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Abstract 
Previous work from our laboratory has demonstrated that rats display a preference for directional 

responding over place navigation in a wide range of procedural variants of the Morris water task. A 

preference for place navigation has only been observed when the pool is reduced as a cue by filling it with 

water. Studies using dry-land mazes suggest that rats place navigate early in training and later switch to 

other forms of responding (e.g., motor). The present study evaluated whether rats switch from place 

navigation to directional responding in the “full pool” variant of the water task. Rats were given 12, 24, or 

36 hidden platform training trials. Probe trials with the pool repositioned in the room revealed a 

preference for place navigation in rats given 12 trials, an equal division of response preferences in rats 

given 24 trials, and a preference for directional responding in rats given 36 trials. These results indicate 

that the early preference for place navigation in the full pool water task is transient and yields to a 

preference for directional responding with continued training. 

[KEYWORDS: spatial learning, cognitive mapping, hippocampus, water maze] 



Place and Direction 3 

Evidence for a shift from place navigation to directional 
responding in one variant of the Morris water task 

 
Introduction 

 The basic behavioral and psychological processes involved in navigation have been extensively 

studied and debated for many years. Despite considerable disagreement regarding the precise nature of 

the processes involved in spatial navigation, most researchers agree that navigation from one place to 

another can be achieved by a variety of responses depending upon the available interoceptive (e.g., 

proprioceptive and vestibular) and exteroceptive (e.g., visual cues) sources of control (O’Keefe & Nadel, 

1978; Restle, 1957; Sutherland & Hamilton, 2004; Tolman, 1948; Watson, 1907). If several distinct 

sources of control and associated responses can support navigation to a goal location, they could, in 

principle, operate simultaneously and in parallel. Although the types of navigation that could be effective 

in a particular situation are generally not mutually exclusive, the possibility that one form of navigation 

predominates other equally effective forms of navigation has been confirmed by a number of studies 

(Chamizo, Aznar-Casanova, & Artigas, 2003; Chamizo, Sterio, & Mackintosh, 1985; Hamilton, 

Rosenfelt, & Whishaw, 2004; Redhead, Roberts, Good, & Pearce, 1997; Roberts & Pearce, 1999). Of 

particular importance for the present study are situations in which the predominant form of navigation 

changes as a function of the amount of training. For example, Packard and McGaugh (1996) found that 

rats navigated to the reinforced arm of a T-maze on the basis of its spatial location relative to extramaze 

visual cues early during training, but later switched to performing a simple motor response even though 

both responses would result in reinforcement with equal success at any point in training (see Chang and 

Gold (2003) for a similar result). This result is consistent with earlier data reported by Tolman, Ritchie, 

and Kalish (1946) who utilized two separate release arms in a T-maze and systematically manipulated the 

relationship between the release arm and the reinforced arm. Rats that were reinforced for navigating to 

the spatial location of reinforcement (requiring different motor responses from trial to trial) quickly 

learned the appropriate response, whereas rats that were reinforced for making a simple motor response 

(requiring navigation to different locations) learned much more slowly. Collectively, these observations 
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have been taken as evidence that navigation based on spatial cognitive maps is established more rapidly 

than simple motor responses, and that the former yields to the latter with continued training. 

 The conclusions reached by Tolman et al. (1946) and Packard and McGaugh (1996) have served 

as a point of departure for many subsequent studies, however, whether the results reflect a preference for 

true place navigation early in training has been questioned. Blodgett, McCutchan, and Mathews (1949) 

noted that the apparent place responding reported by Tolman et al. (1946) could also be achieved by 

navigating in the direction of reinforcement within the room reference frame. By rotating and/or 

translating the maze on each training trial Blodgett et al. (1949) were able to make consistent motor 

responding, place responding, and directional responding mutually exclusive, with only one response 

form resulting in reinforcement. Simple motor responses and directional responses were learned rather 

easily while place responses were acquired with great difficulty. Later, Skinner et al. (2003) replicated the 

findings of Blodgett et al. (1949) in the T-maze and in an open field and concluded that the results of 

Packard and McGaugh (1996) likely reflect an early preference for directional responding rather than a 

preference for true place navigation.  

