 

This style is called Wave Dynamic Differential Logic (WDDL). In WDDL the pre-

charge signal is added to the input of the block. This is shown in Figure 4-4, the 

output of the pre-charge inputs is 0 when the prch signal is high. Figure 4-4 also 
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shows a WDDL flip-flop, during the evaluation phase the registers at the output to the 

block store the pre-charged 0s and launch the pre-charge wave in successive blocks. It 

is important to note that a clock speed of twice the data rate is required for this 

scheme as the pre-charge and evaluation phases happen on different clock cycles.  

 

Figure 4-4: A WDDL Flip-Flop with pre-charge inputs. [25] 

If there is no inversion in a block of logic then the gates that calculate the result 

and the ones that calculate the inverted result are on distinct paths, and hence can be 

separated into two blocks. This can make it easier for the router to match the paths. 

In order for this technique to be truly useful it would have to be easily integrated 

into a design flow. This was achieved by Tiri and Verbauwhede by using the 

following technique. First the design is synthesised using a subset of a standard cell 

library using only AND, OR and NOT gates. A script then converts the AND and OR 

gates into WDDL form and replaces the NOT gates with the appropriate connecting 

of gates. The placement of the logic proceeds as normal, and the router matches the 

output lines of the two halves of each gate. A designer does not need any specialised 

knowledge of the underlying principle of the countermeasure, normal Verilog or 

VHDL can be used as an input to the automated design flow. This approach was 

tested by simulation and an ASIC was developed that contained two AES cores, one 

that used a WDDL approach and one that did not. 

4.3.8.1.2 Clock-less AES Design 

Yu and Brée proposed a countermeasure that involved creating a completely 

asynchronous AES chip [80]. This was hoped to provide added security as the clock 

in a synchronous design guarantees the timing of each operation and so aids the 

detection of small differences in power consumption. At first they developed an AES 
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chip using a single-rail asynchronous style. The chip was a 128-bit encryptor, no 

pipelining was used and computations were performed at the byte level. The s-boxes 

were implemented as LUTs using dynamic ROM, and RAM was used to store the 

plaintext, ciphertext and round keys. The asynchronous design language Balsa was 

used to synthesise the core. 

The new design was simulated and the results showed a strong data dependence 

in the power consumption levels. One of the weaknesses was the ROM; it has two 

modes, charge and read. When the ROM is in charge mode the output is set to zero, in 

the read mode the ROM is discharged and the data is loaded onto the output, hence 

only ‘1’ bits consume current. A new approach was adopted that used dual rail 

balanced logic instead. This approach was hoped to be more secure against DPA. 

Everything including the ROM, ROM controller and the RAM had to be made secure 

using the dual rail approach. This had the unfortunate side-effect of doubling the size, 

therefore an online key-scheduler was used. 

4.3.8.1.3 Efficacy 

The clock-less dual rail design developed by Yu and Brée was not directly 

evaluated for DPA susceptibility, but instead the power consumption was simulated 

using 500 encryptions with the same key but different plaintexts, and the amount of 

energy that was consumed was recorded. The mean energy consumed was 764.81 mJ, 

there were variations of 2.85 mJ around this; the standard deviation was 0.79 mJ. 

These values were not compared to a single-rail design, so no details of the level of 

improvement that their technique offered is available. While these variations are 

small, the standard deviation being just over 0.1% of the mean, they could still be 

exploited by a determined attacker. The source of the variations was reported to be 

that some of the dual rail buses were not routed as pair and the logic gates did not 

have balanced loads.  

Tiri and Verbauwhede tested the DPA resistance of the WDDL logic style in 

simulation [82] and found that if layout parasitics were ignored then it gave perfect 

security. As stated in section 4.3.8.1.1 Tiri and et al also developed an ASIC with 

both single and dual rail AES cores on it so the gains in security due to the WDDL 

logic style could be fully evaluated [5]. They recorded 15,000 power traces for the 

unprotected AES core and found that all 16 key bytes could be determined using 
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between 320 and 8,168 traces, the average being 2,133. They also recorded 1.5 

million power traces for the WDDL AES core. 11 out of the 16 key bytes could be 

retrieved using between 21,185 and 1,276,186 traces, with an average of 255,391. The 

remaining five key bytes could not be retrieved, even using the full 1.5 million traces. 

As the key can sometimes be retrieved there is still some data leaking from the 

WDDL implementation. This can be attributed to two main factors: differences in the 

loading capacitances of two complementary logic gates and differences in the delay 

time between the input signals [85]. Improving the placement and routing could even 

out the capacitance and may help with some of the difference in delay, but as some 

difference in delay is due to the two inputs travelling through a different number of 

gates it will not be possible to completely eliminate it. 

As only dynamic power has been considered when designing the WDDL logic 

gates it is still susceptible to Leakage-Based DPA. Lin and Burleson used normal 

DPA and the approach described in section 4.3.2.1 to attack an implementation of 

DES protected by WDDL simulated in SPICE. The key could be retrieved using 5000 

traces with regular DPA, this fell to 2000 with LDPA [66]. 

4.3.8.1.4 Efficiency 

In order to balance the logic it needs to be replicated so that there is always one 

transition, this requires doubling the amount of logic and hence the area of the design. 

Additionally, balanced flip-flops require four normal ones, so the overall area of a 

design will more than double.  

The ASIC that Tiri et al developed containing both single and dual rail AES 

cores shows an increase in area of a factor of 3, going from 0.79 to 2.45 mm2, the 

maximum clock speed falls by nearly a factor of 4, going from 330 to 85.5 MHz and 

the power consumption rises from 0.054 to 0.200 W, again nearly a factor of 4. 

Clearly this is an expensive DPA countermeasure. 

4.3.8.1.5 Conclusion  

Dual rail designs can significantly reduce the information leakage from a crypto 

device. In ideal conditions, when parasitics and path length are ignored they give 

perfect security in simulation. Clearly these are unrealistic assumptions and when 

these are included information is leaked. There are more complex place-and-route 
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algorithms that can match them in the two paths and reduce the correlation between 

power consumption and data, but there are some sources of the correlation and hence 

leakage that are currently unavoidable, inputs to a logic block travelling through a 

different number of gates for example. Even though some unrealistic assumptions 

were made for some simulations of dual rail designs, these criticisms clearly cannot 

be made against the WDDL ASIC made by Tiri and Verbauwehede. The ASIC clearly 

demonstrated that WDDL is capable of significantly reducing the amount of 

information leaked through power consumption. Dual rail designs do come at a high 

cost in terms of performance, for the WDDL ASIC the area increased by a factor of 4, 

the speed fell by a factor of 4 and the power consumption increased by a factor of 4. 

4.3.8.2 Hiding Intermediate Values 

Section 4.3.8.2.2 discusses the use of masking, this is where the plaintext is 

masked with a random value and encrypted; the mask is removed after the encryption. 

This hides all the intermediate values from the attacker. Section 4.3.8.2.1 discusses 

the duplication method, which splits the intermediate values into a number of other 

variables using a secret splitting scheme. Section 4.3.8.2.3 discusses the effectiveness 

of the countermeasure and methods for defeating it. Section 4.3.8.2.4 details the effect 

on performance. 

4.3.8.2.1 Duplication Method 

A method proposed by Goubin and Patarin [86] and again later by Chari et al 

[10] called the duplication method involves replacing each intermediate value that 

depends on the input with k variables that form into a secret sharing scheme. An 

example of the secret sharing scheme that could be used is if the k variables were 

XORed together to form the actual intermediate value. Computations can then be 

performed securely on the shares using a modified algorithm and then recombining 

the data at the end. 

In general operations in cryptographic algorithms will fall into one of five 

categories: 

1. Permutation. 

2. Expansion. 

3. XOR with another intermediate variable. 

4. XOR with key data. 
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5. Non-linear transform. 

Permutation and expansion operations simply need to be performed on all 

variables in the secret share, the relationship between them before the operation will 

still be correct after it. With the two types of XOR operation, if it is between two 

variables dependent on the input then the corresponding section of each variable must 

be XORed together, if it is with key data then the key data must be XORed with each 

section of the intermediate variable. The non-linear transforms are slightly more 

complicated to implement, k different s-boxes are required, each with all of the 

sections of the secret share as an input and one as an output. Of these k s-boxes, k-1 of 

them implement randomly chosen secret transformations and the remaining one 

implements a transform that when combined with all the others will give the value 

that would have been given if they were combined before transformation. As tables 

are used for the substitutions there is no need to recombine the different sections of 

the secret share and hence it remains secure against DPA.  

4.3.8.2.2 Masking 

Masking involves ensuring the attacker cannot predict any full registers in the 

system without making run-specific assumptions that are independent of the inputs to 

the system. This is achieved by applying a reversible random mask to the plaintext 

data before encryption with a modified algorithm. This makes exploiting data from 

several encryptions impossible as it would require guessing the correct mask for each 

run, increasing the number of traces decreases the probability of this. The difficulty 

with this technique is that if a mask is added in a linear way it will be difficult to 

remove after the non-linear section of the algorithm, in AES the Sub Bytes operation. 

 Several different masking techniques have been designed for AES, the three 

main ones were developed by Akkar and Giraud [87], Oswald et al [4, 7, 88] and 

Trichina and Seta [8]. Akkar describes a masking technique for both AES and DES 

although only the AES method will be discussed here. It involves adding a mask to 

the plaintext, removing it before the Sub Bytes operation and replacing it with a 

multiplicative mask. After the byte inversion in Sub Byte the multiplicative mask is 

replaced with the original additive mask. Trichina’s method uses a similar technique 

to that of Akkar’s except that it re-uses the additive mask as the multiplicative mask, 

this requires fewer operations as it has to calculate fewer masks. The other difference 
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is that a new mask is generated every round. The third approach, by Oswald et al, 

adds a mask at the start and does not remove for the non-linear sections of the 

algorithm, but converts the calculated (data + mask)
-1 to the wanted (data

-1
 + mask) 

by calculating a correction in parallel.  

4.3.8.2.3 Efficacy 

The duplication method does not offer complete security against DPA, it is 

possible to perform k
th order DPA on it. Generally the complexity of HODPA 

increases exponentially with order, as the traces must be combined with the correct 

time offset between them. This means DPA would probably become infeasible with a 

relatively small k. If the system is not carefully designed however, then it may be 

possible to spot the positions on the power trace where the data is being handled and 

hence reduce the complexity to something manageable [89]. 

In order to evaluate the security gains of the various masking techniques 

Pramstaller et al made a processor utilising the three types as described in section 

4.3.8.2.2, they discuss this in [23, 90]. No attempts to perform DPA on these 

implementations was made, the standard DPA algorithm is not applicable to a masked 

implementation. This does not guarantee security however; both the Akkar and the 

Trichina approaches are vulnerable to a “zero value attack”. This is where the partial 

data and the partial key have the same value after the additive mask is removed so the 

value will be zero and the multiplicative mask will have no effect [91]. Also it was 

shown in [92] that the Trichina method can be defeated by regular DPA. Akkar 

reports in [87] that HODPA, albeit with considerable effort, can defeat the masking 

countermeasure. Mangard et al implemented an AES ASIC using the Oswald 

approach, the Akkar approach and an unmasked implementation [93]. Despite the fact 

that these masking techniques were provably secure against first order DPA the 

implementations could still be attacked using results from simulations to make 

predictions about the outputs of logic gates rather than registers. For Akkar’s 

technique this required 130,000 traces. For Oswald’s technique only 30,000 were 

required, this was of a similar order to the 25,000 traces required for the unmasked s-

box. 

4.3.8.2.4 Efficiency 
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The effect that the duplication method has on the performance of the design 

depends on the value of k. For each additional secret share variable an additional data 

path needs to be added. Additionally, as well as needing more s-boxes they are all 

bigger, the size increasing to the power of k. The size of the design will have to 

increase by a factor greater than k. The duplication method significantly increases the 

amount of memory required for the s-boxes so it is not appropriate for smart card 

implementations without modification. In [86] Goubin and Patarin suggest ways to 

reduce the memory requirements so as to be able to fit a duplication protected DES 

implementation with a k of 2 on a smart card. If the same random transformation is 

used for all of the 8 DES s-boxes then the number of s-boxes that need to be stored in 

memory is 9 rather than 16. These s-boxes can be made smaller by combining the 

parts of the secret share in a secure way, by doing it inside a bijective masking 

function so the actual value never appears in registers. The two post-s-box 

intermediate values are: some randomly chosen secret transform of the securely 

combined value, and, that value XORed with what the output of the s-box would be in 

an unmodified implementation. The unmodified s-box output can be calculated 

securely from the altered combined value from a table that has been rearranged. 

Pramstaller et al implemented an ASIC with AES s-boxes using the three 

masking techniques described in section 4.3.8.2.2 [9, 23], they used a 0.25 µm 

process. The effect of the countermeasures on the area and the critical path are shown 

in Table 4-6. Akkar’s implementation is the largest, and Trichina’s is the smallest, 

Oswald’s is the slowest. Compared to the smallest AES s-box the area increases by 

between a factor of just under 3 to over 4, and the critical path increases by a factor of 

between approximately 1.5 and 2. While compared to the fastest AES s-box the area 

increases by a factor of between 1 and 2 and the critical path by between 

approximately 4 and 6. The final column of Table 4-6 gives the number of random 

bits per data bit required by the algorithm. Oswald’s masking algorithm requires a 

128-bit mask for each 128-bit input block. Akkar’s masking algorithm required both a 

multiplicative and additive mask and hence required 256 random bits for each input 

block. Trichina’s masking algorithm reuses the additive mask as a multiplicative mask 

but requires one for each round so requires 1,280 random bits for each input block. 

This will put additional strain on the efficiency of the algorithm as the random 

numbers have to be generated by additional circuitry and potentially in additional 
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time. Pramstaller et al also developed a 128-bit implementation of AES Oswald’s 

masking method, it was designed as a high throughput chip and they compared it to 

Fastcore [94]. They reported an similar area, Fastcore had 45,325 gates, their design 

had 42,408, this did not include the circuitry required to generate the random masks 

and the Fastcore datapath includes some additional functionality [9]. The throughput 

fell from 2.12 Gb/s for Fastcore to 1.15Gb/s for Pramstaller et al’s design. Both chips 

used a 0.25 µm CMOS process. 

S-box Implementation Area (mm2) Critical Path (ns) Random Bits / Data Bit 

AES 0.0075 – 0.0125 4 – 5.8 0 

AES LUT 0.015 – 0.037 1 – 3 0 

Oswald 0.025 – 0.033 8.3 – 14.4 1 

Akkar 0.034 – 0.054 6.5 – 12.2  2 

Trichina 0.020 – 0.035 6 – 9.2 10 

Table 4-6: A table comparing the area, speed and random bit requirements for masked and 

unmasked implementations of the AES s-box [23]. 

4.3.8.2.5 Conclusion  

Clearly masking techniques are not a solution to the problem of DPA, the costs 

on performance are significant, increasing the size of an s-box by a factor of between 

3 and 6 [9, 23] and in an full implementation of AES decreasing the speed by a factor 

of 2 [94]. That doesn’t even include the penalties for generating the massive amount 

of random bits required to make the masks. Much more significant that the cost to 

performance is the inability of any of the proposed masking techniques to actually 

protect a system from DPA, the Trichina technique is vulnerable to regular DPA [92], 

and the Akkar and Oswald techniques are vulnerable to DPA against logic gates 

rather than registers, using simulations to predict the values of the logic gates [93]. 

This pretty much rules masking out as an effective DPA countermeasure. 

The duplication method can protect implementations against DPA but it can be 

defeated with HODPA. The order of HODPA to which it is vulnerable is determined 

by the number of duplications that are used to protect it. HODPA is computationally 

expensive as it requires the attacker to combine the power traces in an iterative way to 
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determine the correct time offset. One possible weakness of the duplication method is 

the random transformations that are used to make the s-boxes need to be kept secret, if 

an attacker was able to determine what they were then the implementation may be 

vulnerable.  

4.3.8.3 Dynamic Voltage and Frequency Switching 

Dynamic Voltage and Frequency Switching (DVFS) was originally proposed as 

a technique to reduce power consumption. Yang et al realised that is would also 

frustrate an attacker who was trying to perform DPA on a cryptosystem as they would 

typically assume that the device is operating at a constant frequency and hence take 

power samples at constant intervals [11].  

When DVFS is used as a DPA countermeasure it is composed of three parts, the 

processor core, the DVFS feedback loop and the DVFS scheduler. The DVFS 

scheduler randomly generates a voltage or a frequency value, the feedback loop then 

implements the frequency and voltage using a phase locked loop and a ring oscillator 

and supplies it to the processor core. 

4.3.8.3.1 Efficacy 

Yang et al [11] created a simulated DES implementation with DVFS but did not 

perform actual DPA on it. Instead, to measure the effectiveness of their 

countermeasure they simulated 1000 of encryptions, collected statistics about the 

variation in the power and timing, and defined two performance metrics, Power 

Traces Entropy (PTE) and Time Trace Entropy (TTE). These represent uncertainty in 

the power and consumption and clock period traces. They found that in their design 

with DVFS the PTE was 7.5% higher than their design without. The TTE was ∞% 

higher as there wasn’t any uncertainty in the timing in designs without DVFS. 

Baddam and Zwolinski [95] attempted to perform DPA on a simulation of a 

cryptosystem using this technique and discovered that they could not retrieve the key 

after 10,000 traces. As any circuit with a clock frequency is necessarily sequential, 

lots of values will change in the circuit on the rising edge of the clock, this will create 

a detectible spike in the power consumption, which the attacker is already measuring. 

This information can be used to determine the altered frequency, this in turn give 

information about the new supply voltage. Applying this new data to their DPA 

technique Baddam and Zwolinski were able to retrieve the key from a DVFS 
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protected cryptosystem. As an improvement to the technique they suggested only 

modifying supply voltage and keeping the frequency constant so as not to give the 

attacker the tools to defeat the countermeasure. When tested this reduced the 

correlation with power consumption by a factor of 5, although DPA could be 

performed on a single AES s-box using 2,500 traces it could not be performed on a 

full implementation of AES with 10,000 traces. 

4.3.8.3.2 Efficiency 

The area overheads for DVFS are not particularly large, as adding the 

countermeasure simply involves including the DVFS scheduler and feedback loop. In 

[11] it was assumed that the underlying hardware was already available in the design 

essentially reducing the area cost to nothing. The accuracy of that assumption depends 

on the exact nature of the device in question and it will not always be true. Changing 

the frequency and the voltage affects the amount of power and time required to 

perform encryption. When Yang et al implemented DES using DVFS they reported a 

speed overhead of 16% but the amount of power used fell by 27% [11]. 

4.3.8.3.3 Conclusion 

In terms of the performance cost to an implementation that a countermeasure 

incurs DVFS is cheap. The size of the design will not increase very much, especially 

if the chip already has a phase-locked loop and ring oscillator. The speed decrease is a 

moderate 16% and the power consumption was even reduced by 27%.  

If the operating frequency is altered as well as the voltage then it is possible to 

use the large increase in power consumption that accompanies the rising edge of a 

clock pulse to deduce the new clock frequency and hence the supply voltage and 

defeat the countermeasure [11]. If only the power consumption is altered then this is 

not possible and the countermeasure can achieve a factor of five reduction in the 

correlation with power consumption [95], making it infeasible to attack a simulation 

of full AES with 10,000 traces. 

4.3.8.4 High Order DPA Countermeasures 

Designing ad hoc countermeasures for DPA does not assure security against 

HODPA. It has been shown that masking techniques are not secure against HODPA 

[92]. The Duplication method, using k shares, does not provide security against k
th 
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order DPA attacks. However, while the complexity of the implementation increases 

with order k, the complexity of the attack increases exponentially with k, so an attack 

would quickly become infeasible. 

