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Abstract 

The usual representation of optimal path finding problems within transport networks is 

focused on well established algorithms for identifying the optimal path (or set of paths) 

between two specific network nodes. When the required solution is the identification of the 

optimal route between every possible pair of nodes in the network however, these algorithms 

are inefficient. 

The Floyd-Warshall algorithm provides an efficient way to compare all possible paths 

through each pair of nodes more efficiently, requiring only N3 comparisons for a network of N 

nodes. To illustrate the potential of this approach to network analysis within transport 

research, this paper considers the issue of determining accessibility between railway stations 

(on the route between Weymouth and London Waterloo) served by a mixture of high-speed 

and stopping services.  

A rail network is physically defined by the locations of tracks, but travel times are also 

dependent on whether stations are visited by high-speed services as well as stopping services. 

A single rail route therefore has to be represented not as a (topologically) straight line, but as a 

more traditional graph with high connectivity between nodes. Reformulating this into a 

matrix-based definition allows the Floyd-Warshall algorithm to efficiently determine the 

optimal routing (and hence travel times) between each pair of stations and therefore overall 

levels of accessibility to be determined. 

1. Introduction 

Continued investment in UK rail infrastructure (e.g. the West Coast Main Line project (SRA 

2003) and High Speed Rail 1 and 2 (Butcher 2009, DfT 2009)) and timetable developments 

have enabled headline UK train speeds to increase to 200kmh-1 and European train speeds to 

reach 320kmh-1 (DfT 2009). This has contributed to a significant rise in rail patronage levels 

through both increased passenger numbers and increased distances being travelled. 

Considering travel on the rail network in more detail however, presents a slightly less 

homogeneous situation than the headline figures would suggest, with trains at the highest 

travel speeds only tending to serve a small subset of the total number of train stations, with 

travellers from the remainder relying on slower ‘stopping’ services to act as feeder trains into 

the high-speed subnet. 

To truly understand typical travel times within a rail network therefore, it is necessary to 

understand not only the need to change trains when there is no direct service between stations, 

but also to cope with potential differing levels of service along the same sections of track. This 

paper therefore attempts to derive a methodology for determining rail network ‘accessibility’, 

based on averaging the minimum theoretical travel times from each station to all other stations 

in the rail network. By applying this methodology to the route between Weymouth and 

London Waterloo stations (Figure 1), the impact of high-speed and stopping services is clearly 

demonstrated. 

 



 
FIGURE 1.  Weymouth to London Waterloo rail route (after Network Rail 2009) 

2. Timetable Data 

To ensure realistic distributions of both travel times and patterns of stations served by 

different stopping and high-speed train services, the base data for this paper is taken from the 

(December 2007) weekday timetabled passenger trains which stop at more than one of the 

fifty-four stations on the 235km ‘South West Main Line’ between Weymouth and London 

Waterloo. The base data is produced by identifying the minimum travel time for any train 

stopping at each pair of stations. This produces an asymmetrical travel time matrix as some 

pairs of stations are visited by trains travelling in one direction only (e.g. there exists a direct 

train from West Byfleet to Southampton Central, but not a direct train from Southampton 

Central to West Byfleet), and buffer times built into the timetables to account for anticipated 

delays on approach to busy stations (e.g. London Waterloo) lead to slightly higher travel times 

towards these stations than away from them. 

It should be noted here that this data represents the minimum scheduled travel time by any 

single train between each pair of stations on the South West Main Line route. It does not 

therefore represent frequency of service (some pairs of stations may only be served by one 

train per day whereas other pairs often have multiple trains per hour) or efficiency in 

timetabling to ensure that passengers can make connections between trains with the minimum 

of delay. There may also be situations where train services exist between two stations on the 

South West Main Line route, but that the service does not solely use the direct route. The most 

noticeable effect of this is on Queenstown Road station which has direct connections to 

stations between Clapham Junction and Woking via other routes only. This results in 

minimum travel times to and from Queenstown Road being significantly longer than would 

otherwise be expected. 

