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Abstract 

This paper discusses the design of a repetitive feedback 
controller for a grid-connected two-level three-phase voltage-
source inverter connected between a DC source and the grid 
through an LCL filter. The controller incorporates a classical 
two loop feedback of the output current and the capacitor 
current in addition to a repetitive feedback loop. The results 
show that the proposed technique improves the steady state 
error and the total harmonic distortion of output current in 
presence of utility harmonics. 

1 Introduction 

Pulse width modulation (PWM) voltage source inverters 
(VSI) similar to that shown in Fig.1 are commonly used to 
connect distributed generator (DG) systems such as micro 
combined heat and power (CHP) and renewable energy 
sources to an AC grid or local loads. They convert DC from 
photovoltaic generators, batteries, fuel cells or variable 
frequency AC from wind and marine turbine into 50/60 Hz 
AC power. The output current of the converter should meet 
the total harmonic distortion (THD) standards in the presence 
of grid harmonics [1, 2]. This is commonly achieved using 
active feedback control of the current injected into the grid. 
  
Alternative control strategies and structures have been used 
for grid-connected inverters such as deadbeat control [3], 
optimal control [4], state-feedback [5], sliding mode [6] and 
resonant controllers [7], in addition to PID and classical 
compensators.  It is also common to use the  d-q 
transformation [8].  The objective of these controllers is to 
increase the outer loop gain, and, hence improve disturbance 
rejection. But most of these controllers tend to suffer from 
relatively low loop gain at the fundamental frequency and its 
harmonics and hence tend to have poor disturbance rejection 
which results in poor output current THD if the grid voltage 
THD is relatively high.  A better controller is required with 
high gain at the harmonic frequencies of interest.  
 
Repetitive feedback based control techniques have the 
potential to improve the THD quality of the converter output 
by effectively increasing the loop gain at the fundamental 
frequency and its harmonics [9]. The effectiveness of 

repetitive control in terms of eliminating harmonic distortion 
in a voltage source inverter operating has been demonstrated 
in several publications [9-15]. 
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Fig. 1: Three Phase Grid Connected Inverter with LCL Filter 
 

Parameter Value 

Utility Phase voltage 230 V (rms) 

DC Link Voltage 800 V dc 

Inductor 1L  350 µH 

Inductor 2L  50 µH 

Capacitance C  22.5 µF 

Switching Frequency 10 KHz 

Table 1: Electrical Parameters 
 
This paper discusses the design of an alternative control 
system based on repetitive feedback for the 3-phase grid 
connected inverter shown in Fig.1. Stability constraints and 
trade-off between steady state error and system transient 
response are analysed. Table 1 shows the electrical 
parameters of the system. 

2 System Modelling 

The analysis and design of the control system for the voltage 
source grid connected inverter in Fig.1 is based upon the 



single phase equivalent circuit shown in Fig.2. The small 
resistances of inductors and the equivalent series resistance 
(ESR) of the capacitors are neglected.
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Fig. 2: Single Phase Equivalent Circuit 

 
In Fig. 2, gnv  is the voltage difference between the neutral 
point and middle of the dc link. In control terms this may be 
viewed as a source of disturbance caused by phase 
interaction. The disturbance gnv  can be expressed by the 
following equation: 
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ag bg cg

gn

v v v
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where agv , bgv and cgv  are phase voltages of the phase with 
respect to the ground. Equation (1) shows that the phase 
interaction voltage gnv  depends on the switching states of all 
three phases.  It can be shown that, when filter capacitors are 
connected to dc link as shown in Fig.1, the voltage 0gnv ≈

’
 

showing only a very small switching frequency ripple 
component [16]. 

 
 

 
To derive the transfer function of the grid connected inverter 
we could write the following equations using Kirchhoff's 
Voltage Law (KVL) and Kirchhoff's Current Law (KCL) 
based upon Fig. 2. 
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Based on these equations, we can represent the system using 
the following block diagram. 
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Fig. 3: Block Diagram of the Single-Phase Circuit 

