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Abstract 

This paper presents a simulation test bed and methodology for evaluating urban signalized 
junction control algorithms that use localization probe data from all vehicles in the local area. 
The simulator is based on SIAS Paramics micro-simulation software with bespoke software 
modules built on top for automatic network generation, localization data processing and 
signal control. Localization algorithms tested use a hierarchical structure of auctioning 
agents. Early tests of control algorithms on an isolated signalized junction indicate 
performance that compares favourably with the MOVA algorithm using inductive loop data. 

1 Introduction 

Recently a number of large European Commission funded projects (CVIS [Kompfner, 2008], 
SafeSpot1, Coopers2) have focused on the development of technologies and standards for 
Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications systems. This 
has led to common European protocols being set for this type of communications (IEEE 
802.11 (WAVE) and IEEE 802.11p). Some of the most important data that may be 
communicated between vehicles and infrastructure are localization data, that is dynamic 
estimates of the vehicle’s position. Localization technologies that can provide these data 
such as Global Positioning System (GPS) receivers are already commonplace in many 
vehicles, in use for navigation. 

Urban signalized junction control is a task that requires sensors to monitor the state of the 
network, a processing system to analyse these data and make control decisions and traffic 
lights to implement the control. Currently sensors that are commonly used in signalized 
junction control are inductive loops [Sreedevi, 2005], microwave emitter/detectors [Wood et 
al., 2006] and traffic monitoring cameras. Examples of automated control algorithms that are 
currently in use to process data from these sensors and set signal timings are MOVA 
[Vincent and Peirce, 1988] for isolated junctions and SCOOT Hunt et al. [1982], which can 
coordinate multiple connected junctions. 

All the sensors currently used in urban signal control collect census data, that is counts of 
vehicles passing a specific point in space. The type of data that can be collected using on 
board vehicle localization sensors is probe data and this different type of data can present a 
fundamentally different view of the state of the network [Rose, 2006]. Probe data allow an 
analysis of the system that tracks each vehicle individually and can provide a higher 
resolution of position data. 

                                                      
1 http://www.safespot-eu.org/ 
2 http://www.coopers-ip.eu/ 
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Research that examines the use of V2I communications and localization systems in 
signalized junction control is already under way. The iBus project [Hounsell et al., 2008] uses 
localization systems on London buses to give them priority at signalized junctions. 

In this paper we present a computational simulation system that can model the hypothetical 
scenario of urban signalized junction control using localization probe data from all vehicles in 
the local area. The resulting simulator constitutes a test bed for the development of new 
algorithms for signalized junction control based on localization probe data. This paper also 
contains results from tests on two basic control algorithms that are simulated on an isolated 
junction. The performance of these algorithms is compared directly with the MOVA algorithm 
sing simulated inductive loop data. 

2 Simulator Architecture 

 

Figure 1: Block diagram showing the simulation software architecture 
 

Figure 1 shows the architecture of the simulation test bed developed in this research. At the 
centre of this is a module for simulating vehicle movements and interactions through 
signalized junctions at the individual vehicle level (microscopic). The approach used in this 
research was to employ an existing commercially available microscopic traffic simulator 
(SIAS Paramics) to fill the roll of this module. The main advantage of this approach is 
expedience, allowing us to develop a test bed for control strategies relatively quickly. A 
further advantage is that Paramics generates rich graphical visualizations, which is a useful 
tool for sanity checking and observing the progression of simulations. A disadvantage of this 
approach is that Paramics is a “black box” in our simulator where we are not aware of all the 
processes occurring between the input and output of data. The calibration setting for 
Paramics used in this research are the default setting in Paramics version 2007.1. Care must 
be taken with this approach that control strategies developed in the test bed are not too 
highly tuned to behaviour in Paramics that may not be representative of the real world. 
Furthermore any strategies developed will require real world validation in order to confirm 
their efficacy.  

As can be seen in Figure 1 The simulation test bed has three additional bespoke modules 
that are built around Paramics. The Network Generator module is used to automatically 
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encode the structure of road networks in Paramics using a database of containing mapping 
data. The Localization Data Extraction and Processing module interrogates the Paramics 
simulation to obtain localization data for all the vehicles in the simulation. The processed 
data are then stored in a database. The Signal Control module can extract relevant 
localization data from the database and use these to make decisions about signal control 
which are implemented directly in the Paramics simulation. Prototype algorithms for signal 
control can be ported in and out of this module for testing. The Paramics module, the 
localization module and the signal control module are all synchronized to allow real time 
simulation of signal control using localization probe data. 