 Following the initial work of Weisend et al. (1995), Hamilton and colleagues (Akers, Candelaria, 

& Hamilton, 2007; Hamilton, Akers, Weisend, & Sutherland, 2007; Hamilton et al., 2008) trained rats to 

navigate to an escape platform in a fixed location in the Morris water task (Morris, 1981) after which the 

pool was repositioned in the room such that directional responding and true place navigation would result 

in navigation to distinct locations in the pool. Directional responding predominated true place navigation 

in all situations where the pool wall was a prominent feature of the environment, as is the case in the 

water task as it is typically used. Importantly, simple motor responses or route learning are not effective 

in the standard water task because multiple release points that vary in distance and direction from the 

platform are utilized. Based on the general implications of Packard and McGaugh’s observations 

concerning a shift from place navigation to other forms of navigation, Hamilton et al. (Hamilton et al., 

2007, 2008) evaluated whether a preference for true place navigation was subsequently replaced by  a 

preference for directional responding in the water task. The basic preference for directional responding 
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was observed after minimal active swim training (8 trials), extensive training (240 trials), and after a 

single 30 second passive platform placement trial, thus, there was little to suggest that rats switch from 

place navigation to directional responding as a function of the amount of training. A preference for place 

navigation over directional responding was observed when the pool wall was substantially reduced as a 

source of control by filling it nearly to the top with opaque water (Hamilton et al., 2008), however, this 

preference was only evaluated after 12-24 training trials. Given that asymptotic levels of performance 

were reached in 12-20 trials this observation can reasonably be considered to reflect a preference for place 

navigation early during training. Whether this preference yields to a preference for directional responding 

later in training is addressed by the present study. Rats were given varying amounts of training with the 

pool wall virtually eliminated after which the pool was repositioned to evaluate the relative preference for 

place navigation or directional responding. Given that the T-maze studies of Packard and McGaugh 

(1996) and Chang and Gold (2003) did not rule out an early preference for directional responding, the 

present study could provide the first unambiguous demonstration of a switch from true place navigation to 

another form of navigation with continued training. If such a switch is not observed then the generality of 

the results provided by Packard and McGaugh (1996) can be questioned, and the utility of the procedures 

utilized by Hamilton et al. (2008) for establishing a robust and persistent preference for true place 

navigation in the water task will be more firmly substantiated. 

Method 

 Subjects. Subjects were 32 naïve male Long-Evans rats (Charles River Laboratories, Wilmington, 

MA) that were approximately 90 days old at the beginning of the experiment. All rats were pair-housed in 

plastic cages on a 12 h light:dark cycle with food and water available ad libitum. Behavioral testing was 

performed during the light phase. Procedures for the studies reported here were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of New Mexico. 

 Apparatus. The pool and room were the same as those used by Hamilton et al. (2008) in their 

Experiment 6. The testing room contained a number of distal visual cues (e.g., posters, a chalk board, the 

experimenter) and the room walls formed a complex geometry (see Figure 1). The circular pool (1.5 m 
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diameter, 46 cm high) was placed on a wooden frame (48 cm tall) that rested on appliance rollers so that 

the pool could be moved. The pool was filled to a depth of 42cm with cool water (22Co) that was made 

opaque by a small amount of non-toxic, white tempura paint, leaving only 4 cm of the pool wall visible. 

To prevent escape from the pool, four sections of clear Plexiglas (3 mm thick, 16 cm high, 118 cm in 

length) were mounted to the inner surface of the pool wall such that the Plexiglas closely conformed to 

the circular geometry of the pool. The joints where the Plexiglas sections met were identical and equally 

spaced around the pool so as not to provide any information about the precise location of the platform. 

The Plexiglas sections extended 17 cm above the surface of the water and were, therefore, visible, 

however, they were transparent and did not obscure the distal visual environment. The top of the platform 

was 16 cm X 16 cm and was approximately 1 cm below the water’s surface. Digital video of each trial 

was captured via an overhead camera and transferred to a Linux workstation for tracking and analysis. 