3. Graph Theory 

The simplest method of determining accessibility within the rail network is to consider only 

the physical connectivity. Consider therefore the (topologically) linear graph (G1) representing 

the railway line and set of stations (N) through Southampton (Figure 2), with the number of 

stations (nodes) |N| = 6 and allowing bi-directional travel along each edge. While being a 

connected graph is a prerequisite to functioning as a transport network, it is immediately clear 

that levels of connectivity are at the theoretical minimum, with node connectivity Κ(G1) = 

edge connectivity Κ’(G1) = 1 and the maximum degree ∆(G1) = 2. 
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FIGURE 2.  Distances (km) between Southampton stations 

 

Considering only stopping services (i.e. those which do not pass through a station without 

allowing passengers to board/alight there) and therefore identifying the minimum travel time 

between adjacent (connected) pairs of stations provides the travel time matrix T given below, 

with tik = tij + tjk when station j is located between stations i and k in Figure 2. 
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Transforming T into estimates of accessibility for each station (A) can be done through 

averaging the reciprocals of travel times (3.1). The use of reciprocals allows for two issues to 

be addressed, firstly the need to allow for infinite travel times (in subsequent analysis where 

pairs of (non-adjacent) stations which are not served by a direct train service will be 

considered) and secondly that the benefit of a unit change in travel time perceptually tends to 

zero as the base travel time tends to infinity. Perhaps a more useful measure of accessibility 

however is ‘relative accessibility’ (A′) defined by (3.2), which enables a fairer comparison 

between networks of different geographic sizes (where stations in (geographically) larger 

networks will tend to have lower accessibility simply due to the larger travel distances 

involved). 
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It is worth noting however that defining accessibility (as here) based on travel times from a 

station may give a different picture to a definition based on travel times to the same station. 

For stations where there is a high level of demand compared to the number of available 

platforms (especially London Waterloo in this example), additional buffer times may be built 

into the timetable to protect against possible delays, but such times would not be added to 
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services leaving the station. With the possible exception of this small group of very busy / 

bottleneck stations however, the differences in accessibility between journeys from and 

journeys to the station will likely be negligible and therefore journeys from the station will be 

used for the accessibility calculations in this paper. 

Using (3.2) to calculate relative accessibility for the six Southampton stations (Figure 2) 

gives relative accessibility values of A′ = (0.66, 1, 1, 0.81, 0.94, 0.79), suggesting as would be 

expected that the internal node stations have higher accessibility than end node stations. The 

lower relative accessibility for St. Denys station (0.81) is related to the higher distances from 

St. Denys to its adjacent stations compared to the other stations, which causes slightly higher 

travel times from St. Denys to Swaythling and Southampton Central and thus a lower relative 

accessibility. While realistic within the small number of stations being considered at this stage 

of the analysis however, this effect is comparatively less significant when applying the same 

methodology to the fifty-four stations on the full Weymouth to London Waterloo route. 

4. Theoretical Frameworks 

While the simplistic approach above of basing travel times on the cumulative travel times 

between adjacent pairs of stations clearly does not represent the true mix of train speeds and 

diversity of train services, it does illustrate that the ‘between all station pairs’ travel time 

matrix is the fundamental basis for the calculations. To derive a more realistic travel time 

matrix however, it is necessary to consider (firstly) the issue of high-speed services. These 

services can be represented within the graph as edges running parallel to the topologically 

linear representation used in Figure 2 above, with Figure 3 representing the typical situation 

on the subset of stations between Southampton and Winchester inclusive. It can be seen that 

while stopping services visit all stations on the route, high-speed services achieve lower travel 

times, but only visit a subset of stations (Southampton Central, Southampton Airport and 

Winchester in this example). 