The following three sections of this paper describe each of the three bespoke modules in 
more detail. 

3 Network Generator Module 

It is anticipated that this research will require complex and perhaps large road networks to be 
represented in Paramics. While it is not necessary for these networks to be models of 
existing road infrastructure it is important that they are representative. In practice this is best 
achieved by modelling real examples of road infrastructure as accurately as possible.  

The Paramics software provides a graphical user interface for the user to build models of 
networks. This interface requires the user to input a scaled image of of the network and trace 
over it using the mouse to add nodes and links and define the nature of the network. Figure 
2 shows a Paramics visualization of a simple un-signalized T-junction. The minimum number 
of mouse clicks required to generate this model is 267; the user time required is somewhere 
between 20 minutes and 1 hour depending on experience. Therefore building large networks 
in Paramics can be time consuming. 

The Network Generator Module was built to overcome this problem by generating network 
models automatically. The input data that describe the network are Geographic Mark up 
Language (GML) data from the Ordinance Survey (OS) MasterMap3

 project. The integrated 
transport network layer in the MasterMap provides the detailed structure of the road network 
and corresponding metadata layers provide details on the types of road, number of lanes, 
one way sections and other information.  

 

Figure 2: Paramics model of an un-signalized T-junction, showing vehicles in motion 

The user of the software module is required to enter four numbers , which are the latitude 
and longitude of the North-East and South-West corners of a square coving the area of 
interest. The module will then extract the relevant GML data for that area and automatically 

                                                      
3 http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/ 
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program the corresponding Paramics network. This enables potentially very large networks 
to be built in a few seconds. Figure 3 shows a large Paramics network of the centre of 
Southampton that was generated in this way. This figure demonstrates what is possible 
using the Network Generator however it is unlikely that a network of this size will be used in 
this research. Figure 4 shows a model of the road network in the Highfield area of 
Southampton which contains a chain of five linked signalized junctions. This is 
representative of the type of networks that will be used for simulations in this research in the 
future. 

 

Figure 3: Large Parmics network of Southampton city centre 
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Figure 4: Paramics network of linked signalised junctions in the Highfield area 

The automatic network generation process is not perfect and it still requires the user to 
check the generated network for errors and correct them where necessary and to add 
additional data that are not available in GML such as signal timings or the positions of 
inductive loops. Part of the ongoing research includes working on ways to add these data 
automatically using other sources. 

To perform a final check of the network model we use the Google Street View tool (Figure 5) 
which allows us to travel virtually through the example network and check details such as 
geometry, turn priorities and sensor positions. 

 

Figure 5: Image from Google Street View 

4 Localization Data Module 

There are a number of on-board vehicle technologies that can provide dynamic data on 
vehicle position. These include mobile telephone, or cellular network localization [Kos et al., 
2006], Global positioning system (GPS) [Trimble, 2007], inertial measurement systems (IMU) 
[OXTS, 2009], laser range-finding systems (LIDAR) [Levinson et al., 2007], and computer 
vision systems [Wang et al., 2007]. In addition to these hardware technologies other 
software technologies can be employed to improve localization estimates. These include 
map matching software, which constrains the vehicle’s position to the road network [Li and 
Leung, 2003] and Bayesian recursive filtering techniques, such as the Kalman filter [Grewal 
et al., 2001]. The latter allow data from more than one sensor and data from other sources 
such as dynamic data and vehicle control data to be fused to provide a probabilistic estimate 
of position. 
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The performance of localization systems is a function of positioning accuracy, frequency of 
position measurements and reliability (e.g. latency). Figure 6 from Box and Waterson [2009] 
shows a performance comparison between a number of different localization systems. The 
diameter of the circles is proportional to the positioning accuracy and the circle’s centres are 
plotted on logarithmic axes of cost versus frequency. This shows a clear relationship 
between cost and performance and also indicates the level of performance provided by 
some current localization systems. 

 

Figure 6: Comparison in the performance and cost of some example localization 
systems, several of the systems use more than one localization sensor in tandem 

4.1 Stochastic Simulation 

As shown in Figure 1, the localization module samples vehicle position data from Paramics. 
These data are perfectly accurate at the time of sampling. This is unrepresentative of the 
data that would be obtained from a real localization system. Therefore the localization 
module must process these data to make them more realistic. To this end the position data 
obtained from Paramics ( Px ) are made stochastic by the addition of Gaussian noise 
(equation (1)). 