 Design and Procedure. Rats were randomly assigned in equal numbers (n = 8) to one of four 

groups: No Shift, Shift-12, Shift-24, or Shift-36. Rats in the No Shift and Shift-12 groups were given 12 

hidden platform training trials (3 blocks of 4 trials), Shift-24 rats were given 24 trials (6 blocks over 2 

days), and Shift-36 rats were given 36 trials (9 blocks over 3 days). The selection of 12 trials as the 

minimum amount of training was based on prior work showing that rats do not begin to take direct 

trajectories to the platform until 10-12 training trials have been given (Hamilton et al., 2008). Two pool 

positions separated by 75 cm were used were used during training. Half the rats from each group were 

trained with the pool at position 1 (see Figure 1) and the other half were trained with the pool at position 

2. The pool remained in the same position throughout training and the platform was always in the same 

location in the room (location B, see Figure 1) regardless of the pool position. On each trial rats were 

released at one of four release points (NW,SW,SE,NE) around the perimeter of the pool. The release 

points were selected pseudorandomly without replacement so that each release point was used once 

during each block of four trials. Latency to navigate to the platform served as the dependent measure. 

Rats were removed from the escape platform after 5-10 s and returned to a holding cage for an inter-trial 

interval of approximately 3-5 min.  In cases where a rat did not navigate to the platform within 60 s it was 
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retrieved by the experimenter and placed directly on the platform for 5-10 s before being returned to its 

cage. On each day rats were given 3 blocks of 4 trials (12 trials total), thus, the number of days over 

which the rats were trained differed among the Shift groups (see above). We note that only one level of 

training (12 trials) was used for No Shift animals. This decision was based on several factors: 1) Pilot 

work revealed that 12 trials was sufficient to achieve asymptotic levels of performance (also see the 

training results below), 2) 12 training trials is sufficient to achieve good performance on probe trials when 

the pool remains in the same location used during training, 3) the basic preference for the absolute 

location on probe trials when the pool remains in the same location as used during training does not 

change as function of training trials (Hamilton et al., 2008), 4) 12 trials represents the least amount of 

training used for any of the Shift groups, and 5) the performance of No Shift animals after 12 trials should 

provide the most conservative estimate of location preference for use in statistical comparisons with the 

performance of all Shift rats. 

 For the critical test trial the platform was removed from the pool and rats were allowed to swim 

for 30 s. All rats were released from one of two points (N or S) selected pseudorandomly with the 

constraint that each release point was used twice for each combination of pool position and group. The 

pool was positioned at the same location used during training for rats in the No Shift group. For rats in the 

Shift groups (Shift-12, Shift-24, and Shift-36) the pool was relocated to the position that was not used 

during training (i.e., if the pool was at position 1 during training it was moved to position 2, and vice 

versa). Four dependent measures were taken for each of two critical locations that were the same size as 

the platform surface. One critical location was the absolute location of the platform in the room and the 

other was an equal distance from the pool wall in the diametrically opposite quadrant. When the pool is 

repositioned, the opposite location corresponds to the same relative location of the platform in the pool 

during training, and is the location to which a directional response would be expected. If the pool is not 

repositioned, the opposite location serves as a comparison location which has the same spatial 

relationship to the absolute location as does the relative location for conditions in which the pool is 

repositioned. For example, if the pool was in position one and the platform was in location B (see Figure 
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1) during training, and the pool remained in position one for the probe trial, the opposite location would 

correspond to location A. If the pool was repositioned (to position 2) for the probe then location B 

corresponds to the absolute location and location C corresponds to the relative/opposite location. The 

number of times each critical location was crossed and the average distance from each location during the 

probe trial were measured. The latter measure was adapted from the goal proximity measure described by 

Gallagher, Burwell, and Burchinal (1993). The latency to enter and the amount of time spent in a circular 

region (66 cm in diameter) centered around each of the critical locations were also measured (Akers et al., 

2007; Hamilton et al., 2007, 2008). 