While this formulation allows for both high-speed and stopping train services however, it 

does not truly represent the situation faced by a traveller, because it does not differentiate 

between the time taken for a traveller to change trains at a station and the time taken for a 

traveller to simply enter the station and leave on the same train (a minimal time which is 

already accounted for in the timetable data and hence in the travel time estimations). Because 

only typical travel times are required for estimating accessibility, rather than specific 

timetabled differences in arrival and departure times, this changing trains delay can be 

represented as a penalty for each node (station) visited on the path of the form C, where 

ci = fn(size and complexity of station i) as larger multi-platform stations would typically 

require larger interchange times. 

 

 

 

 
FIGURE 3.  High-speed and stopping services between Southampton and Winchester 
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FIGURE 4.  Fully connected graph of journey interchange points 

 

Incorporating these penalties into the travel times by applying them to every edge leaving a 

node (t′ij = tij + ci) enables accessibility to still be calculated from a travel times matrix using 

(3.2), but this will lead to an additional penalty of ci for all journeys starting at station i. While 

this may be true for a traveller in reality as few journeys truly start at the point of getting on 

the first train, the appropriate interchange cost (ci) for the station of origin needs to be 

subtracted from the calculated overall journey travel times to ensure a fair accessibility 

comparison. 

To ensure that the interchange penalties (C) are only applied to travellers who change trains 

at a station the network graph must be redrawn so that each edge represents a single train 

between interchange points (or journey origin / destination stations), regardless of any stations 

that it passes through en-route (whether it stops at them or not). For example see Figure 4, 

where the top edge represents a journey on one train between the end node stations, either a 

direct high-speed service or a stopping service if no high-speed service exists. Travellers using 

this edge of the graph would therefore not incur interchange penalties at the intermediate 

stations even if the train did physically stop there. 

It should be noted here that for a single rail line with stopping services visiting all stations, 

this formulation will lead to a fully connected graph (∀i,j ∃ tij), but in general it may be 

necessary to add additional edges (with tij = ∞) for pairs of stations not served directly by any 

single train to achieve this state. The full formulation of the travel time matrix T′ representing 

the interchange time and minimum travel time for all trains serving each pair of stations is 

therefore given by (4.1) with the relative accessibility calculated using (3.2) with values from 

T′ substituted for those from T.  
  









∞

+=′ iijij ct

0

t:

  

4.1. Shortest Path Approach 

Basing relative accessibility calculations on T′ however implicitly assumes that travellers 

use only direct trains to travel between their origin and destination station, an invalid 

assumption as (a) journeys are possible in reality between pairs of stations not both served by 

a direct train and (b) even if a direct train between a pair of stations exists its travel time may 

not be optimal if it is a stopping service. This assumption is unnecessary however, as the 

change from a topologically linear to a fully connected graph structure now means that 

travellers effectively face a choice of paths through the graph, between which it is necessary to 

identify the minimum time route (usually referred to as the ‘shortest path’). Indeed the mixture 

of high-speed and stopping services implies that even an assumption of monotonic direction of 

travel cannot be assumed as it maybe advantageous between some station pairs to move 

if i = j 

if i ≠ j and a train service from i to j exists 

if i ≠ j and no train service from i to j exists 

(4.1) T′ 



counter to the prevailing (geographic) direction of travel to utilise stations served by a high-

speed service (see Figure 5 - where [values] represent theoretical t′ij). 

 

 
FIGURE 5.  Reverse travel in optimal route 

 

Solutions to the problem of finding the shortest path between a single pair of nodes are well 

established, with the commonest being Dijkstra’s and the A* algorithms. While these 

algorithms could be applied in this situation to generate T′′ (a matrix of minimum travel times 

by any combination of train services), this would be computationally inefficient as the 

requirement here is to find the shortest path between all pairs of nodes. Taking Dijkstra’s 

algorithm as an example, the worst-case performance for finding a single shortest-path is 

usually given as O( |E| + |N| ln|N| ) where |E| is the number of edges and |N| the number of 

nodes (stations) in the graph (Cormen et al. 1991). In a fully connected network where 

|E| = |N|2 this becomes O(|N|(ln|N|+|N|)) and therefore applying the algorithm independently to 

|N|(|N|-1) possible journeys gives a worst case in excess of |N|4. While this worst-case could 

easily be improved on in practice (e.g. by allowing the algorithm to traverse all nodes within 

the graph from each starting node rather than terminating when a specific end node is reached, 

or reusing information about known shortest paths stored from earlier computations) this is 

still inefficient compared to algorithms designed specifically for solving all-pairs shortest path 

problems directly. 