)(~   where; Σ0,εεxx Ν+= PS  (1) 

where x is a two dimensional vector describing the vehicle’s position, ε  is sampled from a 
zero mean two dimensional Gaussian distribution with covariance Σ . The covariance matrix Σ  is chosen to representative of the performance of a given localization system, such as 
one of the examples given above. Thus the performance of signal control systems can be 
tested for different localization systems and different levels of localization performance.  

Similarly the signal control module, which receives the vehicle position data can either 
interpret the position data deterministically using Sx , or stochastically taking the probability 

of position P ( Sx ) to be Gaussian and centred on Sx  ( equation (2)). 

)|()( Σ0,xx SSP Ν=  (2) 

5 Signal Control Module 

A signalized junction controller that uses localization probe data from all vehicles in the local 
area may have to process significant amounts of data in order to set signal timings. Previous 
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research on signal control strategies, where a large amount of loop data needs to be 
processed, has demonstrated the advantage of a hierarchical agent structure [Choy et al., 
2003]. Here individual software agents process small amounts of the raw data, which they 
then pass on in a significantly refined form to another agent above them in the hierarchy. In 
this research we have adopted an agent hierarchy very similar to the one presented in Choy 
et al. [2003], the structure is shown in Figure 7. 

 

Figure 7: Structure of the agent hierarchy tree 

The lowest level agents, stage agents receive the vehicle position data relating to the 
vehicles who’s approach relates to a single signal stage only. These data are refined by the 
stage agents into a simplified form which constitutes a bid for priority. These bids are 
received by the junction agent, which will then assign priority to the stage with the winning 
bid. In a situation where a number of closely connected signalized junction need to 
coordinate signal timings the junction agent will communicate with a zone agent above them 
in the hierarchy before assigning priority. 

5.1 Prototype Control Algorithms 

In this paper we present some results from tests of two prototype control algorithms on an 
isolated junction, so for these purposes the zone agent level of the hierarchy can be 
disregarded. 

The approach at this early stage of the research has been to begin by testing two very 
simple algorithms. 

Bidding Algorithm 1 (BA1) Each stage agent has a set ( N ) of vehicles ( i ) to consider. 
These are pre-selected on the basis of their position revealing that they are on the approach 
to the stage. The stage agent simply counts the number of vehicles i  in the set of vehicles 
N  that are stationary; this count is used as the bid ( B ). 

∑
∈ 
 =

=
Ni

iV
B

otherwise0

0 if1
 

(3) 

Bidding Algorithm 2 (BA2) In this case the bid is calculated as a linear function of the 

number of vehicles in the set N , the speed of each vehicle iV  and the distance of each 

vehicle from the junction iX . 

∑
∈

−−=
Ni

ii XVB βα1  (4) 

where α and β  are coefficients that can be tuned. 
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Having received bids from all stage agents the Junction agent simply needs to select the 
stage with the highest bid and assign priority. To avoid changing the stages too rapidly the 
junction agent performs these auctions only at fixed a fixed time interval ( tδ ). 

Both of the algorithms tested use vehicle speed in the calculation. Vehicle speed is taken as 
the derivative of vehicle position over the previous two time steps in the database. 

6 Testing prototype algorithms 

6.1 Set up 

The junction on which simulated test were carried out is the simple T-junction shown in 
Figure 8. This junction has three signal stages: stage 1 gives priority to vehicles approaching 
from the West and East arms of the junction, stage 2 is a right turn filter giving priority to right 
turning vehicles coming from the West arm and stage 3 gives priority to vehicles from the 
South arm. 

 

Figure 8: Paramics T-junction model used in the tests 

Localization Accuracy In the tests described here two levels of localization accuracy were 
used. Both levels used a sampling rate of 1 Hz but in one case the positioning accuracy was 
10m ( σ1 ) an in the other it was 2m ( σ1 ). No latency was simulated in these tests. There is 
an important difference between these two levels of accuracy, which is that with 2m 
accuracy the position of the vehicle can be resolved down to the lane level, where as with 
10m accuracy the position of the vehicle can only be resolved to the level of road. This is 
important for the control algorithm when considering vehicles approaching the junction from 
the West. With lane resolution the algorithm can assign the vehicles in the right hand lane to 
stage 2 and those in the left to stage 1. Without lane resolution the control algorithm must 
assign all vehicles on the Eastbound arm to stage 2. 

