The University of Southampton
University of Southampton Institutional Repository

Transcriptomics of Traumatic Brain Injury: Gene Expression and Molecular Pathways of Different Grades of Insult in a Rat Organotypic Hippocampal Culture Model

Di Pietro, Valentina, Amin, Daven, Pernagallo, Salvatore, Lazzarino, Giuseppe, Tavazzi, Barbara, Vagnozzi, Roberto, Pringle, Ashley and Belli, Antonio (2010) Transcriptomics of Traumatic Brain Injury: Gene Expression and Molecular Pathways of Different Grades of Insult in a Rat Organotypic Hippocampal Culture Model Journal of Neurotrauma, 27, (2), pp. 349-359. (doi:10.1089/neu.2009.1095).

Record type: Article


Traumatic brain injury (TBI) is the one of the most common forms of head trauma, and it remains a leading cause of death and disability. It is known that the initial mechanical axonal injury triggers a complex cascade of neuroinflammatory and metabolic events, the understanding of which is essential for clinical, translational, and pharmacological research. These can occur even in mild TBI, and are associated with several post-concussion manifestations, including transiently heightened vulnerability to a second insult. Recent studies have challenged the tenet that ischemia is the ultimate modality of tissue damage following TBI, as metabolic dysfunction can develop in the presence of normal perfusion and before intracranial hypertension. In order to elucidate the cellular and molecular changes occurring in TBI as a direct result of neuronal injury and in the absence of ischemic damage, we performed a microarray analysis of expressed genes and molecular interaction pathways for different levels of severity of trauma using an in-vitro model. A stretch injury, equivalent to human diffuse axonal injury, was delivered to rat organotypic hippocampal slice cultures, and mRNA levels following a 10% (mild) and 50% (severe) stretch were compared with controls at 24 h. More genes were differentially expressed following 10% stretch than 50% stretch, indicating the early activation of complex cellular mechanisms. The data revealed remarkable differential gene expression following mTBI, even in the absence of cell damage. Pathway analysis revealed that molecular interactions in both levels of injury were similar, with IL-1beta playing a central role. Additional pathways of neurodegeneration involving RhoA (ras homolog gene family, member A) were found in 50% stretch.

Full text not available from this repository.

More information

Published date: 19 February 2010


Local EPrints ID: 73600
ISSN: 0897-7151
PURE UUID: fee0eff3-77e0-46b1-8810-51022e3c94b9
ORCID for Ashley Pringle: ORCID iD

Catalogue record

Date deposited: 09 Mar 2010
Last modified: 18 Jul 2017 23:49

Export record



Author: Valentina Di Pietro
Author: Daven Amin
Author: Salvatore Pernagallo
Author: Giuseppe Lazzarino
Author: Barbara Tavazzi
Author: Roberto Vagnozzi
Author: Ashley Pringle ORCID iD
Author: Antonio Belli

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.