4.2. The Floyd-Warshall Algorithm 

The widely established Floyd-Warshall algorithm (see Cormen et al. 1991 for example) is 

specifically designed to identify the shortest paths between all pairs of nodes in a fully 

connected graph with no negative cycles, with O(|N|3). This is precisely the situation with T′ 

where all pairs of nodes are connected by a single edge (albeit potentially of infinite travel 

time) and all individual edge travel times must be positive (from (4.1) ∀ i,j tij > 0 if i ≠ j and 

tij = 0 if i = j). Rather than considering paths radiating from each individual node in turn, the 

Floyd-Warshall algorithm considers first all paths of length 1 edge (hence the need for a fully 

connected graph), then all paths of at most 2 edges etc. until all paths up to at most |N|-1 edges 

have been considered (the algorithm can terminate at this point as the absence of negative 

cycles means that paths containing more than |N|-1 edges cannot produce lower total travel 

times).  

Drawing parallels to the situation faced by a traveller considering the quickest way to make 

a journey, the traveller would be first considering the time taken to use a single train from 

origin to destination, then consider all possible journeys including one change of train (at any 

other station in the network other than the start and end stations) to identify if any are quicker, 

then journeys containing two changes of train etc.. Because the Floyd-Warshall algorithm 

considers all possible k-1 edge journeys before considering k edge journeys however this 

simply reduces to calculating the (known) minimum k-1 edge journey to the final interchange 

station plus the additional time taken to travel from the final interchange node to the end 

station, and then selecting the minimum.  

Formally, the Floyd-Warshall algorithm defines T(k) to represent the minimum travel times 

between pairs of stations using at most k edges (trains), using T(1) = T′ and calculating T(k) for 

2 ≤ k ≤ |N|-1 through the dynamic programming formulation given in (4.2). 
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FIGURE 6.  Station accessibility with C = 0 

5. Results 

Defining the basic (direct train) travel time matrix (T′) using (4.1) and applying the 

Floyd-Warshall algorithm in (4.2) therefore enables a calculation of the accessibility (A) and 

relative accessibility (A′) of the |N| = 54 stations on the South West Main Line between 

Weymouth and London Waterloo. 

5.1. Zero Interchange Penalties 

The first results to consider are those where ∀ i ci = 0, i.e. where there is assumed to be no 

minimum interchange time at any station and therefore no penalty on a traveller for changing 

trains. Although unrealistic in practice this gives an upper bound on accessibility by 

representing the perfect timetabling (and station design) system. By considering different 

maximum values of k (the maximum number of different edges (trains) used to create the 

journey) these results (Figure 6) clearly show the impact of high-speed and stopping services. 

When only direct trains are considered (the lowest line in Figure 6) accessibility values 

(excluding Queenstown Road) fall in the range 0.016 (Weymouth) ≤ ai ≤ 0.051 (Surbiton), but 

as soon as a change of trains is allowed (k = 2) this range increases to 0.019 ≤ ai ≤ 0.057 as (a) 

travellers from stations only served by slower stopping trains can begin to take advantages of 

high-speed services for longer travel distances and (b) some journeys which were not possible 

by direct trains (t(1)
ij = ∞) can now be completed. 

Increasing the maximum number of trains to k = 3, means that almost all (longer distance) 

travel can now take advantage of faster trains (the range of accessibilities increasing slightly to 

0.019 ≤ ai ≤ 0.059), with the benefit most noticeable at stations not served by high-speed 

services (e.g. Esher, Hersham, Walton-on-Thames, Weybridge, etc.) as k = 3 allows travel 

from these stations to other ‘non high-speed’ stations to utilise a high-speed service between 

two stopping services to achieve a lower travel time. Beyond k = 3 however improvements in 

accessibility values are small with there being little difference between k = 4 and k = 53 (the 



theoretical maximum for |N| = 54 stations), both giving ranges of accessibility of 

0.020 ≤ ai ≤ 0.059. 