Baseline To provide a baseline for the tests loop detectors have been included in the 
simulated junction shown in Figure 8 using the facility included in Paramics. A test was 
carried out where the junction was controlled by the MOVA algorithm [Vincent and Peirce, 
1988]. The loop detectors used have separate sensing loops for each lane, so like the more 
accurate probe localization system, MOVA has lane resolution. 
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Test # Algorithm tδ  (s) Accuracy (m) α  β  

1 MOVA - - - - 

2 BA1 30 2 - - 

3 BA1 10 2 - - 

4 BA1 10 10 - - 

5 BA2 30 2 0.01 0.001 

6 BA2 30 2 0.02 0 

7 BA2 30 10 0.01 0.001 

8 BA2 30 10 0.02 0 

9 BA2 10 2 0.02 0 

10 BA2 10 10 0.02 0 

Table 1: Itinerary of the tests performed with their parameter settings 

Itinerary of tests A list of the tests performed is given in Table 1. Each test covered a 
simulated time of four hours, during which the level of demand was constant. The Demand 
matrix is shown in Table 2. The two bidding algorithms (BA1 and BA2) were tested using the 
two levels of localization accuracy and also two rates of auctioning ( tδ  = 30 s and tδ  = 10 
s). 

 

 West East South 

West - 12.5 3.3 

East 15.8 - 0.8 

South 2.7 2.7 - 

Table 2: Matrix of demands (Vehicles per minute) across the junction shown in Figure 
8 

6.2 Results 

Figures 9 to 11 present statistics for delay, queuing time and vehicle speed averaged across 
all vehicles for the duration of the test. Test number two used the first bidding algorithm and 
an auctioning rate of tδ = 30 s and a localization accuracy of 2m. The results show that 
despite the simplicity of this approach the performance of the algorithm equates very closely 
with MOVA. The performance of BA1 can be improved by reducing tδ to 10 s as shown in 
test 3. However when the localization accuracy is reduced to 10m so that lane resolution is 
lost (test 4) then the performance of BA1 is reduced to below that of MOVA. 

The second bidding algorithm (BA2) can produce further improved performance when using 
the lower auctioning rate ( tδ = 30 s), as shown in tests 5 and 6. Here two different settings 
for the coefficients were used, one with order of magnitude tuning (α  = 0.01, β  = 0.001) 

and one where β  was set to 0, effectively eliminating the distance term from equation (4). 

Tests 5 and 6 were repeated in tests 7 and 8 with the localization accuracy lowered to 10m. 
This has a marked effect, with performance again falling below the MOVA baseline. In the 
last two tests (9 and 10) BA2 was tested using the faster auctioning rate of tδ = 10 s in test 
9, 2m positioning accuracy was used and in test 10, 10m positioning accuracy was used. 
Both these tests produced good performance indicating that the lower positioning accuracy 
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is mitigated to some extent by the higher auctioning rate. In fact test 10 is the only test using 
10m accuracy that outperforms the MOVA baseline. 

One thing to note in tests 9 and 10 is that while their statistics for average delay and average 
speed are similar, the average queuing time is lower in test 10 than in test 9. This is because 
in test 10 more vehicles are stopped at the lights albeit for a shorter time. This can be an 
important consideration because stop-start driving is known to produce more CO2 emissions 
than constant speed driving. This is also a reminder that the statistics that have been 
presented here to compare strategies are not the only statistics that may need to be 
considered when determining the performance of a control algorithm. 

 

Figure 9: Average delay across all vehicles for the duration of the test 

 

Figure 10: Average queuing time across all vehicles for the duration of the test 
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Figure 11: Average speed across all vehicles for the duration of the test 

7 Conclusions 

In this paper we have presented a methodology for testing urban signalized junction control 
algorithms that make use of localization probe data. Analysis of possible algorithms is at an 
early stage and we have presented results from some tests that implement two very basic 
algorithms. The performance of these algorithms on a simulated isolated junction compare 
favourably with the performance of the MOVA algorithm despite their simplicity. This 
indicates that the additional information contained in localization probe data is useful and 
further improvements in performance are likely as algorithm development continues.  

An important result to note is the dependence of algorithm performance on the accuracy of 
the localization data. The algorithms tested performed significantly better when lane 
resolution was achievable. It is also worth considering that lane resolution is currently not 
achievable with GPS only localization systems. 
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