Results 

All statistical tests reported below were significant at p < .05 unless otherwise noted. 

 Hidden Platform Training. Latencies for each rat were averaged for each block of 4 training 

trials. Rats in all four groups learned to take direct trajectories to the hidden platform in about 10-12 trials. 

Because the number of training trials varied for each group, separate repeated measures ANOVAs were 

conducted for each group with trial block as a single factor. There were significant main effects of trial 

block for all four groups, all ps < .001, that were attributable to decreases in escape latency across trial 

blocks. Mean escape latencies during the first trial block ranged from 23.28 s (Shift-24) to 30.97 s (No 

Shift), however, the group effect for block 1 was not significant, F(3, 28) = 1, p = .41. Mean latencies 

during the final trial block were comparable for the four groups, ranging from 4.35 s (Shift-36) to 6.25 s 

(Shift-12), and did not significantly differ, F(3, 28) = 1.31, p = .29. Hamilton et al. (2008) found that 

learning in the full pool task required three blocks of training in order to reach asymptotic levels of 

performance compared to the two blocks of training needed in the standard water task. Consistent with 

this observation, rats in the present experiment took, on average, 27.04 s to locate the platform during 

block 1, 15.23 s to locate the platform in block 2, and 6.73 s to locate the platform in block 3. A repeated 

measures ANOVA on these data revealed a significant effect of trial block, F(2, 62) = 44.36. Latencies 

for block 2 were significantly lower than latencies for block 1, and latencies for block 3 were significantly 

lower than latencies for block 2, both ps < .001. Latencies for block 3 did not significantly differ from 
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those of any subsequent blocks (for the Shift-24 and Shift-36 groups), all ps > .09. 

 No Platform Probe Trial. Data from the no-platform probe trial are shown in Figure 2. Rats in the 

No Shift group displayed a clear preference for the absolute location. For the Shift groups, the data 

suggest an initial, weak preference for the absolute location that systematically shifted to preference for 

the relative location with additional training. Specifically, a weak preference for the absolute location was 

observed the Shift-12 group, no systematic preference for either location was observed for the Shift-24 

group, and a clear preference for the relative location was observed for the Shift-36 group. The following 

sets of analyses were undertaken to evaluate 1) the preference for the two critical regions within each 

group and 2) whether these preferences changed as a function of the amount of training. 

 All 8 rats in the No Shift group showed a preference for the absolute location over the opposite 

location as was evident in all of the probe trial swim paths (a representative swim path is shown in 

Supplementary Figure 1). Statistical comparisons of the absolute and opposite location measures (see 

Figure 2) confirmed these impressions; No Shift rats entered the absolute region faster than the opposite 

location, F(1, 7) = 9.15, spent more time in the absolute region, F(1, 7) = 18.22, crossed the absolute 

location more frequently than the opposite location, F(1, 7) = 16.61, and navigated closer to the absolute 

location, F(1, 7) = 9.07. These data confirm that 12 training trials is sufficient to yield a clear preference 

for the trained platform location when the pool is not a prominent feature of the environment. 

 As a group, Shift-12 rats generally showed a preference for the absolute location over the relative 

location (see Figure 2). A demonstration of preference at the group level is hindered by the fact that one 

rat showed a clear preference for the relative location, while the other seven rats showed a preference for 

the absolute location that was much weaker in magnitude than the location preferences we have 

previously observed when the pool wall is a prominent cue (see Hamilton et al., 2007 and Hamilton et al., 

2008). The swim path for the single rat that preferred the relative location and a representative swim path 

for a rat that preferred the absolute location are shown in Supplementary Figure 1. Although the 

numerical differences among the mean dependent measures for each location largely support the 

conclusion that Shift-12 rats preferred the absolute over the relative location, only the effect for time in 



Place and Direction 10 

region (absolute > relative) approached significance, F(1, 7) = 5.01, p = .06, all other ps > .14. A separate 

analysis using only data from the seven rats that displayed a preference for the absolute location yielded a 

significant location effect in the expected direction for number of crosses (absolute > relative), F(1, 6) = 

6.35. The effect for time in region approached significance, F(1, 6) = 5.28, p = .06, however, the effects 

for the latency and proximity measures still failed to reach significance, ps were .08 and .78, respectively. 