A modification to the masking technique was suggested by Chang and Kim that 

would make it secure against 2nd order DPA [96]. It involves generating two masks 

and selecting one at random and applying it to the data. This provides security as the 

attacker is not able to determine the point at which the mask is loaded. 

Another masking technique that is not vulnerable to HODPA was proposed by 

Goubin and Akkar [97] and applied to DES. A 32-bit number is generated randomly 

and this is used to create 2 new s-boxes, one that masks the value and one that 

unmasks it. The intermediate values in DES have variable vulnerability to DPA, that 

is to say that information about some of the rounds does not gives more information 

about the key than others. The middle 2 two rounds are not vulnerable, at this point 

the data is unmasked and a new set of secure s-boxes is used. If only one mask was 

used then it would be susceptible to HODPA in the same way that other masking 

techniques are.  

 

 

4.3.8.5 Summary of Power Analysis Countermeasures  

Countermeasure Penalty Effectiveness 

Speed Area  Power 

Balanced logic 

WDDL  4 3 4 11 out of 16 key bytes identified with 

average of 255,391 traces, others not 

identified with 1.5 million traces. 

Masking  

Oswald [23] 2.1 2.5 - Susceptible to DPA targeting logic 

gates with back annotated netlist. 

[93]. 
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Trichina [23] 1.5 2.8 - Susceptible to DPA [92]. 

Akkar [23] 1.7 4.2 - Susceptible to DPA targeting logic 

gates with back annotated netlist. 

[93]. 

Duplication - > k - Susceptible to HODPA [22]. 

DVFS 

Frequency and 

supply voltage 

1.2 - .73 Can be defeated using power surges 

to find new rising edges of clock 

pulse [95]. 

Supply Voltage - - - Correlation strength decreased by a 

factor of 5 [95]. 

Table 4-7: Summary of DPA countermeasures. 

4.3.8.6 Conclusion 

As discussed in section 4.3.8.5 adding hardware countermeasures to DPA is 

expensive in terms of area and time requirements, increasing them by a factor of 1.2 

to 4 and 1.8 to 4 respectively. 

The effectiveness of the countermeasures is often debatable, even if it has been 

demonstrated that they work. Some masking techniques that were proposed were 

shown to be susceptible to higher order DPA attacks [87] and one was even 

vulnerable to first order DPA [92]. Even techniques that were shown to be 

theoretically provably secure [6, 7, 46], was susceptible to DPA using predictions 

based on simulations and a back-annotated netlist [93]. 

Most other countermeasures were generally shown to be secure in simulation 

with unrealistic assumptions about parasitics. Even if the countermeasures are 

implemented it is still difficult to show that they are definitely secure by attempting 

DPA on them. However many traces are recorded in the experiments it is still possible 

that if more were taken enough information would leak to enable an attacker to 

retrieve the key. It is only possible to show that countermeasures are not secure, or are 

effective up to a certain limit. In order to assure security this limit has to be greater 

than the number of traces realistically available to the attacker. This is still not a 
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definite figure, and is largely dependent on the application for which the encryption is 

used. Hwang et al collected 1.5 million traces and could not retrieve the key from 

their WDDL AES ASIC [98], they claimed that this demonstrates that their method is 

secure. 1.5 million traces is equivalent to the encryption of 12 MB of data.  

4.4 Conclusion 

Cryptography is a constant battle between cryptanalysts and code makers. 

Algorithms are developed, weaknesses are found and techniques to overcome these 

vulnerabilities are discovered and included in the next generation of algorithms. As 

processing power becomes cheaper algorithms have to become more complex, with 

longer keys to withstand the ever increasing brute force attacks. The current standard 

is AES which has no known mathematical attacks and with key lengths of 128, 192 

and 256 bits cannot be feasibly brute forced with current technology. Even the most 

modern algorithms however fall to side channels, until an effective countermeasure is 

developed the cryptanalysts have the upper hand. 

There are no truly successful techniques to protect AES against DPA. Hardware 

countermeasures are expensive in terms of area and speed and cannot be guaranteed 

to work. Masking techniques have been shown to vulnerable to a variety of DPA 

based attacks such as targeting logic gates [93] and the duplication method is 

vulnerable to high order attacks [22]. Clock frequency based countermeasures can be 

compensated for and defeated [95]. Balanced logic styles can protect implementations 

up to a point, but any data dependence in power consumption, no matter how small, 

can be exploited by an attacker if they have access to enough power traces, and the 

logic can never be perfectly balanced.  

The countermeasures that have partial success, balanced logic and randomly 

varying the supply voltage, both reduce the effectiveness of DPA. This does not 

prevent it, but does increase the number of traces required to successfully perform an 

attack. This leads to the question: how many traces are required for an attack before it 

is considered secure against DPA? There is no general answer to this, it is determined 

by the specific use of the system in question, if it is not feasible to get enough power 

traces to retrieve the key before the key is changed then it is essentially secure. If the 

key is never changed then the attacker has a theoretically infinite number of power 

traces available to them and even the slightest data dependence in the power 
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consumption will eventually betray the key. Tiri et al tested their WDDL system with 

1.5 million traces and found that they could not retrieve the entire key using DPA [5] 

but DES is considered vulnerable to differential cryptanalysis even though it requires 

247 chosen plaintexts. Additionally, even retrieving some key bits weakens the cipher. 

In the WDDL example 11 out of 16 key bytes were successfully determined, this just 

leaves 40 key bits unknown. That is well within the reach of an exhaustive search 

with current levels of available computing power. It is important not to forget the 

words of Robert Morris at Crypto 95: 

 

“Never underestimate the time, expense, and effort an opponent will expend to 

break a code.”[99] 



 

 

Chapter 5 Recording and 

Analysing Power Data and 

Benchmark DPA Results  

5.1 Introduction 

In order to investigate potential countermeasures to differential power analysis 

it must first be possible to perform DPA so the efficacy of any modification can be 

determined. This requires both a design of a suitable cryptographic algorithm, in this 

case AES, the implementation of which is described in section 5.2, and a system to 

extract power consumption measurements. A system was developed that used an 

oscilloscope to measure the power consumption of an FPGA while performing 

encryption and is described in section 5.3.2. The data was then analysed using a 

program that is described in section 5.3.3. Also DPA was performed in simulation in 

two different ways. Firstly the power consumption was estimated using transitions in 

registers in a VHDL simulation as, this is described in section 5.3.1.1. Also, a model 

of DPA was made in Matlab that can be used to quickly perform lots of experiments, 

this is useful for performing Monte Carlo simulations and is described in section 

5.3.1.2. 

5.2 AES Core 

This section describes the AES core that was implemented in order to have a 

platform to test the susceptibility and effectiveness of countermeasures to DPA. 
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Another advantage of developing a new AES implementation was that a greater 

understanding of the algorithm and issues regarding implementation was gained. 

5.2.1 Modules 

A highly modular design style was used to implement AES. This simplified the 

addition of optimisations and the creation of a variety of architectures. 

5.2.1.1 Sub Bytes 

For the Sub Bytes operation two different s-boxes have been produced, one that 

uses the LUT approach and one that converts the values from GF (28) to GF (24), also 

versions of these were made for pure encryptors, for further details see section 3.6.9.2. 

The designs were synthesised and details are given Table 5-1. 

S-box Slices Delay ns 

LUT Full AES 139 9.41 

LUT Encryptor 68 8.44 

GF (24) Full AES 58 20.33 

GF (24) Encryptor 46 17.45 

Table 5-1: Details of the various s-box implementations. 

As the Shift Rows operation can simply by implemented as routing it was 

combined with Sub Bytes in the top level of the module, with the substitution of each 

input going to a different output.  

5.2.1.2 Mix Columns 

Originally the multiplication for the mix columns was performed by a series of 

generic GF (28) multiplication modules. One of the operands in each multiplication is 

constant, so this was then changed to a series of custom built constant value 

multipliers, the equations for which are given in Table 3-4. There is a degree of 

sharing of values in the equations so there is a further optimisation that can take place, 

the 4th bit of the 03 multiplier is the 4th bit of the 02 multiplier and x4. When a purely 

encrypting implementation of AES was made the custom multiplier was changed so it 

only calculated the multiplications needed for encryption. The designs were 
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synthesised and details are given Table 5-2. The custom multipliers outperform the 

generic ones in both speed and area.  

Multiplier Slices Delay ns 

Generic 724 13.13 

Custom 600 11.97 

Custom enc 208 5.65 

Table 5-2: Details of the various Mix Columns implementations. 

5.2.1.3 Key Scheduler 

Several different key schedulers were designed that could calculate an entire 

round key in 1 clock cycle. They were 128-bit online and offline schedulers and a full 

AES offline key scheduler. Online key schedules generate the round keys as they are 

required whereas offline ones pre-calculate them and store them for future use. The 

designs were synthesised and details are given Table 5-3. 

Key Scheduler Slices DFFs Delay 

128-bit Online 428 128 31.03 ns 

128-bit Offline 1,383 1,285 769 ns 

Full AES Offline 7,688 1,824 84.78 ns 

Table 5-3: Details of the various Key Scheduler implementations. 

5.2.2 Architectures 

Several different architectures were implemented, a 128-bit encryptor with 

online and offline key schedulers, a 128-bit encryptor / decryptor with online and 

offline key schedulers, a full AES encryptor / decryptor with an offline key scheduler 

and a fully pipelined 128-bit encryptor with online and offline key schedulers. The 

designs were synthesised for a Xilinx XCV100E with a speed grade of -6.  

The area, speed and throughput in bits per second are given in Table 5-4. For 

implementations that have an offline key schedule additional clock cycles were 

required to pre-calculate the expanded key so the overall cycles per result and hence 
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the throughput would be dependent on how many blocks were encrypted with each 

key. For the implementation of full AES with three different possible key lengths, the 

number of rounds and the setup time of the expanded key is determined by the key 

length. It can be seen from Table 5-3 that although an online key scheduler is smaller 

for one round this is because the overhead in creating an offline version is very large, 

when the pipelined architectures were created the offline key schedule approach used 

nearly 2,000 less slices. The complexity involved in creating an implementation that 

supports multiple key lengths is so great that there is a significant increase in area and 

reduction in clock speed. 

Implementation Clock 

(MHz) 

Cycles / 

Result 

Throughput 

(Mb/s) 

Slices DFF 

128-bit Enc online  33.4 10 427 2,446 516 

128-bit Enc offline  25.2 10  323 3,099 1,702 

128-bit Enc/Dec off. 28.1 10  360 4,364 1,575 

Full AES Enc/Dec off 12.5 10–14 114-160 10,003 2,085 

128-Bit Enc piped on. 43.9 1 5,620 11,709 2,309 

128-Bit Enc piped off. 28.5 1 3,650 9,991 3,624 

Table 5-4: The performance results from the various AES implementations. 

5.3 Performing a Correlation Attack 

In order to gain any real insight into power analysis attacks and their 

countermeasures such an attack must be performed. The ultimate aim of this is to 

develop a system where the resistance to power analysis attacks can be measured. 

This section describes the various methods that have been used to perform a 

correlation attack on AES and the tools that were developed in order to facilitate 

them. 

5.3.1 Simulation 

Before an attack was performed on a physical system it was first done in 

simulation. Section 5.3.1.1 describes a correlation attack on Modelsim simulation of a 
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VHDL design of an AES chip. Section 5.3.1.2 discusses the use of Matlab to simulate 

a realistic but simplified model of a device being subjected to power analysis. This 

allows investigation into properties of the attack that would otherwise take a 

prohibitively long time. 

5.3.1.1 FPGA Power Estimation 

As shown in [60] the number of bit transitions inside the registers of an FPGA 

gives a reasonable estimation of the power consumption at that time. For this reason a 

program was written that could accept an FPGA design file and use it to produce a file 

containing the number of bit changes within all registers in the design on each 

successive clock cycle. Details of the program are given below. 

The program parses post-synthesis VHDL files and extracts the names of the 

registers in the design. The program then writes a test bench containing the key to be 

extracted and a list of plaintexts. Additionally a Modelsim script file is written that 

loads the design and a test bench, runs the simulation and records the values in the 

registers at each delta time into a file. This file is then read, and the number of 

transitions in a given clock cycle is counted. This information is used to perform DPA 

on the design using the method described in section 4.3.2.2, to extract the key that 

was specified in the test bench. In this example 742 traces were required to extract all 

16 bytes of the key.  

The first byte of the key had the decimal value 43. In Figure 5-1 the correlation 

between the consumption matrix and the prediction matrix for the first byte of the key 

is shown for all 256 possible values of the key, the value with the highest correlation 

is 43, this means that the correct value for the first key byte can be correctly 

identified. 

In Figure 5-1 it can be seen that there are a series of distinct levels that the 

values of the correlation take. This is due to the effect discussed in section 4.3.5.1. 

Each time the Hamming distance between the key guess and the correct key is 

increased, the correlation falls by a fraction equal to the number of bits in the key 

guess, in this case 8. This can be seen in Figure 5-1 as the correlation when the key 

guess is 42 is approximately the same as when it is 47, both having a Hamming 

distance of 1 away from 43. When half the bits are incorrect there is a correlation of 
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approximately 0, and when all bits are incorrect the correlation is negatively 

correlated by the same amount as the largest peak.  

 

Figure 5-1: Graph showing the correlation of the 256 key guesses for a correlation attack on 

the power estimation of an AES FPGA with 1,000 traces. 

5.3.1.2 Matlab Simulations of the Consumption Model 

The simulated attack described in section 5.3.1.1 takes a significant amount of 

time. The majority of this is taken up by the Modelsim simulation, as to be sure that 

enough register transition data was collected 4,000 plaintexts were used, this took 

over 2.5 hours on a 3 GHz Pentium 4. Using Matlab it is possible to simulate a 

correlation attack on AES much faster and so investigate a wider variety of properties 

of the attack, such as the affect of the SNR and number of traces on the results of the 

correlation.  

In the AES design that was attacked using a Modelsim simulation in section 

5.3.1.1 there were 516 registers, 128 are used for storing the data relevant to the 

attack, the rest are not used at all during the targeted clock cycle of the encryption. 

This may seem to imply that there is no noise in the measurements, but this is not 

true. All of the bytes are calculated in parallel but each one is targeted individually 

and the data is independent so the data from one byte appears as noise when attacking 

another. This means that the signal-to-noise ratio of this system is 0.25. The Matlab 
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model to simulate an attack randomly generates 16 1-byte integers for the plaintext 

and XORs them with a 16 byte key and then sums the Hamming weight of each 

number. This value is entered into the consumption matrix. The prediction matrix is 

the Hamming weight of all 256 possible key values XORed with the randomly 

generated plaintext value of the target byte.  

 

Figure 5-2: Graph showing the correlation of the 256 key guesses for the Matlab model of a 

correlation attack on AES. 

The first byte of the key had the decimal value 43. In Figure 5-2 the correlation 

between the consumption matrix and the prediction matrix for the first byte of the key 

is shown for all 256 possible values of the key, the value with the highest correlation 

is 43, this means that the correct value for the first key byte can be correctly 

identified. 

The signal to noise ratio can be improved by combining data from two key 

bytes. This does increase the size of the key-space that must be exhaustively searched 

from 28 to 216. The value of the 2-byte section of the key that was being targeted was 

0x2B7E or 11,134 in decimal notation. In Figure 5-3 the correlation between the 

consumption matrix and the prediction matrix for the first byte of the key is shown for 

all 65,536 possible values of the key, the value with the highest correlation is 11,134, 

this means that the correct value for the first two key bytes has been correctly 

identified. As stated in section 4.3.5.1 the correlation of the correct key choice is 

related to the signal to noise ratio of the system, as this has been increased from 
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16
1 to 8

1  the value of the maximum correlation as calculated by equation (4-15) 

becomes 1/3. Like Figure 5-1, Figure 5-3 also has a regular pattern in the values of the 

correlation, with key guesses that have the same Hamming distance from the correct 

value having the same correlation. The only difference is that in this example there 

are 2 bytes, and so 17 different possible values for the Hamming distance between the 

correct and incorrect values. 

 

Figure 5-3: Graph showing the correlation of the 65,536 key guesses for the Matlab model of 

a correlation attack on 2 bytes of AES (2B 7E) with 1,000 traces. 

5.3.2 Performing a Correlation Attack on an FPGA 

An AES core was combined with an LFSR to provide the plaintexts and loaded 

onto a Xilinx XCV1000E FPGA. The FPGA was put into a Xilinx BG560 

prototyping board. The board only contains wiring for the JTAG, sockets for 

oscillators and some LEDs. The power for the internal logic of the FPGA is supplied 

via separate power supply jacks, this means that the power consumed by other things 

on the board does not interfere with the power consumed by the chip itself, this will 

reduce the noise for power analysis attacks. The power consumption data was 
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captured using an Agilent Technologies 4 channel mixed signal oscilloscope with a 

maximum sample rate of 1GHz (MSO6104A). The power consumption of the FPGA 

can be deduced by measuring the current drawn from the power supply, the 

oscilloscope only measures voltage. A 0.5 Ω resistor was connected in serial with the 

FPGA and the voltage across it was measured by connecting an oscilloscope probe 

either side of it and subtracting one value from the other. The FPGA generated a 

Doing signal, one pin went high when an encryption was being performed in order to 

trigger the oscilloscope. In addition to the power consumption data the oscilloscope 

also captures the Doing signal and the clock pulse to aid the synchronisation of the 

power consumption traces. The output from the oscilloscope is an array of 1,000 

floating point numbers signifying the values displayed on the screen.  

 

Figure 5-4: Correlation for all possible key values for an attack on a single AES s-box on an 

FPGA with 10,000 traces. 

To test the setup, an attack was performed on a single AES s-box. A random 8-

bit plaintext was generated using a 128-bit LFSR, this was XORed with a constant 

value (0x2B) to represent the key and this was fed into the s-box and the output was 

stored in a register. A graph showing the correlation of all possible values of the 

constant key for 10,000 traces is shown in Figure 5-4, there is a clear peak at the 

decimal value 43, showing the correct value of the constant that was XORed to the 

LFSR output. Figure 5-4 looks different to the previous graphs of the correlation of all 

possible key values, there is not the distinct set of levels for the correlation of 
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incorrect values, this is because the predictions are made after the s-box. This is 

discussed in more detail in section 5.4. 

 

Figure 5-5: The correlation for all possible key values after 30,000 traces while attacking the 

first byte of the first sub-key of AES before the s-box. 

After the correct function of the test-bed was verified a correlation attack was 

performed on an AES core. The correlation of all possible key values of the first byte 

of the first sub-key after 30,000 traces is shown in Figure 5-5, again the correct value 

is 43 and this is the largest peak in the graph. Even though the correct answer is still 

clearly visible in the graph the actual value for the correlation is much lower in this 

attack, at 0.03785, compared to the simulated attack, at 0.2599. This is because there 

is a lot more noise this system as the Modelsim simulation considers only register 

transitions whereas in the real system there is noise from all parts of the circuit.  

5.3.3 DPA Software 

As noted in section 4.3.2.2 a correlation attack is a three stage process involving 

predicting the values in registers based on the plaintext and the key, generating and 

capturing the power consumption information and performing the correlation. These 

can be grouped into two more general tasks of capturing power data and then 

processing it. Power consumption data from the FPGA was captured using the Agilent 

MSO6104A oscilloscope; in order to automate this, a program was written to control 
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it. The program has two main tasks, initialising the settings on the oscilloscope and 

transferring data from the oscilloscope to the PC. The settings for the capture, such as 

the number of traces that are going to be performed and the number of clock cycles of 

the traces that are to be captured, are entered into the GUI, shown in Figure 5-6, the 

program then calculates the appropriate time-base settings and sets up the relevant 

channels on the oscilloscope for capture.  The program also sends requests for data to 

the oscilloscope. When the FPGA is performing an encryption a “Doing” signal is set 

high, the oscilloscope uses this as a trigger and captures the power consumption data. 