3 Proposed Control Scheme  

The proposed digital controller comprises a conventional two 
loop feedback system and a repetitive controller, as shown in 
Fig. 4. The repetitive feedback controller (RC) requires the 
basic plant (i.e. the two loop system Gp(s) ) to be stable. Since 
direct feedback of the output grid current of an LCL filter on 
its own is inherently unstable, it is necessary to have another 
feedback loop of the capacitor current or the current in the 
main inductor 1L [16] to stabilize the system. The transfer 
function relating the output current 2I  to the reference current 

refI (assuming the PWM block is a unity gain block) can be 
shown to be,  

 2
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where, ( )sG s is the transfer function of the two loop plant  
given by, 
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and ( )D s is the transfer function of input disturbance, which 
is given by, 
 2

1( ) ( 1)u cD s V L Cs K Cs= + +    (8) 
The system in Fig. 4 can be reduced to that in Fig. 5, with 

( )PG z given by, 
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The simplified form of the overall control scheme has been 
represented by Fig. 5 which will be used for analysis later on. 
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Fig 4: Overall Block Diagram of Proposed Control Scheme 
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Fig 5: Simplified Block Diagram of Proposed Controller 

 

3.1 The Conventional Two Loop Feedback System 

We choose the controller to be a simple proportional 
controller, such that ( )c PG z K= , since alternative classical 
controllers such as PID or one of its derivatives, were found 
to provide marginal improvements (if any) in comparison, at 
the expense of additional complexity. The values of 6pK =  
and 13cK =  were selected to provide a compromise between 
stability, speed of response and disturbance rejection as 
discussed in [16]. The bode diagram of the two loop system is 
shown in Fig. 6; the system has a phase margin of 52.6o and a 
gain margin of 7.88 dB. The loop gain at 50 Hz is 18 db and 
reduces further at higher frequencies.  Hence the disturbance 
rejection at 50 Hz and its harmonics will be relatively poor. 
However, it is not possible to increase the loop gain any 
further as without compromising stability. 

103 104 105 106
-270

-225

-180

-135

-90

P.M.: 52.6 deg         
Freq: 1.58e+004 rad/sec

Frequency (rad/sec)

Ph
as

e 
(d

eg
)

-100

-80

-60

-40

-20

0

20

40

G.M.: 7.88 dB          
Freq: 3.19e+004 rad/sec
Stable loop            

M
ag

ni
tu

de
 (d

B)

 
 

Fig. 6: Bode Plot of Conventional Two Loop Feedback 
System 

 

3.2 The Digital Repetitive Controller 

The theory of repetitive control (RC) is based on the internal 
model principal [17-19], whereby a model of the repetitive 
reference and disturbance signals is included in the controller. 
The RC tracks the error on a cycle by cycle basis and corrects 
the control effort on a periodic basis to compensate for the 
error.  
 

In the discrete time domain, a periodic signal with a known 
period T can be generated by a time delay block Nz− with a 
positive feedback loop. Here, N is the number of samples in 
one period given by,  

 
s

TN
T

=       (10) 

where, T  is the time period of the any periodic input and 
sT corresponds to sampling time. Normally N  is a large 

number and hence a basic RC requires a large memory 
buffers which is one of its drawbacks [20].  The transfer 
function )(zGRB of a basic RC comprises a gain RK  
multiplied by the transfer function of a periodic signal 
generator, 
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The control objective is to find an appropriate optimal value 
of the repetitive controller gain RK  such that the tracking 
error converges to zero as the number of iterations approaches 
to infinity. 
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k
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The basic  repetitive feedback control in (10) is most suitable 
for those applications where the period T is constant or 
accurately measureable [20]. This basic repetitive feedback 
does not ensure stability and error convergence criteria and is 
normally modified to overcome these problems. 
 
To avoid pure integration, a filter Q(z) is introduced in the 
basic repetitive control structure, followed by a compensator 

( )fG z such that 
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The filter ( )Q z ensures the stability and robustness of the 
system. It can be either a low-pass filter or a constant less 
than 1.  
 
The compensator ( )fG z should ideally be designed to be a 
zero magnitude and phase compensator for the closed loop 
transfer function of the plant [9].  This however results in a 
complex compensator, which is computationally costly to 
implement. A reasonable approximation is achieved by 
selecting ( )fG z to be equal to a gain RK  multiplied by the 

time advance unit kz [15].  
 
 ( ) k

f RG z z K=     (15) 
 
The time advance kz compensates for the phase lag of the 
inverter to improve stability. 