Due to the importance of establishing the basic preferences for Shift-12 rats, Table 1 presents the means 

for each dependent measure broken down based on preference for the absolute versus relative location.  

 As a group, Shift-24 rats showed no clear preference for either the absolute or relative location 

(see Figure 2) and there were no significant location effects for any of the dependent measures, all ps > 

.59. Inspection of individual probe trial swim paths, however, indicates that individual rats displayed a 

clear location preference. Four rats displayed a preference for the absolute location and the other four rats 

displayed a preference for the relative location (representative swim paths are shown in Supplementary 

Figure 1). Location means for each dependent measure broken down by location preference are shown in 

Table 1. Although the rather small number of rats displaying each preference  makes it difficult to detect 

statistically significant location effects within groupings based on preference, we note that rats showing a 

preference for the absolute location navigated significantly closer to the absolute location, F(1, 3) = 15.71 

and rats showing a preference for the relative location entered the relative region significantly faster than 

the absolute region, F(1, 3) = 27.82. None of the other location effects were significant for either 

grouping, all ps > .12. Nonetheless, it is important to note that the numerical differences between 

measures for the two critical locations within each grouping are quite similar to the numerical differences 

for clear location preferences we have observed in our previous experiments.  

 Shift-36 rats displayed a clear preference for the relative location over the absolute location (see 

Figure 2) as was apparent in the swim paths of all rats in this group (a representative swim path is shown 

in Supplementary Figure 1). Consistent with this evaluation, significant  location effects were observed 

for all dependent measures; Shift-36 rats entered the relative region faster than the absolute region, F(1, 7) 

= 11.87, spent more time in the relative region, F(1, 7) = 6.34, crossed the relative location more 
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frequently, F(1, 7) = 6.52, and navigated closer to the relative location, F(1, 7) = 13.59. 

 The following analyses were conducted to address whether the location effects (absolute vs. 

relative/opposite) differed for the No Shift and Shift groups. It was not possible to conduct an analysis 

with number of training trials and group (Shift vs. No Shift) as factors because these factors were not 

completely crossed. Therefore, we conducted three separate two-way analyses of variance (ANOVAs) 

with location as a within-subjects factor. Each analysis included the No Shift group and one of the Shift 

groups with group representing a single between-subjects factor for each analysis. For the No Shift vs. 

Shift-12 analyses there were significant interactions for time in region, location crosses, and average 

proximity, all ps < .03. The interaction for latency to enter the critical regions was not significant, F(1, 

14) = 2.44, p = .14. For the No Shift vs. Shift-24 analyses there were significant interactions for latency, 

time in region, and location crosses, all ps < .03. The interaction for average proximity did not reach 

significance, F(1, 14) = 3.51, p = .08. For the No Shift vs. Shift-36 analyses there were significant 

interactions for all four dependent measures, all ps < .001. These significant interactions indicate that the 

location effects for each of the Shift groups differed from those of the No Shift group. The series of 

simple location effects described above suggest that, as a whole, the two-way interactions noted between 

the No Shift group and the various Shift groups occurred despite different patterns of location effects 

within the Shift groups. For the Shift-12 group, the interactions can largely be attributed to differences 

between the Shift-12 and No Shift groups in terms of magnitude, but not direction, of the location effects. 

For the Shift-24 group the interactions can be attributed to the presence of significant location effects in 

No Shift whereas there were no compelling numerical or statistically significant location effects for the 

Shift-24 group as a whole. For the Shift-36 group the interactions are attributable to differences in the 

direction of significant location effects for the No Shift and Shift groups, with the No Shift group 

displaying a preference for the absolute location and the Shift-36 group displaying a clear preference for 

the relative location.  The pattern of location effects for the Shift groups clearly suggests that the location 

effect changed as a function of the number of training trials, and this change would appear to be 

related to the number of rats in each group that displayed a particular preference. To evaluate this 
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impression we conducted separate ANOVAs limited to the Shift groups, with number of training trials 

(12, 24, or 36) as a between-subjects factor and location (absolute vs. relative) as a within-subjects factor. 