Now it has data in its buffers is can fulfil the program’s request to send the data to the 

PC. For simplicity of design there is no communication between the PC and the 

FPGA, the plaintexts were generated by an on-chip LFSR and there was a counter that 

ensured a fixed period of time occurred between encryptions. If this was greater than 

the time taken to transfer data between the oscilloscope and the PC then the 

oscilloscope would receive another request for a transfer before the next encryption 

took place and the process would repeat. There was another counter on the FPGA that 

stopped it after a certain number of encryptions had been performed, there was also a 

counter in the program that counted the number of datasets that had been received. If 

the data transfer between the PC and oscilloscope took longer than the time between 

encryptions the program would not capture the expected number of traces and it 

would be apparent that the capturing process had failed. The output from this was 

stored in comma delimited files ready for processing by other programs. 

 

Figure 5-6:  GUI for the program that controls the transferral of data between the oscilloscope 

and the PC. 
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Figure 5-7: GUI for the DPA analysis program when attacking simulated power data. 

 

Figure 5-8: GUI for the DPA analysis program when attacking FPGA power data. 

The majority of the basic level algorithms for performing the various types of 

correlation attacks were very similar, for this reason one program was written that 

incorporated the analysis of both the simulated results and the power traces captured 

from the FPGA. Different options in the GUI could be set to control aspects of the 

analysis such as the number of traces, how the plaintexts were generated, either a file 

with a list of them or an LFSR, and which, if any, of the countermeasures proposed in 

sections 7.2.1 - 7.2.3 were used. The GUI for the program when performing DPA on a 

simulated AES and FPGA data are shown in Figure 5-7 and Figure 5-8 respectively. 

There are several available settings displayed in Figure 5-8, most are self-explanatory. 
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In the Countermeasure section there are four options: None, for when there is no 

countermeasure; Mixed, for when the countermeasure is the additional Mix Columns 

operation (see section 7.2.2); May, for when the countermeasure was the strengthened 

AES key schedule developed by May et al [30] (see section 7.2.1); and Rolling, for 

when the key schedule continues expanding the key indefinitely (see section 7.2.3). It 

should also be noted that the option marked “cheat to reduce data” does not really 

cheat but performs the correlation using the correct value of the key byte (which is 

already known to the analysis program) to find the sample in the power consumption 

trace that gives the highest correlation. This is then the only sample that is used when 

calculating the correlation for the other 255 key-byte guesses which makes the data 

analysis stage much faster. 

5.4 Effects of the Position of the Target Register on Correlation 

Attacks 

The correlation attacks described in section 5.3 all target the register at the start 

of the first round after the initial Add Key operation (apart from Figure 5-4, where 

there is only an s-box and a register). This was chosen as in the AES design each 

round was performed in one clock cycle so there were no registers after the s-box and 

it was a simpler modification to reset the initial register at the start of each encryption 

than to alter the structure of the round. A simulation of power analysis was performed 

in Matlab where the target of the attack was a register that stored the results of the 

substitution. A graph of the correlation from all 256 key values from a simulated DPA 

attack is shown in Figure 5-9, and an attack on a real FPGA is shown in Figure 5-10, 

in both cases the correct key value was 43. 
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Figure 5-9: Graph showing the correlation of the 256 key guesses for the Matlab model of a 

1,000 trace correlation attack on AES targeting the algorithm after the S-Box. 

 

Figure 5-10: Correlation of the 256 key guesses for a 30,000 trace correlation attack on an 

FPGA AES implementation, targeting the algorithm after the s-box. 
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A number of differences become immediately apparent when comparing this 

graph to the one shown in Figure 5-2. In Figure 5-2 the variable plaintext byte is 

XORed with constant key, the statistics are like those described in section 4.3.5.1, 

with a reduction in the correlation by ¼, in an 8-bit attack, from the maximum for 

each incorrect bit in a guess. It is significantly easier to extract the correct value from 

a post s-box attack. This is because there is potentially a high correlation between the 

predictions for correct and incorrect key hypothesis when the target is (Plaintext XOR 

KeyGuess) as one bit difference in the key leads to only 1 bit difference in the output. 

In contrast, as the s-box is a complex, non-linear function then after it is applied a 

single bit difference in the key guess leads to a vastly different output and hence there 

is a much lower correlation for incorrect key guesses. As explained by Prouff in [74] 

the same properties that make an s-box satisfy the propagation criterion to give an 

algorithm resistance to linear and differential cryptanalysis also make the s-box 

fundamentally vulnerable to DPA. 

Performing a 2-byte power analysis attack has an analogous effect on the 

correlation; an example is given in Figure 5-11. 

 

Figure 5-11: Graph showing the correlation of the 65,536 key guesses for the Matlab model 

of a post s-box correlation attack on 2 bytes of AES (2B 7E) with 1,000 traces. 

Knowing the position of the registers in the AES design would not always be 

possible in a realistic situation. If the incorrect position is attacked with the prediction 
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function clearly this will not give the correct result. It is however unlikely that the 

result that is given will be confused with the correct one as they look significantly 

different. If the target is pre s-box when it should be after it then it looks similar to a 

correct attack, there is no large peak indicating the correct result but there is still the 

same characteristic shape in the graph, this is because there is still the same pattern in 

the values of the prediction matrix irrespective of whether any of the predictions are 

accurate. If the target is post s-box instead of before it then the graph looks 

significantly different, there are not the same number of levels for the correlation and 

the highest and lowest values are significantly reduced. This is illustrated in Figure 

5-12.  

 

Figure 5-12: Graphs showing the results of a correlation when the attack targets the incorrect 

side of the s-box, the graph on the left targets post s-box and the graph on the right targets pre 

s-box, in both cases the correct key, 43, is not represented by the highest peak. 

Figure 5-13 shows three DPA traces where the correlation values have been 

sorted into descending order. Each has an SNR of 0.25 but a different number of 

traces. As the number of traces increases the correlation line becomes flatter and it 

appears that the correlation for incorrect guesses will approach zero. This is however 

not quite the case, the amount of variability of the calculated values decreases as the 

number of traces increases. This is discussed further in Chapter 6.  
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Figure 5-13: Correlation of all 256 key guesses for 3 different numbers of traces arranged in 

descending order. 

5.5 Conclusion 

A number of different methods for performing DPA have been developed. A 

system that records the power consumption of an FPGA configured as an AES core 

was made and programs that analyse the data were written. Also a method of 

performing DPA using Modelsim VHDL simulations was made which also proved 

effective, this creates measurements with much less noise than a real system which 

means that less power traces are required to perform DPA saving time collecting and 

processing data. It does only measure register transitions so any information leaked 

through other sources, such as logic gates, would not show up in these simulations. 

Additionally a model of DPA was made in Matlab, this allowed even faster 

experiments to be performed, which is important in order to perform Monte Carlo 

simulations of a DPA system so the properties of DPA can be better understood, this 

will be used extensively in Chapter 6. 

After gaining experience of collecting and analysing DPA data it was 

discovered that the choice of the position in the algorithm that is attacked has a 

significant effect on the results and the number of traces required to successfully 

retrieve a the value of a byte of the key. If the value targeted is after the s-box then it 
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is much easier to perform DPA. This is because of the non-linear properties of the s-

box, even if there is only a single bit error in the key guess this will lead a 

significantly different value after the s-box and hence the correlation for an incorrect 

key guess will be lower and therefore easier to distinguish from the correct value. 

 



 

 

Chapter 6 The Statistics of 

Differential Power Analysis 

6.1 Introduction 

Differential Power Analysis is a statistical attack, understanding the statistical 

properties of it can yield techniques for evaluating the vulnerability of a system and 

the efficacy of countermeasures, as well as other insights into the attack. In previous 

sections the number of traces that were required to retrieve the key for different 

scenarios have been given as an indication as to the ease at which the system was 

cracked. Due to the statistical nature of the attack these are not definite values, but are 

product of the implementation being attacked, the choice of the inputs that were used 

and the noise in the system. Just because it required 1,000 traces to crack a system 

with on Monday there is no guarantee that 1,000 traces will succeed on Tuesday. 

With a given number of traces and a specific level of random noise there is a 

fixed probability of success. In order to investigate this relationship further, a Monte 

Carlo simulation of DPA was performed with different numbers of traces each time 

using different random generated plaintexts and keys. To form the consumption 

matrix the plaintext was XORed with key and the Hamming weight was calculated. 

No additional noise was added but the contribution to the consumption model from 

the bytes in the plaintext that were not being attacked would act as noise. The number 

of times a byte of the key was successfully retrieved was recorded and the probability 

of success against the number of traces was plotted, this can be seen in Figure 6-1. 

The simulation was repeated with 16 and 32 bytes in the plaintext and key, this 

changes the amount of noise in the system. 
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Figure 6-1: A graph showing the probability of successfully retrieving a key byte against the 

number of traces taken in simulation calculating 16 and 32 bytes concurrently. 

It can be plainly seen from the graph that the more traces that have been used 

the greater the probability of success. Also, the more noise there is in the system the 

greater the number of traces that are required to achieve the same success rate. In 

order to determine the precise relationship between these variables a statistical model 

of DPA is derived and from this, a technique to calculate the probability of success 

from the amount of noise in the system and the number of traces that have been taken 

is established. 

Detecting the effect of a particular pattern of register transitions can have other 

uses than divining a cryptographic key. This chapter also presents a method for using 

DPA to detect the presence of a particular pseudo-random sequence that has been 

added to a design as a sort of watermark to protect intellectual property. 

6.2 Statistical Model of DPA 

6.2.1 Introduction 

In order for DPA to be successful the correlation relating to the set of 

predictions based on the correct key guess must be higher than the predictions relating 

to the 255 incorrect key values. The specific value of the correlation generated by the 

predictions based on the correct and incorrect key guesses can vary between 
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successive runs of DPA depending on the values of the plaintext and the key that are 

used and the noise in the rest of the circuit. This means the value obtained is just an 

estimate of the true correlation; this estimate is called the sample correlation as it is 

based on the samples taken. The true correlation is that calculated if the entire 

population was sampled (therefore this is referred to as the population correlation) and 

as the population is all potentially observable values, this implies an infinite number. 

This means that there is a random element to the values created and hence the chance 

of the guess with the largest correlation not being the correct key. 

In order to investigate this relationship between the noise and variables, and to 

verify the accuracy of the model a Monte Carlo simulation of several DPA attacks 

was performed using a 16-bit key and putting it through the AES s-box. Each 

plaintext was then used to generate 256 prediction values for each byte. After a fixed 

number of plaintexts had been generated the power consumption values were 

correlated with each column of the prediction matrix and the correlation values for 

each key guess were recorded. The first byte of the key was kept constant and the rest 

were changed to new random values and the process was repeated a large number of 

times. One byte of the key was kept at a constant value so it was possible to 

investigate the statistics of the correlations generated by each incorrect key guess 

individually. There was no random noise added to the power consumption values as 

the 16 bytes were independent of each other so the signal-to-noise ratio (SNR) of 

each byte is given in equation (6-1) where the SNR in this case is the ratio of the 

standard deviations of the data dependent part of the signal and the noise. 
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(6-1) 

6.2.2 Statistical Model of DPA 

In order to develop a statistical model of DPA it is important to understand the 

statistics of correlation. The distribution of the sample correlations around the 

population correlation is called the sampling distribution. Due to the fact that the 

value for the correlation between two variables is bounded between -1 and 1 the 

sampling distribution of it is not normal, as when the population correlation is positive 

the sample correlation can vary more in the negative direction than in the positive and 
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vice versa. In order to convert it to a normally distributed variable the Fisher 

transform [72] must be applied to the data as given in (6-2): 
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This means that after the Fisher transform has been applied the correlation can 

be modelled as a normally distributed random variable. This is only accurate when the 

number of samples is greater than 30, but this does not matter because in most 

practical examples of DPA the number of traces is much higher than 30. For the rest 

of this discussion all data is assumed to be after the Fisher transform unless 

specifically stated.  

The standard deviation of a sampling distribution is called the standard error, for 

the post-Fisher correlation it is controlled by the number of traces that were used in 

the correlation and is given by (6-3): 
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Correlation is a measure of how much of the variance of one variable is due to 

the variance of another. This is the same as how much of the total signal is made up of 

the information that we are interested in. This will be referred to as PercentSignal and 

is related to the SNR as shown in equation (6-4): 
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This is the correlation of the correct prediction values with the power 

consumption and after the Fisher transform gives the mean of the sampling 

distribution for the correct key.  

DPA in AES separates the key into groups of 8 bits and so there is 1 correct and 

255 incorrect correlations, each taken from their own normal distribution. Section 

6.2.2.1 deals with the distribution of the correlation between the power consumption 

and the predictions with the correct key guess; this is referred to as the Correct 

distribution. Section 6.2.2.2 describes the distributions of the correlation between the 

power consumption and the predictions with the 255 incorrect key guesses, referred to 

from now on as the Error distributions. 
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6.2.2.1 Correlation with the Correct Key 

After the Fisher Transformation has been applied the correlation between the 

consumption matrix and the prediction matrix generated with the correct key forms a 

normal distribution. The standard deviation of the distribution is related to the number 

of traces and can be calculated from equation (6-5). The mean is the PercentSignal of 

the system. Figure 6-2 shows four distributions of correlation using a different 

number of traces. 
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 ( )nalPercentSigFishertMeanCorrec =  (6-6) 

 

Figure 6-2: Distribution of correlations from the correct key guess using different numbers of 

traces. 

6.2.2.2 Correlation with the Incorrect Key 

As there are 255 different incorrect key values and hence 255 prediction 

matrices, clearly there have to be 255 different correlation distributions. Each will 

have properties controlled by signal SNR of the crypto system, the number of traces 

and particular details of the implementation. 
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6.2.2.2.1 Mean 

Each of the distributions has its own mean. The values of each mean is 

controlled by two factors, the SNR of the system and constant that is determined by 

the correlation between the prediction matrix for the correct key guess and the 

prediction matrix for incorrect key guess relating to the distribution.  
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By definition the noise and the prediction matrices are independent, therefore this 

reduces to: 
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From equation (6-13) and (6-4) it can been seen that this is: 

 )*)Pr,Pr(()( nalPercentSigedCorrectedErrorcorrFisheriMeanError =  (6-14) 

The correlation between the Correct and Error prediction matrices can be 

estimated to a reasonable degree of accuracy by randomly generating large prediction 

matrices for the 256 key values and calculating the correlation between them. As this 

is a relatively quick calculation (compared to simulating an entire DPA system) a 
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large number of samples can be used, this will reduce the standard error of the 

estimate which is given in (6-3). 

Clearly the Correct prediction matrix, and therefore the MeanError, is affected 

by the choice of key. This means that in the general case, where the key is not 

specified, there are 256 different possible sets of arrays of MeanError. In order to 

investigate this all 256 * 255 values were estimated using a large number of samples. 

This is discussed further in section 6.4. 

6.2.2.2.2 Standard Deviation 

The standard deviation of the distribution of correlations is controlled by the 

number of samples in the correlation, this is the same for both the Correct and Error 

distributions. 
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6.2.2.2.3 Correlation between the Correct and Error distributions 

Now both the mean and standard deviation have been found it would be easy to 

think that the model is complete, unfortunately the relationship is not quite that 

simple. There is a correlation between the Correct and Error distributions. This 

means that if a sample from the Correct distribution is above the mean it affects the 

probability of a sample from each of the Error distributions being above their mean. 

This also has to be modelled. 

Like MeanError the correlation between Correct and Error, referred to as 

CorrCorr, is controlled by the correlation between their respective prediction matrices 

and the SNR of the system. Figure 6-3 shows the variation of CorrCorr with 

PercentSignal when the correct key is 0 and the key guess is 1. When PercentSignal 

approaches 0, when there is a large amount of noise, CorrCorr tends towards the 

correlation between the Correct and Error prediction matrices. As the PercentSignal 

approaches 1, when the noise drops off to 0, the CorrCorr tends towards another 

constant that can be determined by simulation. The relationship between CorrCorr 

and S can be modelled using the inverse tan function, as shown in (6-16): 
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Where Last is the value that CorrCorr tends towards when PercentSignal is 

approaches 1. The modelled curve is plotted next to the actual curve in Figure 6-3. 

 

Figure 6-3: The correlation of Correct and Error and the model curve versus PercentSignal 

6.2.2.3 Summary of the Model 

The Correct correlation can be modelled by the normal distribution shown in 

equation (6-17) where N (µ, σ) is a normally distributed random variable with a mean 

of µ and a standard deviation of σ. The Error correlations can be modelled as the 

normal distributions described in (6-18), where i ∈ 0 … 254. 
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6.3 Predicting Success 

From the model developed in section 6.2 we can generate a formula to 

determine the probability of successfully determining the correct key using DPA on a 

system. This is achieved by calculating the probability of the highest of the 255 Error 

values being greater than a particular value, denoted by t, and the Correct value 

equalling t, then integrating across all possible values of t. 

 
∫
∞

∞−

=∩≤= dttCorrecttErrorPSuccessP ))(max()(  
(6-19) 

 

)(*)|()( tCorrectPtCorrecttErrorPtCorrecttErrorP ii ==≤==∩≤  (6-20) 

∏
=

=≤==≤
254

0

)|()|)(max(
i

ii tCorrecttErrorPtCorrecttErrorP  
(6-21) 

dttCorrectPtCorrecttErrorPSuccessP
i

i )(*)|()(
254

0

==≤= ∫∏
∞

∞− =

 
(6-22) 

)()( , ttCorrectP StdtMeanCorrecϕ==  (6-23) 

The probability of an Error distribution being less than the Correct when it is at 

t is the probability of the distribution that was used to model the lack of perfect 

correlation between the two variables being less than t. 
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Where φµ,σ is the probability density function (PDF), and Φµ,σ is the cumulative 

probability density function (CDF) for the normal distribution. Unfortunately this 

cannot be directly evaluated as the CDF for the normal function does not have any 

elementary primitives and so certainly cannot be integrated. There are techniques to 

approximate it, however, so the integration in (6-25) can then be approximated using 

numerical integration.  
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It is important to note that the formula calculates the probability of successfully 

extracting 1 byte of the key. In order to calculate the probability of successfully 

retrieving the entire 16-byte AES key the resultant value would need to be raised to 

the 16th power. 

6.3.1 Calculating the Other Variables 

While it is useful to calculate the probability of success from the number of 

traces for a given signal to noise ratio, it would be more useful for an attacker to be 

able to calculate the number of traces required to ensure a particular probability of 

success on a system with a given SNR, and more useful to a designer to be able to 

determine the amount of noise in a system that would require the attacker to take a 

particular number of traces if they wanted to have a given probability of success. 

Due to the formula not being able to be evaluated directly, it is not possible to 

rearrange it for these purposes. It is however possible to use the original technique to 

perform an iterative search for the value of the desired variable. This entails either the 

SNR or the number of traces and making an initial estimate of the value of the other 

one that will give the desired probability of success. The probability of success is then 

determined and if the initial guess was too low it is increased, if it was too high then a 

binary search can take place to efficiently determine the correct value.  

6.3.2 Testing the Formula 

In order to verify the efficacy of the formula an FPGA implementation of an 

AES s-box was fed 50,000 random plaintexts XORed with a constant byte and the 

power consumption was recorded, DPA was performed for the correct key using all 

50,000 traces to get a accurate estimate of the population correlation, the standard 

error of the estimate was 0.0045 and the correlation was estimated to be 0.8642. DPA 

was then performed on 20 traces from the 50,000 taken at random and it was recorded 

whether the correct key was retrieved, this was repeated 100,000 times. The success 

rate was 76.24%. The estimated PercentSignal was used to evaluate the probability of 

success when 20 traces were used, the result returned was 72%. The process was 

repeated on a similar design of an AES s-box, this time with a correlation estimate of 

0.4874, the predicted success rate for 20 traces was 26.54% and the actual success 

rate was 29.358%. This is clear evidence that the method described above is a good 
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indicator of the probability of successfully retrieving a key using DPA given the SNR 

of the system and the number of traces to be used in an attack. This also implies that 

the statistical model of the attack is accurate. 