Using equations (13) and (15), we can rewrite the transfer 
function of RC as follows: 
 

 ( )
1 ( )

N k
R

RC N

K z
G z

Q z z

− +

−=
−

   (16) 

 
There are various schemes to design the Q-filter and the 
compensator ( )fG z  to improve the robustness of RC [21] . In 
this paper we select Q filter as a constant less than 1 and k=3 
for the leading unit of the compensator. The value of RK  is 
adjusted after selecting the value of Q.  The values of RK  and 
Q are tuned to ensure stability while achieving a good speed 
of response and steady state error. 
   
From Fig. 5, the error E(z) in terms of the reference R(z) and 
the disturbance D(z) can be derived as: 
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Theorem: Assume two systems 1G  and 2G  are connected in a 
feedback loop, then the closed loop system is input-output 
stable if 1 2.G G < 1 
 
According to the above gain theorem the overall stability 
conditions can be devised as: 
 
a) The roots of characteristic equation,1 ( ) ( ) 0c sG z G z+ =  of 
conventional two loop feedback system without RC should be 
inside the unit circle.  
 
b) From equation (17), 
 
 ( )j TH e ω < 1 
where, 
 ( ) ( ) ( )j T j T j T j T

R PH e Q e e K G eω ω ω ω= −   (18) 
and, 

 [0, ],
T

ω Π
∈  and T = Sample Time. 

4 Selection of Controller Parameters for 
Robustness 

The two parameters, RK  and Q , are closely related to the 
system stability. The critical value criticalQ  of Q  at which the 
system becomes unstable, for a given value of RK , was 
calculated using equation (18) and verified by simulation. The 
results are plotted in Fig. 8. Fig. 9 illustrates the relationship 
between the speed of response of the controller and the 
parameters Q and KR. Basically, for a given value KR the 

speed of response improves by increasing Q, at the expense of 
reducing stability. Increasing KR improves the steady state 
error (SSE) for a given value of Q.  Using Figs. 7 and 8, the 
values of Q and KR can be selected to ensure stability and 
achieve a fast speed of response and small steady state error. 
Q = 0.9, and RK = 0.4 were found to give a satisfactory 
performance. 
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Fig 8: Graph between Number of Cycles to SSE and RK  

 
The value of the inductor 2L  , which is determined by the grid 
impedance, can vary significantly depending on the site 
where the inverter is installed. This uncertainty needs to be 
taken into account to ensure that the system remains stable 
under the worst condition. To assess the robustness of the 
system to the uncertainty in the value of 2L  the bode diagram 
of the system including the RC was plotted for different 
values of 2L  as shown in Fig. 9.  As it can be seen, the effect 
of 2L on system stability and gain at the fundamental 
frequency and its harmonics is negligible, thus illustrating the 
robustness of the system to variations in the value of 2L . This 
was also verified by simulation. 
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Fig 9: Bode diagram of the system including RC 

illustrating robustness to variation in 2L  

5 Simulation Results 

Detailed simulation has been carried out using the MATLAB 
Simpower Systems Toolbox. The system parameters are 
shown in Tables 1 and 2. Four cases with different utility 
THD values have been considered; the grid harmonic content 
when the THD was 14% is shown in Table 3. The reference 
current was 100 A (peak). 
 

Table 2: Controller Parameters 
 

Harmonic 
Number 3rd 5th 7th 9th 11th 13th 

Fundamental 
Component 35 25 15 5 2 1 

Table 3: Grid voltage harmonics when the THD is 14% 
 
 Fig. 11 shows the output current without the use of repetitive 
controller, while Fig. 12 shows simulation results with the 
repetitive controller.  The THD of the output current improves 
significantly in any case when the RC is used. For example, 
in the 2nd case when the utility THD is 14 %, the output 
current THD with the repetitive controller improves from 
9.5% to 4.4 %.    
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Fig 11: Output Current without RC 
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Fig 12: Output Current with RC When Utility THD=14 % 

and 0.9, 0.4RQ K= =  
 

 
Fig 13: Comparison of % THD in Output Currents at 

Different Utility THD levels with and without RC 

Conclusion 

Simulations results show repetitive control can significantly 
improve the THD quality of the output current. The RC 
parameters need to be selected carefully to ensure stability 
despite uncertainty in grid impedance, while achieving a fast 
response and a small steady state error. The proposed 
controller was demonstrated to be robust to changes in grid 
impedance. Further work is needed to improve the steady 
state error. 
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