There were significant Location X Trials interactions for latency to enter the regions of interest, time in 

each region, and number of times each location was crossed, all ps < .02. The interaction for proximity to 

each location was not significant, F(2, 21) = 2.01, p = .14. Given the individual location effects described 

above, this interaction can perhaps be best characterized as resulting from an initial preference for the 

absolute location by a majority of rats which yielded to a preference for the relative location 

with additional training. 

Discussion 

 The results obtained here provide evidence that true place navigation is observed relatively early 

in training, but yields to a preference for directional responding with additional training in a variant of the 

Morris water task where the pool is not a prominent cue. When the pool was relocated for the probe trial 

most rats given 12 training trials navigated to and searched at the precise spatial location of the platform 

in the room reference frame, whereas all rats given 36 training trials preferred the relative spatial location 

of the platform within the pool. As a group, rats given an intermediate number of training trials (24) 

showed no clear preference for either the relative or the absolute spatial location of the platform, however, 

individual rats showed clear a preference for one location over the other. These data illustrate a systematic 

shift in preference from place navigation to directional responding as a function of training.  

 In contrast to the standard water task in which the pool is a prominent feature of the environment, 

the pool utilized in this study was filled nearly to the top with water and was surrounded by clear 

Plexiglas to prevent escape from the pool. Our previous observations in the standard water task (Akers et 

al., 2007; Hamilton et al., 2007, 2008) collectively demonstrate that directional responding predominates 

regardless of the amount of training. The full-pool variant of the task used here represents the only 

situation identified thus far where a preference for place navigation is observed (Hamilton et al., 2008). 

The present results indicate that this preference is transient and begins to yield to a preference for 

directional responding within 12-24 additional training trials. These observations are of some importance, 
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particularly since we previously reported that animals given 12-24 training trials display a preference for 

place navigation over directional responding in this variant of the water task. In our previous report 

(Hamilton et al., 2008, Experiment 6), rats were tested both after 12 and after 24 trials (i.e., the number of 

trials was a within-subjects factor) and a significant preference for place navigation was observed. 

Because no significant differences were observed across tests the data were collapsed for analysis. Upon 

collection of the present data we reexamined our previous results and noted that the place preference was 

more robust, numerically, after 12 trials than after 24 trials, and the preference was not significant for the 

test conducted after 24 trials. Thus, our prior results taken with the present findings indicate that a 

preference for place navigation diminishes or disappears with continued training. This observation holds 

some practical importance in that future studies using the full-pool variant of the water task reported by 

Hamilton et al. (2008) should be designed and evaluated with the transience of the place navigation 

preference in mind. The optimal conditions for a preference for place navigation are apparently only 

present early in training, however, it may be possible to achieve more robust place navigation using other 

procedures. Given the apparent shift from place to direction as a function of training it seems reasonable 

to expect that giving fewer than 12 training trials might enhance the place navigation preference reported 

here. The number of training trials used here was selected because rats begin to take direct trajectories to 

the platform and reach asymptotic levels of performance in the full pool variant of the task in about 10-12 

trials. Conducting fewer blocks of training is not advisable, because 8 trials is not sufficient to achieve 

direct navigation to the platform, however,  future studies could improve, although perhaps only slightly, 

by adopting a criterion for advancement to the test trial such that it is conducted as soon as possible after 

direct trajectories emerge. With this in mind, we evaluated the training swim paths during the final 

training trial block for the Shift-12 group and noted that six of the rats first navigated directly to the 

platform during the penultimate or final trial and the remaining 2 took direct paths on each of the last 

three trials. Thus, the present results for the Shift-12 group probably approximate what would be observed 

if a minimum criterion of 1-2 direct trajectories to the platform were adopted.  In our opinion, obtaining 

more robust place navigation is more likely to be achieved through identification of the basic factors 
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related to stimulus control that differentiate place and directional responding.  