6.4 Relative DPA Susceptibility of Keys 

The result of the correlation in DPA is affected by the values that are used to 

compute it and therefore the inputs that are used when performing the encryption. In 

DPA it is assumed that the plaintexts are random and as normally a large number are 

used their effect will average out. Each byte of the key is considered independently 

and only has one value for the entire attack. It is conceivable that the choice of that 

value can influence the probability of success, this section investigates that 

possibility. 

The probability of successfully retrieving a key is related to the relative position 

of the mean of the incorrect distributions compared to that of the correct distribution. 

This is controlled by the SNR of the system and the correlation between the prediction 

matrices for the Correct and Error distributions. The correlations between prediction 

matrices is controlled by the structure of the s-box so this analysis is only valid for 

algorithms that use the AES s-box. As stated in section 6.2 there is a set of 255 

MeanError values for each possible key value. As they are different it is possible that 

different keys have different levels of susceptibility to DPA. To investigate this all 

65,280 different MeanError values were estimated for a particular prediction function 

using a large number of samples. Each row has similar values, a KS test is not able to 

reject the null hypothesis that the values are drawn from different distributions. 

These values are just estimates, the possibility that the true values for different 

keys are the same was tested by calculating the lowest value for all different keys with 

two different numbers of samples and the Fisher transformation was applied to the 

results. If the variation in the values was due to an estimation error then the values 

would be normally distributed around the true value with a standard deviation related 

to the number of samples used in the estimate of the correlation. The standard 

deviation for both sets of values was 0.0035; the standard deviations predicted by the 

number of samples for the two estimates were 0.001 and 0.00057. Additionally the 

distribution of values was not normal, the Lilliefors test, a version of the KS test 

optimised for normality testing, showed this. This refutes the possibility that the 



Chapter 6 The Statistics of Differential Power Analysis 133 

 

variance in the values of the correlation between the Correct and Error prediction 

using different keys is due to the inaccuracy of the estimates. 

This leaves the problem of how to select which of the 256 sets of MeanError to 

use. The most accurate choice would be to calculate the probability of success for all 

256 key values and take the average, this would be rather computationally intensive as 

it would require calculating 65,280 mean values in addition to performing 256 

integrations. How worthwhile this is, is determined by the overall effect the difference 

in key value has on the calculated probability. 

In order to investigate the variability in probability of success due to the 

difference in key, the probabilities for all keys were calculated for a particular system, 

these are shown in Figure 6-4. While there is a difference it is very small, the standard 

deviation of the probabilities is 0.000091. The variation is much lower than other 

errors in the system and so it makes little difference which of the 256 sets of values is 

used. 

 

Figure 6-4: The probability of successfully retrieving a key using DPA for the different 

possible values of the key. 



Chapter 6 The Statistics of Differential Power Analysis 134 

 

6.5 Protecting Intellectual Property Using a DPA Detectable 

Watermark 

6.5.1 Introduction 

Intellectual Property (IP) is a valuable commodity and can form the main source 

of income for a company. It is, therefore, important to protect it.  There have been 

several proposed methods for achieving this. In [100] Alkabani and Koushanfar 

propose adding a series of initial states to a state machine that require a unique and 

unpredictable set of inputs that only the designer knows to bring the device into its 

functional state. Koushanfar, Hong and Potkonjak developed techniques for adding a 

signature to the structural properties of designs [101]. 

If the design of an integrated circuit contains a small section that produces a 

known bit pattern in a set of registers, like a pseudo random bit generator (PRBG), 

then it would be possible to use DPA to detect this. This would act like a watermark 

and would be useful for determining if a piece of hardware contains the relevant piece 

of intellectual property (IP). 

6.5.2 Power Consumption Watermarks 

6.5.2.1 Adding a Watermark 

In order to detect a watermark in the power consumption of a device a 

characteristic fingerprint needs to be added to it. This can be achieved quite simply by 

the addition of a pseudo random bit generator (PRBG). The pseudo random, but 

deterministic, values generated in the registers of the PRBG will add a specific pattern 

to the power consumption.  

6.5.2.2 Measuring Power Consumption 

In order to determine whether a watermark is present in the power consumption 

of a design the power consumption must be recorded. Assuming the PRBG generates 

a new multi-bit value each clock cycle then the power consumption needs to be 

sampled each clock cycle. The correlation between the power values and the 

Hamming distance in the registers of the PRBG in successive values is then 

calculated. 
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6.5.3 Detecting the Watermark 

If the watermark is present in the power consumption then the population 

correlation will have the value of the ratio between the standard deviation of the 

power consumption of the watermarking hardware and the standard deviation of the 

total power consumption. If the IP is included within a larger design it may not be 

possible for the rights holder to know the value of this. They could measure the 

standard deviation of the total power consumption but the standard deviation of the 

power consumption of the watermarking hardware would be dependent on the 

technology that it was implemented on, so would not necessarily be the same as their 

reference version. 

What is known is that if the watermarking hardware is there then the population 

correlation will be positive and if it isn’t then it will be 0. After the sample correlation 

has been calculated it can be determined whether it is reasonable to reject the null 

hypothesis that the correlation was drawn from a distribution with a mean that is not 

greater than zero and hence there is no watermarking hardware present. In order to do 

this a p-value is calculated using a z-table. The p-value is the probability of observing 

by chance a result that is at least as extreme as the one being tested. A z-table contains 

the probabilities of a standard normal distribution, one with a mean of 0 and standard 

deviation of 1, being greater than a set of values. 
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It is determined by looking up on a z-table the associated probability for the 

value of z which can be calculated with (6-26) where x is the mean sample correlation, 

in this case the Fisher transform of the sample correlation, µ0 is the value of the mean 

in the null hypothesis, in this case 0, σ is the standard deviation of the sampling 

distribution, given by (6-2) and n is the number of samples in the mean of the sample 

correlation, as only one correlation is being calculated this is 1. 

6.5.3.1 Summary of method 

In order to tell whether the power consumption data supports the presence of a 

watermark the following steps must be taken: 
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1) The power consumption (P) of the device is measured from its reset state and 

the Hamming distance (H) of the registers in the PRBG for the same number of 

samples (T) is recorded. 

2) The correlation between the two is calculated. 

ρ = Corr (P, H) (6-27) 

3) The Fisher transform is applied to the correlation.  

F = Fisher (ρ) (6-28) 

4) The confidence level must be decided. This is the probability incorrectly 

detecting a watermark when there is none. A typical value is 0.05.  

C = 0.05 (6-29) 

5) The p-value is calculated.  

P = Z (F (T-3)1/2) (6-30) 

6) If the p-value is lower than the confidence level then the null hypothesis can 

be rejected and the watermark has been detected. 

6.5.3.2 Experimental Results 

Watermark Yes No Yes No Yes No 

Samples 5000 5000 1000 1000 1000 1000 

σ Total 1 1 1 1 1 1 

σ Watermark 0.05 - 0.1 - 0.05 - 

Null Hypotheses 

rejected (%) 

97 4.8 93.9 5.0 46.6 4.8 

Table 6-1: Summary of the simulation results. 

A series of simulations was performed in order to verify the method. The power 

consumption of the watermarking hardware was modelled by generating a series of 

random numbers between 0 and 255 and calculating the Hamming distance between 

them, giving values between 0 and 8. Noise was included by adding a series of 

normally distributed random numbers to the model. The noise represents both the 

power consumption from the rest of the circuit and any non-linearity in the power 

consumption vs. Hamming distance. The correlation was performed between the 

Hamming distance values and the power consumption model. This was repeated 
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10,000 times for different numbers of samples and with different amounts of noise. 

Simulations of hardware power consumption with no watermark were also performed. 

In these, the Hamming distance for a watermark was calculated in the same way and 

they were correlated with normally distributed random numbers that had the same 

standard deviation as the total power consumption for the watermarked simulations. 

The results are summarised in Table 6-1. 

6.5.3.3 Type I and II Errors 

There are two types of errors when trying to detect a watermark: detecting one 

that is not there and not detecting one that is. The probability of incorrectly rejecting 

the null hypothesis and falsely claiming there is a watermark is the significance level 

chosen for the p-value test. This is why the number of times a watermark was detected 

in the simulations when there was none was always approximately 5% irrespective of 

the number of samples taken and the population correlation.  

 

Figure 6-5 : A graph illustrating the effect of increasing the number of samples of the ease of 

detecting a watermark 

The probability of not detecting a watermark that is there is controlled by two 

factors: the population correlation and the number of samples. The smaller the 

population correlation the greater the number of samples that must be taken to ensure 

the same probability of detecting the watermark. This is because increasing the 
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number of samples reduces the standard deviation of the sampling distributions 

making it easier to differentiate between the two. This is illustrated in Figure 6-5, the 

curves in both plots are normal distributions with the same mean but different 

standard deviations, the shaded area represents the amount of the sampling 

distribution that the correlation can come from in order to reject the null hypothesis 

with a confidence of 0.95. It is clearly more likely to successfully detect the 

watermark from the lower graph. 

6.5.4 Calculating the Number of Traces if the Population Correlation is Known 

In the previous section it was assumed that the population correlation could not 

be reasonably estimated before trying to detect the watermark. While this would most 

likely be the case if the IP in question is an entire chip design then the population 

correlation could be estimated.  

If this is the case then it is possible to use this information to calculate the 

number of power consumption samples that need to be recorded in order to give a 

particular probability of successfully detecting the watermark. The following method 

can be used to calculate the number of samples required to give a 90% chance that the 

null hypothesis will be rejected at the 0.05 level. First the z-table is consulted to find 

the value that the standard normal distribution has a 95% chance of being lower than 

and 90% chance of being higher than, these will be referred to as z<95 and z>90. 

To reject the null hypothesis at 0.05 the correlation must be higher than 

equation (6-31). 
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Also, there is a 90% chance that the correlation will be greater than equation (6-32). 
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In order for there to be a 90% chance of rejecting the null hypothesis at the 0.05 

level these two values must be the same, this is demonstrated in Figure 6-6. The dark 

grey shaded area represents 90% of the area under the right hand curve which is the 

sampling distribution of the correlation. The light grey shading represents 95% of the 

area under the left hand curve which is what the sampling distribution of the 

correlation would be if the null hypothesis was correct. 
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Figure 6-6: A graph illustrating the requirements for rejecting the null hypothesis at the 0.05 

level 90% of the time when the population correlation is known. 

The number of traces required to achieve this is given by equation (6-35). 
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In order to verify this method a simulation was performed, 100,000 correlations 

were performed with 10,000 samples where the population correlation was 1/34. A 

population correlation of 1/34 would require approximately 10,000 samples to reject 

the null hypothesis at the 0.05 level 90% of the time and with 10,000 traces the 

sample correlation would have to be 0.0165 or greater as shown by equations (6-36) 

and (6-37) respectively. 
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Out of the 100,000 correlations generated in the simulation 90,231 were higher than 

this value so would have rejected the null hypothesis at the 0.05 level, this is 

approximately 90%. 

6.5.5 How much area should be given to the watermarking hardware? 

The probability of successfully detecting the watermark is related to the 

population correlation, which is determined by the power consumption of the 
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watermarking hardware. The greater the amount of area that is dedicated to 

watermarking hardware the easier it will be to detect but the larger the overhead 

involved. Assuming that power consumption is directly proportional to area the 

population correlation of the watermark can be estimated using (6-38) where W is the 

percent increase in area due to the watermarking hardware. 
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Using this and equation (6-36) it is possible to calculate the number of samples 

that would be required to give a chosen probability of successfully detecting a 

watermark with a given significance level. Table 6-2 gives the number of samples 

required to successfully detect a watermark 90% of the time with a significance level 

of 0.05 after different amounts of area have been dedicated to the watermarking 

hardware. 

When performing DPA to retrieve cryptographic keys the samples are relatively 

difficult to collect, the attacker has no control over when they are generated or how 

many are generated before a new key is used. When using DPA to detect watermarks 

this is not true and it is easy to collect however many are deemed necessary. It is not 

unlikely that 10 million samples could be quite easily taken, this would give a good 

chance of detecting a watermark that added less than 0.1% to the area of a design. 

Increase in area Samples Increase in area Samples 

10% 862 0.5% 342,560 

5% 3,431 0.2% 2,141,000 

2% 21,415 0.1% 8,563,900 

1% 85,644   

Table 6-2: The number of samples required to detect a watermark using a given percentage of 

the hardware with a 90% accuracy. 

6.5.6 Conclusion 

It is possible for designers to add hardware to their designs that will create a 

known pattern of register transitions as a way of using DPA to detect whether their IP 

has been used without their permission. As DPA is a statistical technique it does not 

give a definite answer, but if the correlation between the watermarking register 
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transitions and the power consumption is calculated it is easy to calculate the 

probability that the measured result would have been observed assuming the 

watermark was not there. If this is sufficiently unlikely it gives reasonable confidence 

in the falseness of the null hypothesis and by extension the hypothesis that the 

watermarking is present. The overhead incurred by this protection can be chosen by 

the designer and a method of calculating the amount of effort they would need to go 

to in order to detect it based on their choice is also presented. It has been shown that 

the overhead can be very low (< 0.1%) and still produce a signal that can be most 

likely detected with a realistic amount of data collecting. 

It is important to note that the p-value is not the probability that the null 

hypothesis is true, but the probability of getting the observed result given that the null 

hypothesis is true. Bayes’ theorem could be used to convert between these two 

probabilities but it would involve knowing the probability that the watermark is 

present (without having performed any tests to see if it is) and the probability of 

getting the observed correlation (without any knowledge or assumptions about the 

sampling distribution that it was drawn from). It is not practical to estimate these 

values. 

6.6 Conclusion 

As DPA is a statistical attack it is important to understand the statistical 

properties. The analysis of these properties has led to a technique for calculating the 

probability of key retrieval with a given number of traces for a particular system with 

a known SNR. This technique can be easily adapted to calculate one of the other 

variables, each being arguably more useful to either an attacker or a designer of a 

crypto-system. A designer may wish to calculate the amount of noise that must be 

present in a system in order to reduce the probability of a successful attack to a given 

level assuming the attacker has access to a known and finite number of traces. An 

attacker, having previously analysed the power consumption for the SNR of the data 

dependence may wish to know how many traces he is required to take to give him a 

good chance at retrieving the entire key. Additionally it has been determined that 

although there is a slight variation in the susceptibility of different key values to DPA 

the overall effect is negligible, so there are no particular key values that it would be 

best to avoid if concerned about DPA susceptibility. Improving the understanding of 
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the mathematics of the attack was one of the main aims of the thesis. This has been 

achieved. 

The ability of DPA to discern a characteristic pattern of processed data in the 

power consumption of a device can be put to more benign uses than cracking 

encryption. If a section is added to a design to generate a known pattern of register 

transitions then it would be possible to use this as a watermark to detect theft of 

intellectual property. 

 

 

 

  



 

 

Chapter 7 Novel Algorithmic-

Based Power Analysis 

Countermeasures  

7.1 Introduction 

All the countermeasures to power analysis attacks described previously have 

been added to implementations of a cryptographic algorithm. As summarised in 

section 4.3.8.5, they come at a large cost in terms of either the speed of the 

implementation or its requirements in memory or area, and when their effectiveness is 

evaluated they, at best, simply frustrate the attacker, forcing him to collect more 

power consumption data, or perform High-Order DPA, rather than stopping the attack 

completely. It is unlikely that any countermeasure that involves attempting to 

eliminate the leakage of information through the power consumption will ever be 

completely effective. In can be seen from the relationship between the SNR of the 

data dependence in the power consumption and the number of power traces required 

to give a particular probability of successfully that was derived in Chapter 6 that any 

correlation, no matter how small, can be exploited by an attacker to discern the key if 

they have enough traces. Any attempts to remove the correlation will be imperfect and 

will leave the device vulnerable. 

If DPA is ever going to be completely eliminated as a potential avenue of attack 

a new method will be required. Rather than adding ad-hoc and expensive 

countermeasures a better alternative would be if algorithms were secured against this 

type of attack when they were designed. This chapter describes the investigation into 
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some possible algorithmic countermeasures. It is important to note that in this thesis 

only the resistance to power analysis attacks is examined. There has been no 

investigation into the effects these changes have on the general security of the 

algorithm, although all the modifications involve measures that ought to strengthen 

algorithms, either adding additional layers of existing cryptographic primitives or 

increasing the confusion and diffusion properties of the key schedule. 

Section 7.2 describes the evaluation of a set of different ideas on how to modify 

AES to protect it from DPA. Only one of the ideas, a perpetually expanding key 

schedule (section 7.2.3) is effective. In section 7.3 TDES is modified to be DPA 

resistant, however the algorithm isn’t well suited to the countermeasure and it comes 

at a significant cost in terms of area. Other modern cryptographic algorithms were 

investigated to determine their suitability to the countermeasure, this is described in 

section 7.4 and one of them, ARIA, is shown to perform well with the modification in 

section 7.5. This leads to a second attempt at protecting TDES in section 7.6 with 

much better results. 

7.2 AES Algorithm Alterations 

This section describes the investigation into the resistance to power analysis 

attacks imparted to a modified version of the AES algorithm by several techniques, 

and their effect on the resources required to implement it. The countermeasures were 

added to the same AES design that was used in section 5.3.1.1 and 5.3.2; a 128-bit 

encryptor with an online key schedule that calculates one round per clock cycle. 

When the design was synthesised for a Virtex-E 1000 it used 2,446 slices and 516 flip 

flops, and it had a clock speed of 33.4 MHz, giving a throughput of 427 MB/s. The 

first modification is based on the strengthened key schedule described in section 

4.2.2.2. The next uses an additional Mix Columns operation before the first round to 

decrease the predictability of the target registers. The final one uses a constantly 

changing key to remove the ability of the attacker to exploit data across a large 

number of encryptions. 

7.2.1 Strengthened Key Schedule 

The AES key schedule has a number of weaknesses as described in section 

4.2.2.1. A version of AES was implemented with the strengthened key schedule 
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described in 4.2.2.2 in order to test whether the new key schedule adds any resistance 

to power analysis attacks. As the first sub-key is no longer the master key and the key 

schedule is a one way function in order to fully crack this algorithm all sub-keys must 

be extracted. After the first sub-key is extracted it is possible to predict values in the 

first round up to the Add Key operation. From here the attack can be performed again 

to extract the next sub-key, this will increase the amount of computation an attacker 

has to do. 

7.2.1.1 Effects on the Efficiency of the Algorithm 

There were significant changes to the design of the AES core. The key schedule 

used the same hardware as the encryption so they had to be calculated consecutively 

rather than concurrently. This meant that a more complicated controller was needed, 

so the number of registers increased to 521 and the number of clock cycles increased 

to 54. The clock speed was 31.2 MHz, so the throughput fell by 83% to 74 MB/s. 

Although the design had a more complicated controller the datapath was reused by the 

key schedule, this reduced the total size of the design to 1,699 slices, 69% of the size 

of the original AES implementation, fulfilling the third property in May et al’s list of 

requirements for a good key schedule [30]. 

The throughput of the new algorithm is significantly reduced because each 

round requires a round key which takes four clock cycles to generate. If the design 

was changed from an online key schedule to an offline one this would make 

significant savings in time, the round keys would still take 40 clock cycles to calculate 

but it would only have to happen once so the average number of clock cycles required 

to encrypt one plaintext would return to 10. Clearly the offline key schedule would 

require more area than an online one, but as the datapath is reused in this scheme it 

would still require less area than a standard AES offline key schedule. 

7.2.1.2 Attack on a Simulated System 

In order to determine if the new key schedule afforded any protection from DPA 

an attack was performed using a Modelsim simulation as described in 5.3.1.1. The 

attack was successful. A graph of the correlation for 256 possible key values of the 

first byte of the first round key is shown in Figure 7-1. The key byte had the value 35, 

or 0x23, it can be seen as the largest peak in Figure 7-1. Although the number of 

registers in the design increased compared to normal AES none of the new ones store 
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new data during the target clock cycle so there are no additional transitions and hence 

the signal to noise ratio remains the same. The first sub-key was retrieved using 761 

traces.  

 

Figure 7-1: Graph showing the correlation after 1000 traces of the 256 key guesses for a DPA 

attack on a Modelsim simulation of an FPGA running AES with a strengthened key schedule 

targeting the first byte of the first round key before the s-box. 

 

Figure 7-2: Graph showing the correlation after 1000 traces of the 256 key guesses for a DPA 

attack on a Modelsim simulation of an FPGA running AES with a strengthened key schedule 

targeting the first byte of the first round key after the s-box. 
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When the target was changed to after the Sub Bytes operation the number of 

traces required to crack it fell to 291. A graph of the correlation for 256 possible key 

values of the first byte of the first round key when the DPA attack targets the data 

after the s-box is shown in Figure 7-2, again the correct value of the key is clearly 

shown as the largest peak. 

 

Figure 7-3: Graph showing the correlation after 1000 traces of the 256 key guesses for a DPA 

attack on a Modelsim simulation of an FPGA running AES with a strengthened key schedule 

targeting the first byte of the second round key before the s-box. 

As mentioned in section 4.2.2.2 the round keys are created using a one way 

function and the master key is no longer used in the first round. This means that all 

round keys must be cracked to allow decryption of the ciphertext. Once the first round 

key has been retrieved this can be fed into the algorithm and the 128-bit state just after 

the first Mix Columns operation can be calculated, this is the data that interacts 

directly with the key data in the Add Key operation in the first round. The DPA 

algorithm can be repeated using this value instead of the plaintext to retrieve the 

second round key. To do this on the improved AES algorithm required 999 traces if 

the target was before the s-box and 332 if it was after. Graphs of the correlations for 

the 256 key values for these two attacks, before and after the s-box, on the first byte 

of the second round key are shown in Figure 7-3 and Figure 7-4 respectively. The 
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value of the first byte of the second round key was 0x81, or 129 in decimal notation, 

and is revealed as the largest peak in both graphs. 

 

Figure 7-4: Graph showing the correlation after 1000 traces of the 256 key guesses for a DPA 

attack on a Modelsim simulation of an FPGA running AES with a strengthened key schedule 

targeting the first byte of the second round key after the s-box. 

7.2.1.3 Conclusion 

While the modifications to the key schedule that were proposed in [30] arguably 

increase the security of the algorithm against some attacks, DPA is not one of them. 

While it is more irritating for the attacker as they have to run the DPA analysis once 

for each round key, the attack is no harder and they can still use the traces from the 

same encryptions used to crack the first key for the second and hence no additional 

traces are required compared to standard AES. 

7.2.2 Addition of Initial Diffusion 

As explained in section 4.3.2.3, attacks like DPA and correlation attacks cannot 

target all positions in an algorithm but can only yield useful information when the 

target registers are full and predictable. The efficiency of these attacks is related to the 

fact that one byte of the target is related to one byte of the plaintext and one byte of 
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the key. If an extra Mix Columns operation is added to the algorithm after the initial 

Add Key but before the first set of registers then all bits of the key and plaintext in 1 

column have an effect on the value and therefore the Hamming weight of the register. 

This means that instead of checking the correlation of the 256 columns of the 

prediction matrix corresponding to all possible values in one byte of the key all 232 

must be checked. It would be possible to increase this to 2128 by adding an analogous 

mix rows operation. 

It is important to note that, unlike later on in the algorithm, the Mix Columns 

comes after the Add Key; this is because the unpredictable element, the key, has to be 

mixed with the known plaintext. A block diagram of the modified algorithm is shown 

in Figure 7-5. It is important to note that the Mix Columns operation must be between 

the Add Key and the first register. If there are any registers between the two then this 

can be the target for the attack and the countermeasure is rendered useless. For this 

reason this is only suitable for an FPGA or ASIC implementation rather than a 

microprocessor as each byte of the Add Key would be calculated and stored in 

registers on different clock cycles. 

 

Figure 7-5: Diagram showing the structure of the algorithm with extra initial diffusion. 



Chapter 7 Novel Algorithmic-Based Power Analysis Countermeasures 150 

 

7.2.2.1 Effects on the Efficiency of the Algorithm 

There is very little difference between an implementation of an encryptor of this 

algorithm and one of normal AES. There are still 516 registers, a small combinational 

section was added, but due to some slight differences in implementation the number 

of slices used in the design fell to 2,395 when synthesised for a Xilinx Virtex-E. The 

clock speed fell to 27 MHz, reducing the throughput by 20% to 346 MB/s. 

7.2.2.2 Attack on a Simulated System 

 

Figure 7-6: Graph of the correlation for each key guess when attacking the first byte of the 

sub-key of AES with additional diffusion using the normal DPA algorithm. 

There is the same number of registers in this design and the design of regular 

AES that was attacked in section 5.3.1.1. This means that there is the same amount of 

noise in the system and hence if DPA was successful it should identify the correct key 

with a correlation of approximately 0.2. The first byte of the key was targeted, it had 

the value 43 and 4,096 traces were used. Using normal DPA the key could not be 

retrieved. The correlation from each key guess is shown in Figure 7-6. The largest 

peak is at 30, with a value of 0.03484, much lower than what would be expected from 

a series of correct prediction about the transitions in the target register. The correct 

value of 43 has a correlation of 0.004951. It is not feasible that an attacker could 

determine the correct key from this data. Another attempt at DPA was made, this time 
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it was assumed that the attacker knew the other values in the column of sub-key bytes. 

The correlation from each key guess is shown in Figure 7-7 correct value of 43 had 

the highest peak at 0.2398. Using this approach required 674 traces to successfully 

retrieve all 16 bytes of the key. 

 

Figure 7-7: Graph of the correlation for each key guess when attacking the first byte of the 

sub-key of AES with additional diffusion using a DPA algorithm that assumes the attacker 

known the other sub-key bytes in the column. 

7.2.2.3 Conclusion 

This countermeasure increases the key space that must be searched in order to 

determine the correct key as each byte that is stored in the registers is dependent on an 

entire column of the key. As stated previously this technique relies on the fact that the 

Mix Columns operation is performed before any values are stored in registers, this 

means that the technique is unsuitable for use with microcontrollers as they would not 

be able to perform it atomically. Even if algorithms are protected with this system it 

would be possible for a naive designer to put registers in the wrong place in the design 

and open up DPA vulnerability. Also, if the attacker knows the values of some of the 

bytes in the key then DPA can be used to discover the values of other bytes. 

It is possible that a technique similar to that used in [93], where the target for 

the DPA is not the contents of a register but the output of logic gates, would still be 
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able to retrieve the key from this algorithm. This would require more detailed 

knowledge of the design and, as the logic gates consume less power than registers, 

more traces, so it would make DPA harder, but not impossible.  

7.2.3 Perpetually Expanding Key Schedule 

The reason DPA is so effective is that it is able to combine the information from 

several encryptions, combining the small variations in power consumption into usable 

information. This is only possible because the attacker is able to make predictions of 

the values inside registers based on a hypothesis of the value of a byte of the key. In 

AES the key is expanded once and this data is used for every block, this means the 

key hypothesis is valid across all of the encryptions using the same key. 

The proposed modification would continue to expand the key so the same round 

keys are not reused. This undermines the attacker’s ability to make predictions about 

the values inside registers. Due to the nature of the AES key schedule, after each 

round of key expansion the value of each byte becomes dependent on the value of an 

additional byte in the original key. This means that after encrypting two plaintexts 

with the modified algorithm the value of each byte in the round key is dependent on 

all bits in the original key. This means that to make any accurate predictions of the 

value of any hypothesis about the value of one byte assumptions about all bytes would 

need to be made. The attack would therefore offer no advantage over brute force. 

7.2.3.1 Effects on the Efficiency of the Algorithm 

Other than potentially providing resistance to DPA this countermeasure is that 

there can no longer be random access of the encrypted data as the key for each block 

is different and has to be calculated in sequence. This is not necessarily that much of a 

disadvantage as ECB is the only mode of operation for block ciphers that allows this 

and using this method can lead to some insecurities, like replay attacks.  

Ultimately the effect of this modification on the efficiency of the 

implementation depends on what features the implementation requires. For an 

implementation that is only an encryptor it is not practical to have an offline key 

schedule, as the round keys will not be the same for the next encryption so have to be 

re-calculated anyway. As the round keys are used in reverse for decryption any 

implementation must store them when decrypting, for normal AES an offline key 
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schedule would be the obvious choice. With the new approach the implementation 

would have the disadvantages both the online and offline styles, the key would have 

to be calculated each time and additional memory would still be required.  

Implementation Clock 

(MHz) 

Cycles / 

Result 

Throughput 

(Mb/s) 

Slices DFFs 

128-bit Enc 29.1 12 310 2,576 651 

128-bit Enc/Dec off. 28.1 21 171 4,575 2,074 

128-bit Enc/Dec Unroll.  6.3 11 73 6,395 780 

128-bit Enc/Dec Piped 17.5 11 - 13 203-172 6,394 1,164 

128-bit Enc/Dec 2*Mem. 26.4 11 307 5,616 3,209 

Table 7-1: A summary of the performance of different implementation s of modified AES 

with a perpetually expanding key schedule. 

In order to further investigate the performance impact of the modification 4 

different versions of the algorithm were made and synthesised for a Xilinx Virtex-E 

with a speed grade of -6. The performance of these designs is summarised in Table 

7-1. A standard 128-bit encryptor was made, this was very similar to the 

implementation of the unmodified algorithm. 

Next an implementation that could also decrypt was made. As decryption 

requires the keys in reverse order the keys have to be calculated first and stored, this 

doubles the number of clock cycles required for processing a block. In order to try and 

make the implementation more efficient the key schedule was unrolled, this means 

that the entire expanded key is calculated combinationally, it does increase the area 

requirements as there are four s-boxes required for the generation of each round key, 

also the critical path becomes significantly longer, reducing the maximum clock 

speed. In order to increase the clock speed of the unrolled implementation registers 

were added in the key schedule, this means the key expansion is performed across 

several clock cycles, increasing the number of cycles per result but the critical path 

falls. With three blocks of registers in the unrolled key schedule the clock cycle 

increased to 17.5 MHz and the throughput increased to 172 Mbits/s for decryption, 
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this is significantly higher than the unrolled version but there is only a marginal 

increase in throughput compared to the offline version. 

An alternative way of increasing the throughput was then investigated that 

involved doubling the amount of memory the key schedule has and while reading the 

round keys for the processing of one block it calculates and stores the keys for the 

next. Using this technique the throughput was returned to nearly that of the encryptor, 

there is a significant increase in the amount of area used, over 1,000 more slices 

compared to the simple decryptor, and clearly it involves nearly twice the amount of 

flip flops for storing the round keys. 

7.2.3.2 Attack on a Simulated System 

 

Figure 7-8: Graph of the correlation for each key guess when attacking the first byte of the 

sub-key of AES with a perpetually expanding key schedule before the s-box using the normal 

DPA algorithm with 4096 traces. 

A DPA was performed on a simulation of a device running the modified 

algorithm. The initial value for the first byte of the first sub-key was 43, 0x2B. A 

graph of the correlation of the key guesses after 4,096 traces when the target register 

is before the s-box is shown in Figure 7-8, the key guess with the largest peak was 

212 giving a correlation of 0.02274. This is not the correct key value and the 

correlation value is much lower than what would be expected for a successful attack 
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given the signal-to-noise ratio of the system. The correlation after 4,096 traces when 

the target register is after the s-box is shown in Figure 7-9, the key guess with the 

largest peak was 111 giving a correlation of 0.04413. This is also not the correct key 

value and the correlation value is again much lower than what would be expected for 

a successful attack, the highest peak does not really distinguish itself from the rest of 

the results. 

 

Figure 7-9: Graph of the correlation for each key guess when attacking the first byte of the 

sub-key of AES with a perpetually expanding key schedule after the s-box using the normal 

DPA algorithm with 4096 traces. 

7.2.3.3 Attack on a Physical System 

After the algorithm was attacked in simulation the design was implemented on a 

Virtex-E 1000 FPGA and the power consumption was measured while the device was 

performing encryptions using the setup described in section 5.3.2. After 45,000 traces 

none of the correct key values could be retrieved from the system. The initial value 

for the first byte of the key was 0x2B, or 43 in decimal notation, a graph of the 

correlation for each key guess is shown in Figure 7-10. The value with the highest 

correlation is 137 with a correlation of 0.01029; the correct value of 43 is significantly 

lower at -0.000841. 
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Figure 7-10: Graph of the correlation for each key guess when attacking the first byte of the 

sub-key of AES with a perpetually expanding key schedule after the s-box using the normal 

DPA algorithm with 45,000 traces. 

7.2.3.4 Conclusion 

Experimental results suggest that this algorithm is resistant to DPA. This is 

because the DPA algorithm does not really apply to the modified algorithm as it is not 

possible to make any meaningful predictions about the contents of registers as the 

assumption that the sub-key byte that is being targeted is constant is no longer valid. 

As there are no hardware countermeasures implemented, if a new prediction formula 

could be derived that got around the changing sub-keys this design would be just as 

susceptible to DPA as any other. 

Due to the way the AES key schedule works after the generation of each new 

sub-key the value of each byte of the new key is determined by the value of an 

additional byte of the original key. This means that, for a 128-bit key, after 16 round, 

less than two encryption blocks, each byte of the sub-key is dependent on every byte 

in the original key. Making predictions about values inside registers now involves 

assumptions about the entire key and so this method would offer no advantage over 

brute force. 
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7.2.4 Summary of Results 

Algorithm Pre S-Box Post S-Box 

AES 742 345 

Strengthened K.S. 761 291 

Strengthened K.S. 2nd Byte 999 332 

Initial Diffusion 4,096+ 4,096+ 

Initial Diff., (some knowledge of key) 674 - 

Perpetually Expanding K.S. 4,096+ 4,096+ 

Table 7-2: Summary of results for DPA attacks on Modelsim simulations of AES. 

The results of the attacks on the Modelsim simulations for various versions of 

AES are summarised in Table 7-2. Strengthening the key schedule using the 

technique proposed by May et al [30] does not add significantly more security in 

terms of the number of traces that are required for complete key retrieval, although as 

the other round keys cannot be derived from the first all must be extracted using DPA 

increasing the overall computation time by a factor of 16.  

Adding another level of diffusion after adding the first key does offer some 

frustration to an attacker. Attempting unmodified DPA on a system running this 

algorithm did not reveal the key. With knowledge of three bytes of the key in a 

column the attacker could use minimally modified DPA to retrieve the 4th with 

approximately the same level of effort as regular DPA. There are some other practical 

issues when attempting to implement such a system, there must be no registers storing 

the intermediate data after the initial Add Key, as this would be a potential target for 

the attacker that completely bypasses the countermeasure. This makes it unsuitable for 

software implementations. Additionally, with sensitive enough measurements, it may 

be possible to target logic gates within the additional Mix Columns operation again 

bypassing the effects of the countermeasure completely 

The results of the tests on the perpetually expanding key schedule indicate that 

it is effective at preventing an attacker from retrieving the key.  
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7.3 TDES 

TDES became the de facto replacement to DES after it was recognised that the 

security that DES provided was no longer sufficient. It is slowly being replaced by 

AES as security systems are upgraded, one area where it remains in widespread use it 

in the electronic payments industry, for example EMV [102], more commonly known 

as Chip and Pin. Section 7.3.1.1 reports the results from a simulated DPA attack on 

TDES. Section 7.3.2 discusses the application of the algorithm modification described 

in section 7.2.3 to TDES, and the effect on the size and throughput of the 

implementation. 

7.3.1.1 Attack on TDES 

In order to verify the efficacy of the countermeasure compared to normal TDES 

DPA was performed on an unprotected version of the algorithm. First a VHDL 

implementation of TDES was downloaded from opencores.org [103], this was then 

synthesised for a Xilinx Virtex-E 1000 and simulated in Modelsim and the register 

transitions were recorded using the same method as described in section 5.3.1.1. 

 

Figure 7-11: The correlation for each key guess in the first key section in the first DES block 

of TDES with 1,000 traces. 

The entire key could be retrieved with 1,640 traces. This is more than is 

required for the AES implementations. The sections of the key that are individually 

targeted are only 6 bits long and in each DES block there are 48-bit keys, giving a 
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total of 144 key bits for TDES all influencing the number of register bits that are 

changing in the target cock cycle. This means that there is a lower signal-to-noise 

ratio for the TDES simulation than in AES. A graph of the correlation between the 

prediction and consumption matrices for the first key section for a DPA with 1,000 

traces is shown in Figure 7-11. The actual value of the first key section was 0x22, or 

34, and the value retrieved from the DPA was also 34 meaning the correct key had 

been retrieved. Although 1,000 traces was not enough to extract all eight keys in the 

experiment it was enough to get six and Figure 7-11 shows a clear peak compared to 

the noise. 

7.3.2 Modified TDES 

The DES key schedule forms the various round keys by bit shifting the master 

key and selecting specific bits from it. This can only give a limited number of 

possibilities for the key so the technique of continuing the key expansion cannot be 

directly applied to TDES. For this reason the key schedule in each DES block was 

replaced by the AES key schedule with a couple of modifications. Firstly, the AES 

key schedule has four s-boxes that substitute the values inside a 32-bit vector, these 

are replaced by the expansion function, which converts the 32-bit vector to a 48-bit 

one, and the eight DES s-boxes, each having a 6-bit input and a 4-bit output returning 

the data to 32 bits. Obviously, it was allowed to continue expanding for each 

successive block as described in section 7.2.3.  

In order to ensure backwards compatibility with DES, TDES is often used in 

EDE (encryption-decryption-encryption) mode, as supplying the same key to all 

blocks gives the same result as supplying the same key to a single DES block. Due to 

its popularity this was the version that was implemented. This meant that the ability to 

perform decryption was required by at least one of the DES blocks, this requires 

additional resources as unlike the original DES key schedule, the AES one can only 

generate the round keys forwards, so when they are needed in reverse order for 

decryption then need to be stored. In the standard algorithms the round keys do not 

change so they are calculated once at the start and stored. This is only a small delay of 

a few clock cycles for each key. With the constantly expanding approach this time 

penalty is applied to every block so it becomes more significant. In order to overcome 

this enough storage is added for two sets of round keys and while the first set is being 
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used the second set, for the next block, it being calculated. This does however require 

more space. 

The AES key schedule works on blocks of 128 bits, the TDES key is not that 

long the system must be modified to take this into account. There are several solutions 

to this, one would be padding the keys, or repeating them or increasing the size of the 

key space to 384 bits. The solution that was chosen was increasing the size of the 3 

DES keys to 64 bits and combining these in different ways to form the 128-bit keys as 

shown in Table 7-3. These changes make no difference to the internal working of the 

algorithm, the only effect is that it is supplied with a different set of round keys. 

TDES Key Number Key Formation 

1 DES Key 1 + DES Key 3 

2 DES Key 2 + DES Key 1 

3 DES Key 3 + DES Key 2 

Table 7-3 : Arrangemet of keys for the Modified TDES. 