 A better understanding of place and directional navigation in the water task, and the shift from 

one to the other, will benefit from studies using cue-controlled environments (Devan et al., 2002; Prados 

& Trobalon, 1998; Rodrigo, Chamizo, McLaren, & Mackintosh, 1997) to address questions regarding 

how distal stimuli control these forms of navigation as well as how one comes to predominate another.  

Of course, the preference for place navigation observed in the full-pool variant of the water task may be 

related to the fact that more of the distal cue environment is visible compared to when the pool is a 

prominent cue (Hamilton et al., 2008). The distal environment is also visible from a greater proportion of 

the pool because the pool wall does not completely obscure portions of the distal environment when the 

animal is in close proximity to the pool boundary. It is of some importance to emphasize that the 

increases in the available distal cue environment in the full-pool task is not accompanied by enhanced 

learning, but rather by a decrease in the rate of learning compared to the standard variant of the task as 

demonstrated by Hamilton et al. (2008) and supported by the findings of the present experiment. These 

observations also suggest that the pool wall is an important determinant of behavior in the water task even 

though it provides no cues that disambiguate the location of the platform and obscures other cues to do 

disambiguate spatial location (Hamilton et al., 2007, 2008). One possibility that could potentially be 

important for increasing our understanding of place and directional navigation is that navigation in the 

standard water task may involve a process whereby locations within the pool reference frame are 

disambiguated by the distal visual cues (Hamilton et al., 2008). Viewed in this way, directional navigation 

when the pool is repositioned occurs because animals navigate to the location within the pool reference 

frame that is the most consistent with the location, as defined by the distal cue reference frame, reinforced 

during training. Eliminating the pool almost entirely creates a situation where navigation is based 

primarily on the distal cue reference frame, and, as a result, navigation to precise locations in the distal 

cue reference frame is supported. Although the pool wall was reduced in the present experiment, a small 

portion of it remained visible and the Plexiglas barrier could have also been detected. Although the pool  

cues themselves were not changed during training, it is possible that they gradually acquired control as a 
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function of training such that early during training navigation was primarily controlled by the distal cues, 

whereas later in training navigation was controlled by both distal cues and apparatus cues. Although such 

a possibility may seem a trivial explanation of the present data, it is important to recognize its importance 

because tasks used for measurement of navigation typically have detectable apparatus cues that do not 

disambiguate spatial locations but nonetheless provide an important proximal frame of reference. Thus, 

the possibility that shifts in strategy may reflect shifts in how apparatus cues control navigation and 

interact with distal cues will be important to consider in future studies. Unfortunately, directly testing the 

idea that the shift in control by the distal cues observed here reflects increasing control by the pool cues, 

rather than a pure change in control by distal cues, will be difficult because completely eliminating the 

cues associated with the pool is not possible. 1 One approach currently being explored in our laboratory 

involves  testing humans in a computerized (virtual) version of the Morris water task (e.g., Hamilton, 

Driscoll, & Sutherland, 2002; Hamilton & Sutherland, 1999; Sutherland & Hamilton, 2004) where the 

pool cues can be completely eliminated while still constraining movement within the perimeter of the 

pool.  

 The shift in preference reported here bears some similarity to data showing that rats shift from 

performance of place navigation to performance of simple motor responses with continued training in dry 

land mazes (Chang & Gold, 2003; Hicks, 1964; Packard & McGaugh, 1996; Ritchie, Aeschliman, & 

Pierce, 1950), although we acknowledge that there may be no substantive parallel between the present 

data and those obtained in dry mazes. For example, simple motor responses are not a major constituent 

process involved in the Morris water task and the shift from place to response in dry mazes differs in that 

it likely involves a complete change in the type of controlling stimuli. For example, Ritchie et al. (1950) 

argued that early control by exteroceptive stimuli yields to increasing control by interoceptive stimuli 

with continued training. In contrast, both place and directional responding in the water task are controlled 

by distal visual stimuli, thus, the shift from place to directional responding reflects a change in how the 

relevant distal room and apparatus stimuli control navigation. Further, Skinner et al. (2003) suggested that 

prior studies claiming a shift from place navigation to simple motor responding in dry land mazes may 
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actually reflect a shift from directional responding to motor responding because directional responding 

was not clearly ruled out. The main point we wish to emphasize regarding the similarity between our 

water task data and extant dry maze data is that both indicate substitution of apparent place navigation 

with another form of responding. Given that directional responding has not been ruled out in earlier 

reports using dry mazes, however, the present results may be the first to unambiguously demonstrate a 

shift from true place navigation to another form of responding.   