7.3.3 Effect on Efficiency 

The modified TDES design was synthesised for a Xilinx Virtex-E 1000, as was 

the original TDES. The size requirements and the clock speed for the two designs are 

summarised in Table 7-4. There is a significantly greater penalty for the alterations 

than in AES, the number of slices required increases by a factor of nearly 6. The DES 

key schedule is simple to implement, it is just a series of bit shifts and permutations, 

the AES key schedule is significantly more complicated, involving substitutions and 

XOR operations, and has the additional disadvantage of requiring the storage of round 

keys for decryption.  Also this penalty applies to each DES block so the effect is 

tripled. The design increases by so much that the modified TDES is larger than the 

modified AES, which only required 5,616 slices. The clock speed of the design does 

not change significantly however. This is because the critical path for the orignal 

design included both the key schedule and the datapath, the datapth being responsible 

for nearly half of the delay. The modification to the algorithm required the addition of 

registers between the two sections so although the delay for the key schedule was 

more than doubled this was offset by the breaking up of the critical path. 
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 TDES Modified TDES 

Slices 1,201 6,940 

DFFs 1,215 6,323  

Clock Speed (MHz) 49.478 43.537 

Cycles / Plaintext 19 19 

Throughput (MB/s) 166.66 MB/s 146.65 MB/s 

Table 7-4 : Summary of speed and area requirements for the standard and modified TDES 

when synthesised to a Virtex-E 1000. 

7.3.4 Attack on a Simulated System 

 

Figure 7-12: Correlation for all 64 key guesses for an attack on a Modelsim simulation of a 

modified TDES system with 4,096 traces. 

The modified TDES was synthesised for a Xilinx Virtex-E 1000 and simulated 

in Modelsim and the register transitions were recorded using the same method as 

described in section 5.3.1.1. The correlation between the prediction and consumption 

matrices for all 64 key guesses using 4,096 traces is shown in. The actual value of the 
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first key section was 10, and the value retrieved from the DPA was 17, with a 

correlation nearly 4 times higher, meaning the correct key had not been retrieved. 

7.3.5 Conclusion 

The technique of continually changing the round keys between block can also 

be adapted to protect TDES from DPA. There are however some properties of 

algorithm that mean the implementational penalties for doing this are greater. DES, 

and by extension TDES, has a very simple key schedule, it consumes little area but 

can only generate a limited number of round keys. This limitation meant that for the 

purpose of the modification it had to be replaced with a more complex one. As the 

original DES key schedule was so compact the modification significantly increased 

the size of each block and because there are three DES blocks in TDES the area 

penalties were tripled. The increase in cost is so great that after the technique has been 

applied the TDES design is larger than the modified AES system. 

While this is a powerful technique for making algorithms immune to DPA it is 

not necessarily appropriate to retrofit all current algorithms using this method. Section 

7.4 outlines the requirements it to be implemented in an efficient way and investigates 

several modern algorithms in order to identify the most appropriate design for 

perpetually expanding key schedules. 

7.4 Application of Perpetual Key Schedule to Other Algorithms 

Using a key schedule that continually generates different round keys for 

successive encryption blocks to defeat DPA generally does not have a high overhead 

compared to an implementation of the same algorithm with a normal key schedule. 

There are some limits on when it can be used, the key schedule has to be complex 

enough to generate a large sequence of bits, the DES, and hence TDES, key schedule 

cannot do this so when TDES was modified to be secure against DPA the key 

schedule was replaced by the one from AES. This greatly increased the hardware and 

performance overhead compared to standard TDES.  

When the new algorithm was implemented as an encryptor there was a 

significantly smaller overhead than when the implementation could also perform 

decryption. This was due to the fact that during decryption the round keys are needed 
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in reverse order, but they can only be generated forwards. This meant that either a 

new set of round keys had to be generated for each block before decryption could take 

place, or additional memory was required to store the results of the calculation of the 

next set while the current set was being used. Algorithms that can generate the round 

keys in any order would not suffer from this problem, further reducing the overhead 

for the technique. This section evaluates a number of modern encryption algorithms 

for their suitability for this countermeasure and identifies the properties of key 

schedules that give the best performance in terms of the relative cost of changing the 

key schedule. Section 7.4.1 describes the key schedules of the algorithms that are 

being investigated and section 7.4.2 discusses the advantages and disadvantages of the 

various properties the different key schedules have. 

7.4.1 Key Schedules of Modern Algorithms 

The following algorithms were selected as AES finalists or are recommended 

algorithms for either NESSIE, (New European Schemes for Signatures, Integrity and 

Encryption) a European project to identify secure cryptographic algorithms, or 

CRYPTREC, an equivalent project set up by the Japanese government. 

7.4.1.1 MARS 

MARS [104] was developed by IBM in 1998, the design team included Don 

Coppersmith, who also helped design DES. MARS was a finalist in the AES process, 

and as such works on a block size of 128 bits, processing the data in 32-bit words, and 

supports variable key lengths, from 128 bits to 448. It has a Feistel structure and is 20 

rounds long and so requires 40 words, or 1,280 bits, of expanded key data. 

7.4.1.1.1 Key schedule description 

The master key is placed into a table of 15 32-bit words called T, the key will 

always be shorter than this so it is concatenated with a binary value of its length in 

words and then padded with 0s. The array T is then put through four rounds of the 

following transformations: 
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for j = 0 to 3 

for i = 0 to 14 

)4()3)(( 15mod215mod7 jiTTTT iiii +⊕<<<⊕⊕= −−  

for k = 0 to 3 

 for i = 0 to 14 

Ti= Ti ⊕ S (Low 9 bits of Ti-1 mod 15)<<<9  

for i = 0  to 9 

15mod410 iij TK =+  

Figure 7-13: Pseudo-code for the key schedule of the MARS algorithm. 

Where S is MARS’s s-box. Finally, to ensure that none of the key words that are 

involved in multiplication, K5, 7, … 35, in the algorithm have certain properties, namely 

that the lowest two bits are set to 1 and there are no groups of ten consecutive 1s or 0s 

the following operation is performed. 

The lowest two bits of Ki are recorded and set to 1. If patterns of more than ten 

consecutive 1s or 0s are detected in Ki then the runs are XORed with bits from entries 

265 through to 268 of the s-box, the particular entry being selected by the original 

value of the two lowest bits in Ki, and rotated by a number of bits selected using the 

value of the five lowest bits in Ki-1. In the final section i = 5, 7, … 35. 

7.4.1.1.2 Analysis 

The key schedule of MARS could be modified to use a perpetually expanding 

key schedule, the use of the s-box and significant bit mixing between sub key bytes 

ensures a complex enough relationship and the last 480 bits of the expanded key could 

be used as a new input.  

While the key schedule uses the same s-boxes as the datapath the structure is 

significantly different and so hardware specifically to expand the key will have to be 

included. It will always be possible to generate round keys in parallel with the main 

datapath. In decryption keys are needed in reverse order so have to be pre-generated 

and stored. The key expansion for MARS is quite complex, requiring multiple clock 

cycles, or significant unrolling of loops, but the amount of expanded key data is a 
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modest 1,280 bits. Due to this, double buffering the key schedule as described in 

section 7.2.3 will not have as large an area penalty as for other algorithms. 

7.4.1.2 RC6 

RC6 [105] was published in 1998 by Ron Rivest, Matt Robshaw, Ray Sidney, 

and Yiqun Lisa Yin. It was submitted as a candidate for AES and it was a finalist. 

RC6 is a Feistel network that acts on variable blocks sizes, number of rounds and key 

lengths. Technically the algorithm is specified as RC6-w/r/b where w is the data word 

size, r is the number of rounds and b is the number of bytes in the key. The version 

that shall be discussed here is the one that was submitted as a candidate for AES, so 

acts on block sizes of 128 bits, four 32-bit words, supporting key lengths of 128, 192 

and 256 and consists of 20 rounds. RC6 requires 2 (r + 1) words of expanded key 

data. This variant of RC6 requires a total of 1,344 bits of expanded key data. The 

designers have largely recycled the key schedule from the 1995 RC5 algorithm. 

7.4.1.2.1 Key schedule description 

The key schedule of RC5, and hence RC6 initialises the expanded key space 

with two “magic constants”, P and Q, which are both odd and of length w, and are 

derived from the hexadecimal representation of Euler’s constant and the Golden Ratio 

[106]. The first word in the expanded key, S, is set to P and each successive word is 

set to the previous word + Q, where the addition is performed modulo-2w. Next the 

master key is copied to the array L and mixed in with the pseudo random bit streams 

in the following way: 

A = B = 0  

i = j = 0 

Repeat (3 * # words in S) 

)4()3)( jiBASSA ii +⊕<<<++==  

)()( BABALLB jj +<<<++==
 

i = (i + 1) mod # words in S 

j = (j + 1) mod # words in L 

Figure 7-14: Pseudcode for the bit mixing of the key schedule of RC6. 
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7.4.1.2.2 Analysis 

RC6 can be protected from DPA by taking the final 128, 192 or 256 bits of the 

expanded key, copying it into the array L and repeating the key expansion process. 

This key schedule cannot generate the sub-keys in any order. In AES a given round 

key depends only on the round key before it, in RC6 the sub-keys are generated with a 

three stage process so cannot be derived in an online fashion. This means that the 

expanded key would probably be pre-computed and stored, as the only other option 

would be to replicate hardware to unroll the loop which would be expensive. The 

offline design makes the maximum area penalty slightly less for the comparison 

between the original algorithm and a modified version as there must always be 

enough memory to store the entire expanded key. As the key schedule does not use 

the cryptographic primitives from the main datapath there is little area penalty 

incurred from providing the hardware to enable the new encryption key in parallel 

with the encryption of the previous plaintext. This would require the addition of 

another 1,344 bits of memory. 

7.4.1.3 Serpent 

Serpent was published in 1998 [107] by Ross Anderson, Eli Biham, and Lars 

Knudsen, it was submitted as a potential algorithm for AES and was a finalist. Serpent 

is a 32 round SPN and like the other AES submissions it works on 128-bit blocks and 

supports key lengths of 128, 192 and 256 bits. In the final round an additional round 

key is also used bringing the total amount of expanded key data up to 33 round keys 

or 4,224 bits. 

7.4.1.3.1 Key schedule description 

The master key is padded to 256 bits by adding a 1 followed by as many 0s as is 

required and split un into eight 32-bit words labelled w-8 to w-1. These are then 

expanded into 132 intermediate keys w0 to w131 using the following relationship: 

 11)( 1358 <<<⊕⊕⊕⊕⊕= −−−− iwwwww iiiii φ  (7-1) 

Where φ has the value 0x9e3779b9, the fractional part of the golden ratio in 

hexadecimal. The intermediate keys are then converted into the final round keys by 

passing them through Serpent’s s-boxes. Serpent has eight different 4-bit to 4-bit s-

boxes. In order to increase parallelisation the key schedule, as well as the rest of the 
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algorithm, was designed using a bit slice technique. The intermediate key word is 

substituted not as a series of 4–bit words, but a single bit from four consecutive 

intermediate words is put into an s-box and the final round keys are made of the 

corresponding s-box output bits. 

7.4.1.3.2 Analysis 

If the key schedule of Serpent was modified so that the expansion of the master 

key into w did not stop, but continued, generating 132 intermediate keys, for 

conversion into round keys, for each plaintext that needed to be encrypted then the 

algorithm could be protected from DPA. 

Serpent requires a large number of expanded key bits so pre-calculating the 

expanded key and storing it would require a lot of RAM, making an offline key 

schedule expensive in terms of area. Conversely, generating one round key requires 

the same number of s-boxes as processing one round so calculating the round keys in 

parallel would require doubling the number of s-boxes. S-boxes are a significant 

factor in the size of most hardware implementations of cryptographic algorithms, so 

doubling the number would have a serious area penalty. There is a compromise of 

interleaving round key generation and one round of encryption on alternating clock 

cycles, this would only require storing the 12 32-bit words that the current round key 

is based on. This is true for the original algorithm as well as a modified version, and 

the cost of modifying the algorithm can only be compared to an implementation of the 

original.  

For an encryptor that alternated between generating round keys and performing 

encryption to reduce the area of the design there would not be a significant cost in 

terms of area or speed for modifying the algorithm, the round keys would have to be 

generated for each plaintext anyway and no additional memory would be needed. If 

the round keys were pre-calculated and stored the amount of time required to process 

a plaintext would double as the keys would still have to be calculated for each 

plaintext. 

As a decryptor has to provide the round keys in reverse order but can only 

generate them in the actual order any design that can decrypt would need enough 

memory to store all the round keys and would pre-calculate them. After modification 

the algorithm would need to generate a new set of keys for each plaintext so again the 
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amount of time taken to process a plaintext would double. This could be mitigated 

with the same double buffering technique that was described in section 7.2.3, but this 

would require doubling the, already significant, amount of memory for storing round 

keys and also adding another 16 s-boxes so the next set of keys could be calculated 

which the current plaintext was being processed. 

7.4.1.4 MISTY 1 

MISTY was developed by Mitsuru Matsui in 1995 [108]. It uses blocks of 64 

bits and keys of 128 bits, it is a recommended algorithm for both NESSIE and 

CRYPTREC. It uses a nested Feistel structure, where each round is made up of a 

three round Feistel structure with a 32-bit datapath, with each sub-round being 

composed of a smaller three round 16-bit Feistel structure where the two halves are 

split into 7 and 9 bits. MISTY can have any number of rounds on the condition that it 

is divisible by four. MISTY1 only requires 256 bits of expanded key data. 

7.4.1.4.1 Key schedule description 

As MISTY1 does not require to expand the key very much, only to double the 

amount of key data, the key schedule is fairly simple. The master key is separated into 

eight 16-bit words and these are all fed through the 16-bit round function, consisting 

of three rounds of the lowest level Feistel structure. The round key for each 16-bit 

word is the master key from the word to its right. During a set of four rounds of 

encryption all 16 key words are used. 

7.4.1.4.2 Analysis 

The key schedule for MISTY could have a perpetually expanding key schedule. 

The second half of the expanded key could be used as the new master key, the round 

function is complex enough to remove the possibility if short repeating patterns 

appearing in the expanded keys. As the expansion of the key involves putting one 

word of the key into the round function using another master key word as the round 

key there is mixing between key words. After eight encryption blocks the value of 

each block of the key would be affected by the value of each bit in the original master 

key. 

The keys in MISTY can be generated in any order, normally this would enable 

an online key schedule to be used for both encryption and decryption, MISTY is a 
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little different. Due to the small nature of the expanded key, the fact that the entire 

expanded key is required in the first four top level rounds and the reuse of the second 

level round function to generate the expanded key the more efficient design would 

still be offline. Very little memory would be required to store the entire key and this 

would be traded off against the area cost of replicating the 16-bit round function. The 

speed penalty for pre-expanding the key would only have to be paid once for the 

original algorithm, but it would be incurred once encryption for the modified one. 

The size of this cost as a proportion of the total run time is dependent on the 

number of rounds. Each top level round contains three of the second level rounds that 

are used to expand the key and 8 key expansions are required. Expanding the key with 

whatever hardware there is in the system will require the same amount of time as 8/3 

top level rounds, if there are only four rounds this is a 66% decrease in throughput, 

33% for 8 round and so on. There is very little increase in area, no additional storage 

is needed, but a more complex controller will be required. 

7.4.1.5 Camellia 

Camellia was developed by Mitsubishi in 2000 [109]. It has a block size of 128 

bits and supports key lengths of 128, 192 and 256 bits. It was selected as a 

recommended algorithm for both CRYPTREC and NESSIE. It uses a Feistel structure 

and consists of 18 rounds when a 128-bit key is being used and 24 for a 192 and 256-

bit key. There is also additional key mixing at the start and end of the algorithm and 

every six rounds two round keys are used this bring the total number of 64-bit round 

keys required by the algorithm to 26 for the 128-bit key and 34 for 192 and 256-bit 

keys. 

7.4.1.5.1 Key schedule description 

The key schedule of Camellia uses the same cryptographic primitives as the 

main algorithm to expand the master key into the round keys. The master key is 

separated into two 128-bit blocks KL and KR. In the case of the 128-bit key length KR 

is set to 0, in the case of the 192 bit key the right hand side of the KR is set to the 

compliment of the left hand side. KL is XORed with KR and this is then encrypted for 

four rounds with a constant set of round keys, the new value is KA. For key lengths 

greater than 128 bits KA is then XORed with KR and encrypted for another two rounds 
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giving KB. The final values of the 64-bit round keys are then selected from KL and KA 

for the 128-bit key and from all four values for the 192 and 256-bit keys. 

7.4.1.5.2 Analysis 

The Camellia key schedule can be modified to prevent DPA by setting KR and 

KL to KA and KB, generating a new KA and KB and deriving the next set of round key 

from these values. The cipher reuses the round function to expand the key, so a new 

set of round keys could not be calculated in parallel without almost doubling the size 

of a design, this is not a significant problem for the original algorithm as the keys only 

have to be calculated once and the amount of RAM needed to store them is small as 

they are derived from four 128-bit values. For the modified version these values need 

to be re-initialised for every plaintext, adding six clock cycles for every 18, an 

increase of 33%. The round keys can be generated in any order meaning that there is a 

greater consistency in the performance of a design that can decrypt compared to one 

that can only encrypt. 

7.4.1.6 Hierocrypt-3 

Hierocrypt-3 was developed by Toshiba in 2000 [110]. The structure of 

Hierocrypt-3 is a 16 round nested SPN in which a higher level s-box is itself a smaller 

SPN. It works on blocks of 128 bits using keys of length 128, 192 and 256 bits which 

have 6, 7 or 8 rounds respectively. Each round requires two 128-bit round keys and 

there is one final key addition, therefore a total of 1,664, 1,920 or 2,176 bits of 

expanded key data are required for the three supported key lengths. It is a 

recommended cipher from the CRYPTREC program. 

7.4.1.6.1 Key schedule description 

The master key is padded to 256 bits with a series of 32-bit constants derived 

from the binary representations of irrational numbers and converted to the first 

intermediate key with the σ0 function. The function σ iteratively generates the first 

four intermediate keys (Z) for 128 / 192-bit keys and 5 for 256-bit keys. One 

intermediate key is required for each round and the remaining ones are generated by 

the σ-1 function. Figure 7-15 shows the structure of the functions σ0, σ and σ
-1. 

In Figure 7-15 K denotes the actual round keys that are derived from the 

intermediate keys Z, T is the total number of rounds. G denotes the round constants 
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prevent periodic patterns appearing the intermediate keys and, like the key padding 

constants, are based on the binary representations of irrational numbers. P is a linear 

permutation that separates the data into four blocks and XORs each block with one 

other. M5E and MB3 are both similar to P except they separate the data into two distinct 

groups of four blocks and XORs data within the groups. The function Fσ separates the 

data into 8 bytes, passes them through Heirocrypt-3’s s-box and then applies the P 

function.  

 

Figure 7-15: The structure of the Heirocrypt-3 key schedule. 

7.4.1.6.2 Analysis 

The key schedule for Heirocrypt-3 is fairly similar to that of AES. It is an 

iterative key schedule, a function is applied to the master key to generate a set of 

intermediate values from which the first round key is derived, and one of two related 

function are repeatedly applied to the previous intermediate data to provide the 

intermediate data for the next set of round keys. The round key iteration functions are 

complex and involve a large degree of bit mixing between sub-key words ensuring the 

appropriate properties for a perpetual key schedule design. 
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The key schedule design being similar in structure to that of AES has the same 

problems. Assuming an online key schedule has been used, altering the encryption 

algorithm will require very little modification, simply looping the key schedule round. 

While the key schedule uses the s-box from the datapath it does not use any of the 

other blocks. This means that the hardware for the key schedule will have to be 

included irrespective of the style of key schedule that is used so there will always be 

the possibility of calculating round keys in parallel with the main datapath. For 

decryption the keys will be needed in reverse order so they will have to be pre-

generated and stored. Using the approaches discussed in section 7.2.2.1 it is possible 

to trade off costs in speed and area by double buffering the memory for the offline key 

schedule, Heirocrypt-3 required between 1,664 and 2,176 bits of expanded key data. 