 In summary, the present results indicate that any preferences for place navigation are transient 

and weak in comparison to directional responding, which fits nicely with previous data from our 

laboratory using the Morris water task (Akers et al., 2007; Hamilton et al., 2007, 2008; Weisend et al., 

1995) and data from dry land maze studies (Blodgett et al., 1949; Horne, Martin, Harley, & Skinner, 

2007; Skinner et al., 2003; Stringer, Martin, & Skinner, 2005). Additional work using similar 

manipulations to those reported here will be important in further elucidating the processes involved in 

place navigation and directional responding, and how preferences for these forms of navigation are 

established and altered during training. 
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    Latency (s)        Time (s)                    Crosses              Proximity (cm) 
Group     Preference Number   Absolute   Relative   Absolute   Relative   Absolute   Relative   Absolute   Relative 
Shift-12   Place          n = 7         6.00          12.81        4.64          2.02            1.00         0.14         61.48       59.61 
Shift-12   Direction    n = 1         9.17            3.00        2.33         2.17             0.00        1.00         65.38        51.99 
Shift-24   Place          n = 4         5.33          10.83         4.62         2.54            1.50         0.50        49.59        64.96 
Shift-24   Direction    n = 4       12.92           5.33         2.00         4.21             0.50        1.00         61.99        49.07 
 
Table 1 
Means for each dependent measure during the no platform probe trial for the Shift-12 and Shift-24 
groups. Means are separated on the basis of whether rats showed a preference for true place navigation 
(to the absolute location) or directional responding (to the relative location). Values for the No Shift and 
Shift-36 rats are not presented because all rats in these groups showed either a preference place 
navigation (No Shift rats) or directional responding (Shift-36 rats), thus, the mean values for these groups 
are already represented in Figure 2. 
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Footnotes 
1Completely filling the tank and removing the clear Plexiglas enclosure would simply provide a 
ready means of escape from the pool, thus, some barrier around the perimeter of the pool is 
necessary. 
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Figure Captions 
 
Figure 1. Layout of the testing room showing the room geometry and location of prominent visual cues 

(gray or black rectangles). The pool was located in one of two positions that were separated by 75 cm (the 

pool radius). The escape platform was always placed at locations B, which represents the same absolute 

spatial location within the room reference frame for both pool positions. Locations A and C represent 

comparison locations that are in the opposite quadrant from the platform location (B) for pool positions 1 

and 2, respectively. For the Shift groups these locations correspond to the relative location of the platform 

within the pool. The dark circles inside the pool mark the four release points used during hidden platform 

training and the squares represent the two release points used for the no platform probe trial. 

 

Figure 2. Probe trial dependent measures (Mean + SEM) for each group. A) Latency to enter the 66 cm 

diameter circular region around the two locations of interest. B) Mean distance (“proximity”) from the 

two critical locations. C) Number of times each critical location was crossed. D) Time spent in each of the 

two critical circular regions. 

 

Supplementary Figure 1. Representative swim paths during the no-platform probe trial for rats in each 

experimental condition. For the No Shift group, all eight rats showed a preference for the absolute 

location. For the Shift-12 group, seven rats displayed a preference for the absolute location and one 

displayed a preference for the relative location. For the Shift-24 group, four rats displayed a preference 

for the absolute location and four displayed a preference for the relative location. For the Shift-36 group 

all eight rats showed a preference for the relative location. Where possible, all paths shown here are taken 

from animals with median latencies to enter their preferred region. 
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Figure 1. 
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Figure 2. 
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Supplementary Figure 1. 

 