7.4.1.7 ARIA 

ARIA is a 128-bit SPN based block cipher that uses 128, 192 and 256-bit keys 

[111], it was designed in 2003 by cryptographers in South Korea and in 2004 it was 

selected by the Korean Agency for Technology and Standards to be a standard 

cryptographic algorithm. ARIA has 12, 14 or 16 rounds depending on the key size 

that is used and it requires 128 bits of expanded key data per round, with an additional 

128 bits for a final key addition. In total 1,664, 1,920 or 2,176 bits are required. 

7.4.1.7.1 Key schedule description 

The key schedule in the ARIA algorithm has two phases, initialisation and 

expansion. The initialisation phase uses the master key and three 128-bit constants to 

generate four 128-bit sub-keys using a 256-bit Feistel cipher. The left half of the 

Feistel data is the first 128 bits of the master key, the right half is any unused bits of 

the key padded with zeros to 128 bits. The Feistel cipher is used to generate four 128-

bit values using the odd and even round functions Fe and Fo, who differ due to the fact 

that ARIA uses two different s-boxes and their inverses in a different order on 

alternating rounds.  

 W0 = KL (7-2) 

 W1 = Fo (W0, CK1) ⊕ KR (7-3) 

 W2 = Fe (W1, CK2) ⊕ W0 (7-4) 
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 W3 = Fo (W2, CK3) ⊕ W1 (7-5) 

From these values the round keys are generated. This is done by XORing one of 

the values with another after it has been rotated by a certain number of bits. The 

choice of the two values and the amount of rotation are determined by the round. 

7.4.1.7.2 Analysis 

ARIA can be modified for DPA resistance by continuing the initialisation 

Feistel cipher to generate four new sub-keys for every plaintext that must be 

encrypted. After the initialisation stage of the key schedule the round keys can be 

generated in any order so no additional area or speed penalties are paid when 

implementing a system that can perform decryption. As the key initialisation phase 

uses the round function of the encryption datapath it could not be performed in 

parallel without essentially doubling the area requirements of a design, encryption 

would have to be temporarily stopped in order to re-initialise the key, increasing the 

amount of clock cycles per processed plaintext by between 25% and 33% depending 

on the key length. 

7.4.2 Application of Perpetual Key Schedule to Other Algorithms 

Several of the algorithms described in section 7.4.1 have similar designs, 

Hierocrypt-3, Serpent, MARS and RC6 iteratively apply a function to the key data, 

the output of which is both a round key and the input for the function to generate the 

next key. Camellia and ARIA use a two stage process, the first stage takes the master 

key and generates four intermediate keys, in the key generation stage these are 

combined in a variety of different ways to form the round keys. All of the key 

schedules reuse some of the cryptographic primitives that are found in the main 

datapath, Camellia, ARIA and MISTY-1 use the entire round function for key 

expansion. This section discusses the advantages and disadvantages of the key 

schedule structures with respect to modifying algorithms so they have a key schedule 

that protects them from DPA.  

7.4.2.1 Initialisation vs. Iterative  

There are two main approaches to generating round keys in the algorithms that 

have been discussed in section 7.4.1. Firstly there is the iterative approach where a 

function is applied to a block of expanded key data with a fixed length, the output of 
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which is a new round key which forms all or part of the input to the next iteration. 

Examples of these are Hierocrypt-3 and Serpent, and MARS and RC6, which repeat 

the iterative process across a number of rounds. The second approach uses an 

initialisation phase, where a, typically more complex, transform converts the master 

key into a relatively small set of intermediate keys, the bits of which are combined in 

a number of different ways to generate the various round keys. This is the technique 

used in Camellia and ARIA. The exception to this is the algorithm MISTY 1, which 

needs such a small amount of expanded key data that it simply applies the round 

function to the master key in order to double the amount of key data available. 

The advantage of the initialisation approach is that once the intermediate keys 

have been determined the round keys can be generated in any order. This is a 

significant advantage when performing decryption and it makes the performance of 

encryptors and decryptors a lot more consistent.  

7.4.2.2 Reuse of Cryptographic Primitives 

Lots of the algorithms have key schedules that make some use of the 

cryptographic primitives to expand the key. All of the ones described in section 7.4.1 

make use of their s-box, except RC6, which doesn’t use an s-box. Hierocrypt-3 also 

reuses some of the datapath functions for permuting bits and ARIA, Camellia and 

MISTY 1 reuse the entire round function. 

There are several advantages to reusing the entire round function. The main one 

is that hardware can also be reused making the design potentially much smaller and 

simplifying the implementation process as less has to be designed. Also, as noted by 

May et al. in [30] key schedules designed in an ad hoc fashion tend to perform 

relatively poorly in terms of the confusion and diffusion properties of the expanded 

key. By reusing the round function assuming the cipher performs well in these areas 

the key schedule will also. Having good confusion and diffusion performance will 

also reduce the need for time consuming complex multi-round key expansion 

algorithms like those in MARS and RC6. 

Reusing the entire round function to generate the key schedule is somewhat of a 

double edged sword, in order to make a design that can calculate expand the key 

schedule and perform the encryption in parallel the area requirements are almost 

doubled, whereas if the hardware to expand the key has to be implemented anyway 
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that automatically means it can be run in parallel. This is less of a problem with a 

traditional algorithm that only has to generate one set of round keys as they can be 

pre-calculated and stored, but when new round keys have to be generated for each 

plaintext the cost to processing time is incurred for each plaintext. This can be less of 

a disadvantage if the key schedule uses an initialisation approach to generating round 

keys as less will have to be calculated. In ARIA and Camellia only four intermediate 

keys were needed to generate all the round keys. 

7.4.3 Conclusion 

The majority of modern algorithms have complex enough key schedules to 

produce long enough cycles for perpetually expanding keys to be applied to be a 

practical countermeasure to DPA. The design and structure of the key schedule 

clearly has a vast affect on the performance cost of the modification of the algorithm 

in terms of speed and area relative to the original. As a new set of keys must be 

calculated for each plaintext having to pre-calculate the expanded key would greatly 

reduce the speed of encryption. For a normal algorithm it would have a much lower 

effect on the average throughput as the amount of time spent processing the key will 

be insignificant compared to the time encrypting all of the plaintexts. The algorithms 

described in section 7.4.1 that can generate the round keys in any order do so by using 

a two stage process, with a short initialisation phase that generates values which are 

then combined into the round keys. 

In order to save time it is advantageous to be able to generate keys in parallel 

with the main datapath. Conversely in order to make designs smaller it is 

advantageous to reuse the hardware from the datapath to also generate the round keys. 

Reuse of cryptographic primitives also ensures that round key generation adequately 

satisfies the confusion diffusion requirements. 

7.5 Case Study: ARIA 

Of all of the various key schedules in the algorithms described in section 7.4 

designs that use an initialisation phase to generate a relatively small number of values 

that are then combined in various ways to generate the round keys appear to be best 

suited to being protected from DPA with a modified key schedule. In this section the 
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algorithm ARIA is modified and the DPA resistance and performance of the new 

version is evaluated. 

In order to test the effect the modification had on the speed and area 

requirements and to verify the DPA resistance of the new version of the algorithm 

four implementations were designed. Two versions were the original ARIA, one that 

could only encrypt and one that could both encrypt and decrypt. For each of those a 

counterpart implementation was created that used the new key schedule, which is 

described in detail in section 7.5.1. For simplicity all of the versions only used 128-bit 

keys. The VHDL designs were then synthesised for a Virtex-E 1000 bg560 and the 

area and timing requirements were noted, these are discussed in section 7.5.2. Finally 

using the post-synthesis VHDL and the method described in section 5.3.1.1 simulated 

DPA was performed on the two encryptor designs, the results and analysis of this are 

in section 7.5.3. 

7.5.1 Design of Key Schedule 

The original ARIA key schedule generates four 128-bit intermediate keys. This 

is achieved by taking the master key and putting it through a Feistel cipher made from 

the round function of the main datapath. The details of precisely how to generate the 

four intermediate keys are given in equations (7-6) - (7-9) where R represents the 

round function and k is the key used for the process, it is derived from the binary 

representation of 1/π. MK is the master key that can have a length of 128, 192 or 256 

bits. The right hand 128 bits is used in the generation of w1, if the key is not that long 

then it is padded with 0s. 

 
12700 −= MKw  (7-6) 

 
255128001 ),( −⊕= MKkwRw  (7-7) 

 
0112 ),( wkwRw ⊕=  (7-8) 

 
1223 ),( wkwRw ⊕=  

(7-9) 

 

These round keys are made by XORing two intermediate keys after a rotation 

has been applied to one, as shown in Table 7-5 
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Key  Formation Key Formation Key Formation 

1 w0 ⊕ (w1>>>19) 7 w2 ⊕ (w3>>>31) 13 w0 ⊕ (w1>>>97) 

2 w1 ⊕ (w2>>>19) 8 w3 ⊕ (w0>>>31) 14 w1 ⊕ (w2>>>97) 

3 w2 ⊕ (w3>>>19) 9 w0 ⊕ (w1>>>67) 15 w2 ⊕ (w3>>>97) 

4 w3 ⊕ (w0>>>19) 10 w1 ⊕ (w2>>>67) 16 w3 ⊕ (w0>>>97) 

5 w0 ⊕ (w1>>>31) 11 w2 ⊕ (w3>>>67) 17 w0 ⊕ (w1>>>109) 

6 w1 ⊕ (w2>>>31) 12 w3 ⊕ (w0>>>67)   

Table 7-5 definitions of the round keys for AIRA 

The basic concept of the new algorithm is to continue this process in order to 

generate four new intermediate keys for each plaintext. Assuming that the round 

function can be performing on one clock cycle, calculating the intermediate keys 

would take three clock cycles, also the ARIA specification has three 128-bit constants 

that are used as round keys for the Feistel cipher. For simplicity, in the new scheme 

w3 replaces MK0-127 and w2 replaces MK128-255, by doing this generating a new set of 

keys still only takes three clock cycles and requires the three original 128-bit 

constants. This is shown in equations (7-10) - (7-13). As w0 becomes the previous 

version of w3 some key data is reused, this is not a source of insecurity however as to 

generate the round keys two intermediate keys are combined with rotations so no 

round keys will be repeated. 

 
30 ww =  (7-10) 

 
2001 ),( wkwRw ⊕=  (7-11) 

 
0112 ),( wkwRw ⊕=  (7-12) 

 
1223 ),( wkwRw ⊕=  

(7-13) 
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7.5.2 Efficiency of Implementation 

Four different implementations of ARIA were produced, one that could only 

encrypt, one that could both encrypt and decrypt, and equivalent versions of the 

algorithm when modified to be resistant to DPA. There is very little difference in the 

overall performance of the hardware. All designs use approximately the same number 

of flip flops, this was expected as they all have the same memory requirements, the 

slightly larger increase in the Modified Encryptor is due to signal duplicated by the 

synthesis tool. The area in general does not change significantly, there is an increase 

in the number of slices for the modified algorithm and the designs that can perform 

decryption of between 11% and 16%. 

The clock speed of the design does not change significantly, it actually slightly 

increases for the modified versions. The largest penalty that is incurred from changing 

the algorithm is the number of clock cycles used to process a plaintext. It rises from 

12 to 15, this is because a new set of sub-keys must be generated each time and as it 

uses the same hardware as the main datapath it cannot be calculated concurrently. 

This decreases the throughput by nearly 20%. 

 ARIA Enc. ARIA Enc/Dec Modified Enc. Modified Enc/Dec 

Slices 2,536 2,962 2,825 2,913 

DFFs 1,052 1,057 1,070 1,059 

Cycles / plaintext 12 12 15 15 

Clock speed 20.191 MHz 19.481 MHz 21.116 MHz 19.939 MHz 

Throughput 215.37 MB/s 207.80 MB/s 180.19 MB/s 170.15 MB/s 

Table 7-6 : Details of the area, clock-speed and throughput for the different versions of 

ARIA: with and without decryption and DPA resistance . 

7.5.3 Countermeasure Efficacy 

In order to verify the efficacy of the algorithm modification, first a DPA attack 

was attempted on the standard implementation of ARIA. This was performed using 

the Modelsim simulation method as described in section 5.3.1.1. The attack was 

successful. Figure 7-16 shows the correlation values for each of the 256 key 
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hypotheses for the first byte of the first round key, the value of which was 198 or 

0xC6. In Figure 7-16 a large peak at the correct value is unambiguously identifiable. 

679 traces were required to correctly identify all 16 round key bytes. 

DPA was then attempted on the modified algorithm, the first byte of the first 

round key was again 198. After 4,096 traces the correct value was not identifiable. 

The correlation for all 256 key hypotheses are shown in Figure 7-17, the largest peak 

is at 224 with a value of 0.05314 while the correct value of 198 is close to zero and 

slightly negative. The plot gives no indication that the 198 is the correct value. The 

modified algorithm is not susceptible to DPA. 

 

Figure 7-16: Graph showing the correlation of the 256 key guesses for a 1,000 trace DPA 

attack on a Modelsim simulation of an FPGA running ARIA. 
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Figure 7-17 : Graph showing the correlation of the 256 key guesses for a 1,000 trace DPA 

attack on a Modelsim simulation of an FPGA running ARIA. 

7.5.4 Conclusion 

It can be seen from the results in section 7.5.3 that the modified ARIA key 

schedule provides protection from DPA. The protection also comes at a modest cost, 

for the encryptor there is approximately a 10% increase in area. There is even a slight 

increase in clock speed, although this is more than compensated for by the 25% 

increase in the number of clock cycles required to process a plaintext. It is worth 

noting that the percentage increase in the number of clock cycles would fall as longer 

keys are processed as they require more encryption rounds but the same number of 

key expansion rounds. 

The structure of the key schedule of ARIA is much more suited to being a 

perpetually expanding one than that of AES as the cost in terms of speed and area is 

comparable between encryptors and decryptors. The key property of the key schedule 

that allows this is its ability to generate the round keys in any order, making pre-

calculating the decryption keys unnecessary. While key initialisation occurs before 

encryption and decryption fewer sub-keys are needed than the number of round keys 

so the penalty is both consistent and less. 
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7.6 Improved Modified TDES 

Drawing from the conclusions of examining the key schedules of other modern 

cryptographic algorithms and modifying the key schedule of ARIA to protect it from 

DPA it is possible to vastly improve the modified version of TDES described in 

section 7.3.  That version was significantly larger than the original TDES, using 

nearly six times the number of slices on a FPGA. This was largely due to the 

additional registers that were needed to store two sets of round keys. This was needed 

as the round keys need to be provided in reverse order for decryption and so have to 

be pre-calculated. If only one set of round keys could be stored it would have doubled 

the amount of time taken to decrypt and one DES block is used in decryption mode 

during TDES encryption. Additionally as TDES contains three DES blocks any 

increase in area in a DES block is tripled for TDES.  

Adopting a key schedule design similar to that of ARIA a much smaller 

modified TDES was implemented that still has inherent resistance to DPA. There is a 

greater throughput penalty as the initialisation phase uses the main datapath so it 

cannot be performed in parallel without nearly doubling the amount of hardware 

required. Section 7.6.1 describes the new key schedule in more detail, section 7.6.2 

details the effects of the changes to the algorithm on the speed and area requirements 

and section 7.6.3 shows the new design is also immune to DPA. 

7.6.1 Design of Key Schedule 

The improved modification to the TDES key schedule calculates the round keys 

in two phases, initialisation and generation, each DES block uses 64-bit keys, giving a 

total TDES key length of 192 bits. The initialisation phase is heavily based on the key 

schedule of ARIA, it splits the master key into two 32-bit halves and uses the Feistel 

structure to expand the master key into the four sub-keys. As the initialisation phase 

uses the DES round function it needs round keys. The actual values of these are not 

particularly important, it is important that the chosen values do not insert a backdoor 

into that algorithm that only the designers are aware of, for this reason numbers like 

this are generally chosen to be binary expansions of irrational numbers. In ARIA the 

key initialisation round keys come from the value of 1/π, these is no advantage for 

choosing different ones here. 
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633203100 ),( −− ⊕= MKkMKRw  (7-14) 

 
6332101 ),( −⊕= MKkwRw  (7-15) 

 
0212 ),( wkwRw ⊕=  (7-16) 

 
1323 ),( wkwRw ⊕=  

(7-17) 

Like the ARIA modification, the key generation is extended across multiple 

plaintext encryptions by using sub-keys 3 and 2 to replace the first and second halves 

of the master key respectively, i.e. equations (7-14) and (7-15) are replaced with 

(7-18) and (7-19) respectively. 

 
2030 ),( wkwRw ⊕=  (7-18) 

 
3101 ),( wkwRw ⊕=  

(7-19) 

In DES the size of the Feistel datapath, and hence the length of the sub-keys 

derived from this scheme, is 32 bits, but, due to the expansion function, the size of the 

round keys must be 48 bits. Each round key is split into three 16-bit blocks and these 

are made out of the combination of two halves from two different sub keys. To ensure 

that all sections of the round keys are unique the sub-keys are bit shifted either left or 

right by 5 bits. This is summarised in table Table 7-7, where w signifies the sub-key 

and the a or b determining whether it is the first or second half. 

Key  Formation Key Formation 

1 

0 - 15 w0a ⊕ w1b
 

9 

0 - 15 w0a ⊕ (w1)>>>5b
 

16 - 31 w1a ⊕ w2b 16 - 31 (w1)>>>5a ⊕ (w2)<<<5b 

32 - 47 w2a ⊕ w0b 32 - 47 (w2)<<<5a ⊕ w0b 

2 

0 - 15 w1a ⊕ w3b
 

10 

0 - 15 w1a ⊕ (w3)<<<5b
 

16 - 31 w2a ⊕ w1b 16 - 31 (w2)>>>5a ⊕ w1b 

32 - 47 w3a ⊕ w2b 32 - 47 (w3)<<<5a ⊕ (w2)>>>5b 

3 
0 - 15 w2a ⊕ w3b

 

11 
0 - 15 w2a ⊕ (w3)>>>5b

 

16 - 31 w3a ⊕ w0b 16 - 31 (w3)>>>5a ⊕ (w0)<<<5b 
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Key  Formation Key Formation 

32 - 47 w0a ⊕ w2b 32 - 47 (w0)<<<5a ⊕ w2b 

4 

0 - 15 w3a ⊕ w1b
 

12 

0 - 15 w3a ⊕ (w1)<<<5b
 

16 - 31 w0a ⊕ w3b 16 - 31 (w0)>>>5a ⊕ w3b 

32 - 47 w1a ⊕ w0b 32 - 47 (w1)<<<5a ⊕ (w0)>>>5b 

5 

0 - 15 (w0)>>>5a ⊕ (w1)<<<5b
 

13 

0 - 15 (w0)<<<5a ⊕ w1b
 

16 - 31 (w1)<<<5a ⊕ w2b 16 - 31 w1a ⊕ (w2)>>>5b 

32 - 47 w2a ⊕ (w0)>>>5b 32 - 47 (w2)>>>5a ⊕ (w0)<<<5b 

6 

0 - 15 (w1)>>>5a ⊕ (w3)<<<5b
 

14 

0 - 15 (w1)<<<5a ⊕ (w3)>>>5b
 

16 - 31 (w2)<<<5a ⊕ w1b 16 - 31 w2a ⊕ (w1)<<<5b 

32 - 47 w3a ⊕ (w2)>>>5b 32 - 47 (w3)>>>5a ⊕ w2b 

7 

0 - 15 (w2)>>>5a ⊕ (w3)<<<5b
 

15 

0 - 15 (w2)<<<5a ⊕ w3b
 

16 - 31 (w3)<<<5a ⊕ w0b 16 - 31 w3a ⊕ (w0)>>>5b 

32 - 47 w0a ⊕ (w2)>>>5b 32 - 47 (w0)>>>5a ⊕ (w2)<<<5b 

8 

0 - 15 (w3)>>>5a ⊕ (w1)<<<5b
 

16 

0 - 15 (w3)<<<5a ⊕ (w1)>>>5b
 

16 - 31 (w0)<<<5a ⊕ w3b 16 - 31 w0a ⊕ (w3)<<<5b 

32 - 47 w1a ⊕ (w0)>>>5b 32 - 47 (w1)>>>5a ⊕ w0b 

Table 7-7: The combination of intermediate keys that makes up the round keys for the second 

version of the modified TDES. 

7.6.2 Efficiency of Implementation 

The area requirements, clock-speeds and throughputs of the three versions of 

TDES are compared in Table 7-8. The new modified version of TDES is much 

smaller and has a significantly faster clock-speed than the first modified version, 

although the extra clock cycles required to initialise the key mean the throughput is 

lower. Compared to the original TDES the modified algorithm uses 75% more area 

and the throughput falls by 15%. These penalties are still lower than those incurred by 
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the majority of hardware countermeasures and it is important to note that while the 

increase in area is significant TDES, using the DES key schedule, has one of the 

simplest key schedules of all algorithms, it consisting merely of a selection of bits 

from the master key. All other algorithms would have a key schedule that requires 

more hardware and so there would be a smaller relative penalty when it was replaced. 

 TDES Modified TDES 1 Modified TDES 2 

Slices 1,201 6,940 2,101 

DFFs 1,215 6,323  1,680 

Clock Speed (MHz) 49.478 43.537 50.769  

Cycles / Plaintext 19 19 23 

Throughput (MB/s) 166.66 MB/s 146.65 MB/s 141.27 MB/s 

Table 7-8: The area requirements, clock-speeds and throughputs of the three different 

versions of TDES. 

7.6.3 Countermeasure Efficacy 

 

Figure 7-18 : The correlation for all 64 possible key values of the first 6-bit word of the first 

round key for the second version of the modified TDES. 
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The new version of the modifications to TDES also protects the algorithm from 

DPA. In order to show this DPA was attempted using the Modelsim simulation 

method described in section 5.3.1.1. The first 6-bit word of the first round key was 20, 

or 0x14, it was not revealed after 4,096 traces. Figure 7-18 shows the correlation for 

all 64 of the key hypotheses after 4,096 traces, the largest peak is at 18 with a value of 

0.04824 and the correct key value is very close to zero and slightly negative at -

0.00856. There is no realistic way an attacker could discern the correct value of the 

key word from this correlation data. 

7.6.4 Conclusion 

As expected, as it is a combination of the countermeasures proposed in sections 

7.2.3 and 7.5, this modification protects TDES from DPA. The design is much smaller 

than the original TDES modification in section 7.3, only being 75% bigger rather than 

nearly 500% bigger. Out of the three designs it does have the lowest throughput, even 

though the clock speed is the highest, this is because it required an additional four 

clock cycles to initialise the key. If a faster design is required it would be possible to 

remove the increase in clock cycles by adding an additional DES datapath that would 

initialise the other three DES blocks’ keys while they processed the input. A single 

DES datapath is approximately 400 slices as the original TDES is 1,201, also an 

additional 768 bits of memory would be required to store the next set of sub-keys. 

7.7 Conclusion 

Hardware countermeasures to DPA come with a high cost in terms of area 

requirements and the throughput of cryptographic designs, sometimes increasing them 

by a factor of four. Additionally, as discussed in section 4.3.8, they do not offer 

complete protection, only requiring an attacker to collect more traces before 

successfully performing DPA. A much better solution is to have algorithms that are 

already immune to DPA so no costly countermeasures are needed. This chapter 

proposed three different alterations to AES to protect it from DPA. The only one that 

was effective was the perpetually expanding key schedule which generated a new set 

of round keys for each plaintext. This technique is effective as it removes the main 

strength of DPA which is the ability to exploit power consumption data from several 

encryptions based on the knowledge that the round keys are always the same. 
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Other than its effectiveness, a big advantage of this countermeasure is the low 

overhead, when it was applied to AES the throughput only fell by 28% and the size 

only increase by 5%. The modification can be easily applied to most modern 

algorithms, and even when the key schedule is unsuitable, such as TDES, it can 

simply be replaced before the technique is applied. If this is done it is important to 

select a suitable key schedule structure to replace the original with. The key schedule 

of ARIA has properties that work well with this technique, and conform to the 

definition of a good key schedule given by May et al. in [30], as, after initialisation, 

the round keys can be generated in any order, making the overhead consistent 

between encryptors and decryptors. Modifying existing algorithms is not the most 

significant use of this technique, rather, the next generation of algorithms could 

eliminate DPA entirely as a potential problem. 



 

 

Chapter 8 Summary 

The current state of cryptography is that there are no published mathematical 

attacks that can break the full versions of modern algorithms, and with 3.4 * 1038 

different values for even 128-bit keys it is not feasible to use brute force to get a key 

either. With the development of side channel attacks in 1996 [19] another avenue for 

breaking encryption was opened. Side channel attacks exploit the fact that encryption 

is performed by a physical device which is subject to other physical processes, and by 

monitoring those “side channels” it is possible to discern information about the data 

that is being processed by the device. This thesis is mostly concerned with power 

analysis, where power consumption is the channel that leaks information about the 

internal state of the device, specifically, Differential Power Analysis (DPA). DPA 

performs a statistical test on a set of power consumption data from several 

encryptions and predictions about the contents of registers, based on the plaintext and 

a guess about the value of a byte of the key, in order to determine which of the key 

value hypotheses is the most likely. 

DPA requires calculating the correlation between the predictions of register 

transitions inside the device and the measured power consumption of the device. 

There are a number of sources of random variability in the result of this calculation. 

Firstly there is noise in the circuit, from the power consumption of other parts of the 

circuit and random thermal noise, and the measurements will also contain errors. All 

of these contribute to the noise in the SNR and will decrease the correlation between 

the prediction and the power consumption. The other source of variation in the results 

is due to the fact that any calculation of the correlation using a series of samples, the 

sample correlation, is only an estimation of the true population correlation. The 

difference between the two values is the sampling error. The variance in the sample 



Chapter 8 Summary         188 

 

correlation is controlled by the number of samples, in this case the number of power 

traces available to an attacker. 

The results of a DPA attack on a single key byte will be made up of 256 

correlations, one for the correct key and 255 for the incorrect ones. The population 

correlation for the predictions based on the correct key guess will be directly related 

to the SNR. The population correlation of the incorrect values will be the correlation 

between their predictions and the predictions from the correct guess (controlled by the 

structure of the s-box) multiplied by the population correlation for the correct 

predictions; this means the correct guess will always have the highest population 

correlation. That does not mean that DPA will always be successful. Superimposed on 

the population correlations is the sampling error. This is a random variable with a 

variance controlled by the number of samples. If there is a low SNR then the 

difference between the correct and incorrect correlation will be small (in terms of 

absolute value rather than ratio), and easily overwhelmed if not enough samples are 

taken to ensure a small sampling error. 

Even though all the factors in the shape of a set of DPA results are controlled by 

two variables, the SNR and the number of traces, the random element added due to 

the sampling error means that there is a stochastic element to the results and hence it 

is never definite that a particular attack will give the correct value. A method to 

calculate the probability of success from the SNR and number of traces was derived in 

Chapter 6 of this thesis. An attacker may like to know how many traces would be 

required to ensure a certain probability of success for a given system with a known 

SNR. A designer may like to know the value of the SNR that will ensure a particular 

number of traces are required to give a chosen probability of success. Methods for 

determining both of these have also been developed in this thesis. 

As is the nature of cryptography, whenever a new cryptanalysis technique is 

developed cryptographers work to develop ways to protect against it. There have been 

several ideas for modifications to chip designs that will help combat DPA, from 

balancing the logic so there is always the same number of transitions [82], to masking 

the intermediate variables in secret shares [8, 23, 88], and using Dynamic Voltage and 

Frequency Scaling (DVFS) to stop the attacker sampling the power consumption at 

the correct time [11]. None of them are completely effective. There are ways of 

defeating some of the countermeasures, such as targeting logic gates with DPA [93], 
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or using High-Order DPA (HODPA) [22]. In the cases of DVFS and balanced logic, 

the countermeasures frustrate attempts at DPA by reducing the SNR and requiring an 

attacker to record more power data to give themselves a reasonable chance of success 

[5, 95]. Apart from not offering complete protection from DPA, the other 

disadvantage of the proposed countermeasures is that they often come with a high 

cost, significantly increasing the area of the design or decreasing the data throughput 

sometimes by up to a factor of 4 [5, 23]. 

All these countermeasures are modifications to the hardware implementations of 

algorithms. A better solution would be to design algorithms in a way that defeats 

DPA. In Chapter 7 the DPA mitigation potential of several alterations to the Advanced 

Encryption Standard (AES) algorithm are investigated. The most successful one 

protects the algorithm by using the key schedule to generate a new set of round keys 

for each plaintext rather than reuse the same set each time. In DPA the attacker 

combines the changing, but known, plaintext with a guess about one byte of the round 

key, which is constant, so the validity of the guess is the same for each plaintext. This 

is no longer true, and while it would still be possible to correlate predictions about the 

contents of registers with power consumption, with the correct set of predictions 

giving the highest value, it becomes infeasible as a way to discover the key. There are 

only two ways an attacker could be ensured to have a set of predictions that contains 

the correct answer. Firstly, by trying all possibly combinations of different values of a 

round key byte for each plaintext, this gives 256number of plaintexts, which quickly 

becomes impossibly large. Secondly, as the influence of the value of a particular byte 

of the master key is diffused through the entire round key more with each successive 

key schedule operation, accurate predictions about the value of a given round key byte 

can only be made when the entire master key is known. An attacker could make a 

guess at the entire master key and they would still be able to use DPA to determine 

which of their guesses was correct, but DPA no longer offers any advantage over 

brute force. 

Other than offering full protection from DPA the other main advantage of an 

algorithmic approach to DPA countermeasures is efficiency of implementation. When 

AES was modified the size of the implementation of an encryptor increased by 5% 

and the speed fell by 17%. For a design that could also decrypt the area increased by 

28% and the speed fell by 15%. Some key schedules are not suitable for direct 
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modification, the key schedule for DES (and hence TDES) generates the different 

round keys by selecting different bits from the master key in different arrangements 

so it can only produce a limited number from a given key schedule. Even the AES key 

schedule has some disadvantages with the design, it can only produce round keys 

forwards, but decryption needs the round keys in reverse order. In order to perform 

decryption an implementation needs to either interleave round key generation with 

decryption, which would reduce the throughput of the design, or calculate and store 

the next set of round keys while one set is being used, which would require more area. 

As TDES uses three DES key schedules they all had to be replaced with a more 

complex one and TDES always needs to be able to perform decryption. This meant 

the modifications came at a significant penalty, especially in terms of area which 

increased by 230%. Throughput fell by 12%. 

After examining a series of modern algorithms a set of design principles for 

efficient implementation of a modified key schedule was identified. The main 

disadvantage with the AES key schedule in this context is its inability to generate the 

round keys in any order. AES decryption always needed the round keys pre-

calculated, but in the original algorithm they were only calculated once so it was not a 

large overhead. Rather than using an iterative approach to generating round keys it 

would be better to take the master key and apply a series of transforms to it to 

generate a small number of values and combine these in different ways to get the 

round keys. This would save both time and area as fewer calculations are required to 

get the smaller number of values and they require less memory to store. If the key 

schedules reuse the cryptographic primitives that make up the algorithm then this 

reduces the amount of hardware that is needed and it ensures good levels of confusion 

and diffusion, important measures of the strength of a cipher, in the expanded key. 

The efficiency of key schedules designed with the rules was confirmed by 

implementing a modified version of ARIA and an updated modified TDES. The DPA 

protection cost no extra area for ARIA and 75% extra for TDES and reduced the 

speed of ARIA by 18% and TDES by 16%. 

The ability of DPA to extract information from the power consumption of an 

electronic device does not have solely cryptanalytic applications. Using DPA as a 

means for detecting a particular pattern of register transitions can be used to detect a 

“watermark” in the power consumption, proving the device contains a particular piece 
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of intellectual property. This can be achieved by adding a block of circuitry whose 

sole purpose is to produce a known set of register transitions. There are slight 

differences between this technique and cryptographic DPA. When trying to break 

encryption there are a set of correlations, one of them definitely corresponds to the 

correct key and it is assumed to be the one with the highest value. With watermark 

detecting there is only one value if it above a threshold then the watermark is likely to 

be there. As it is unlikely that it would be possible to determine the SNR of the 

watermark without first knowing that it is present, it is not possible to know what 

value for the correlation to expect, making it difficult to set the threshold. Fortunately, 

there is another important difference that helps, with cryptographic DPA the 

correlations for the incorrect key guesses were non-zero, if the watermark is not there 

then the correlation will be between two completely unrelated sets of numbers so the 

population correlation will be zero. The probability that the measured value is above a 

particular value, if the watermark is not there, is based on the sampling error, and 

hence the number of power traces that are taken. In section 6.5 of this thesis a 

statistical test is described that is able to determine whether it is reasonable to assume 

that a watermark is present. In situations where the SNR of the potential watermark is 

known, a method of calculating the number of traces required to get a given 

probability of successfully detecting it is also derived. 

This thesis presents a novel approach to DPA countermeasures that are both 

efficient to implement in hardware and prevent rather than impede the attack. Also a 

statistical model of DPA is derived and used to find a method to calculate the 

probability that a particular attack will be successful. From this it is also possible to 

calculate the SNR or number of traces that would be required to ensure a given 

probability of success, useful for the designers of either crypto-systems or DPA 

attacks. A benign use for DPA was also explored, and a method for detecting a 

watermark for protecting intellectual property was derived. 



 

 

Chapter 9 Conclusion and 

Future Work 

9.1 Conclusion 

DPA is a statistical attack, by understanding the statistics behinds how the 

results are generated knowledge about how they are affected by changes in the SNR 

and number of traces used in the attack can be gained. This is important as it allows 

the analysis of potential countermeasures and attacks before they are implemented. In 

this thesis a statistical model of the DPA attack was created. From the model a 

method for calculating the probability of successfully retrieving a single byte of a key 

based on the SNR of the system and the number of traces. Using this it is possible to 

assess whether an attack is likely to succeed before performing it. The method can 

also be modified to calculate the number of traces required to ensure a given 

probability of success for an attack on a particular system, or the amount of noise 

required to ensure an attacker must take a minimum number of traces in order for 

them to guarantee a given probability of success. These can be used as tools for either 

an attacker to plan his attack in advance (assuming he has knowledge of the SNR), or 

for the designer of a cryptographic device to guarantee a particular level of security 

against the attack.  

There are two problems with previous attempts at adding DPA countermeasures 

to cryptographic hardware, they are very expensive, reducing the performance and 

increasing the size of designs, and that, generally due to inevitable imperfections in 

their implementation, they can never offer complete protection from DPA, only 

reduce the correlation between the data being processed and the power consumption. 
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As can be shown from the statistical model of DPA, this reduction can never 

completely stop DPA but only make it more inconvenient, requiring an attacker to 

record more power traces. The main innovation in the countermeasure developed 

during the course of this research was where to put it, instead of adding the 

countermeasure to the completed implementation of the hardware it was added to the 

algorithm itself. This has two potential advantages, the algorithm can still be 

implemented in an efficient way, and by using a suitable technique it will offer 

complete protection from DPA. Clearly there is no algorithmic way to divorce the 

power consumption from the data being processed, but by attacking the assumption 

on which DPA is based a technique to prevent it can be found. 

To retrieve a key using DPA the correlation is calculated and used as a test to 

determine which hypothesis about the value of a single byte of the key is correct. This 

is only possible because multiple samples are available, all with the same value for a 

given byte of a round key. If this is rendered untrue then the entire attack falls apart. 

This can be achieved by creating a key schedule that constantly changes the value of 

the round key. The technique was used to modify AES, TDES and ARIA. It always 

offered protection from the attack and during the course of adapting the technique for 

these algorithms rules for ensuring the key schedules could be implemented 

efficiently were developed. Thus it has been demonstrated that algorithmic 

countermeasures to DPA can completely remove the threat of DPA which still 

allowing efficient implementations of the algorithm. 

The uncanny ability of DPA to divine the internal state of a device can be put to 

other, more benign, tasks. This can be seen in the development of a method for adding 

a watermark to intellectual property by including hardware that will produce a known 

set of register transitions, and hence power consumption, that can then be detected 

using a DPA-like technique. 

9.2 Summary of Contributions  

This work has resulted in a conference paper and a journal paper (under 

consideration). The specific contributions are outlined below. 

• A novel, algorithmic based method for defeating DPA was devised. 



Chapter 9 Conclusion and Future Work      194 

 

• Identification of the design principles of key schedules for efficient 

implementation of algorithms that use the new technique. 

• A statistical model of the DPA attack was derived. 

• A method for calculating the probability that an attack will be successful given 

the number of traces that were recorded and the SNR of the system. 

• A technique for using the above method to calculate the SNR or the number of 

traces required to give a particular probability of success. 

• A method for determining if it is reasonable to believe that a specific 

watermark is present in the power consumption of a design. 

• A method for calculating the number of traces required to get a given 

probability of being able to detect the watermark present in the power 

consumption do a design given the SNR of the watermark. 

9.3 Future Work 

9.3.1 A method for calculating the probability that a set of results from a DPA 

attack gives the correct value. 

DPA does not always give the correct result. When the attack is being 

performed in the lab this is of little practical concern, generally the researcher has set 

the value for the key so already knows the value and can tell if the value is correct or 

not. For an actual attacker this is not true and if the highest peak is small it is not 

always clear whether that is the correct result. The accuracy of a DPA attack can be 

judged approximately by eye, but only with any accuracy when the cases are extreme, 

either with one large, obvious peak or when there are several peaks of approximately 

the same height. If DPA were ever to be used in a real world situation it would need a 

formal method to determine the validity of results. 

9.3.2 A method for estimating the SNR of a system using only the results from 

a relatively small set of DPA results 

Both the population correlation of the correct key guess (which the highest peak 

is in theory an estimate of) and the standard deviation of the results are related to the 
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SNR of the system. The SNR is a very useful piece of information to have as it 

enables an attacker to determine how many traces would be required to have a good 

chance of cracking the system, and it would help in evaluating the correctness of any 

results. In theory it is possible to take either the highest peak in the DPA or the 

standard deviation of the results and estimate a value for the SNR. The population 

correlation can be converted into the SNR using equation (6-4). The standard 

deviation of the DPA results is given by the following formula: 

 22
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=

SNR

Traces
DPAstd  

(9-1) 

The value 9.6 was determined empirically, Figure 9-1 shows a graph of the 

standard deviation of DPA results from a Matlab simulation vs. SNR, and the 

modelled relationship using the above formula. 

 

Figure 9-1 : The standard deviation of DPA results vs SNR for the results from Matlab 

simulations and a model of the relationship. 

The problem is that the estimate will only be accurate if the number of traces is 

fairly large compared to the SNR, and in this case knowing the value of the SNR is 

less useful as the attacker generally has a clear, unambiguous peak that generally 

indicates a correct result. Finding a way of accurately determining the SNR from the 
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results when there are not enough traces to give an accurate key value would enable 

an attacker to better plan and evaluate his attack. 

9.3.3 Improving the accuracy of DPA by tuning the power consumption model 

to a particular device. 

If there is any non-linear behaviour in the power consumption model, i.e. if not 

all bits make the same contribution to the power consumption, or a 0 to 1 transition 

consumes a different amount of power to a 1 to 0 transition, then the population 

correlation of the correct guess could be reduced making it more difficult to perform 

DPA. If this is the case then it might be possible to improve the accuracy of DPA on a 

particular device by measuring this and then compensating for it in the power 

consumption model. 
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