Using the minimum possible travel times (i.e. k = 53) and plotting the relative accessibility 

(A′) rather than absolute accessibility (A) allows the overall situation to be examined. The 

general underlying pattern (Figure 7) follows the expected ‘dome’ shape with stations towards 

the middle of the route having higher accessibility than those close to the end nodes of 

Weymouth and London Waterloo, but two other effects are also noticeable.  

The clearest deviation from the expected dome-shape pattern is the low relative accessibility 

of stations between Woking and Eastleigh. Being located towards the centre of the route these 

stations would be expected to have high relative accessibilities, but they actually all have 

values of a′i ≤ 0.8. To understand the reason for this it is necessary to consider the impact that 

using reciprocals has within the accessibility calculations. Reciprocals are used to recognise 

that the benefit of a unit change in travel time perceptually tends to zero as the base travel time 

tends to infinity, i.e. that differences between small travel times should have a greater impact 

than the same differences between large travel times. The stations between Woking and 

Eastleigh are located between the two dense clusters of stations around outer London and 

Southampton. This leads to them having greater travel times to adjacent stations than would 

likely have been the situation if the stations were more evenly spread. These comparatively 

high travel times do therefore represent a lower accessibility from these stations and this 

impact is therefore reflected in the accessibility calculations and results. 

The second effect that can be identified in Figure 7 is the benefits to accessibility of 

high-speed services. Even allowing for travellers to change between stopping and high-speed 

trains, those stations served directly by high-speed services do have slightly higher relative 

accessibilities. This effect is most evident outside of London (for example the six stations 

marked with arrows in Figure 7), where stations are generally more widely spaced and hence 

the benefits of higher-speed travel are magnified.  
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FIGURE 7.  Station relative accessibility with C = 0 
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FIGURE 8.  Station Accessibility with C = 5 

5.1. Non-zero Interchange Penalties 

While the inclusion of non-zero interchange penalties within the calculations does not affect 

the overall pattern of accessibility (Figure 8), it does have an impact on the choices of paths 

through the graph and the resulting overall accessibility values. The clearest consequence of 

this is that fewer individual trains are used to produce the optimal journeys, with the small 

reductions in travel times which were being achieved by adding (for example) a 4th or 5th 

separate train into a journey (Figure 6) not outweighing the interchange cost incurred by doing 

so. This result actually illustrates that the underlying timetable for the route is essentially 

consistent, with most optimal journeys consisting of at most three trains (e.g. a stopping 

service, high-speed service and stopping service) rather than it being possible to achieve 

significant travel time savings by making multiple changes en-route.  

6. Conclusions 

This paper has therefore revealed that the ideas of accessibility which are normally applied 

to comparatively high connectivity road systems can be equally applied to a linear rail route. 

By understanding that a mixture of high-speed and stopping services (and the penalties 

associated with travellers needing to change between services) can be represented using a 

more connected graph structure, the problem of finding the minimum travel time between any 

two pairs of stations has been shown to be equivalent to the traditional all-pairs shortest path 

problem for which efficient solution algorithms exist.  

Applying one of these algorithms (Floyd-Warshall) to the transformation of passenger 

timetable data from the South West Main Line between London Waterloo and Weymouth has 

enabled the impacts of high-speed services, station density and interchange penalties to be 

combined. This has shown that stations in the middle of the route (between Woking and 

Eastleigh) have significantly lower accessibility than would have originally been anticipated. 

Identifying the relative accessibility of stations in this way provides a simple mechanism for 



rail operators to understand both the current situation and how planned timetable changes will 

have either a positive or negative impact on travelling from different stations.  

To achieve maximum benefit this analysis needs to be extended beyond a topologically 

linear route to include multiple connected routes (Figure 1) and allow comparisons between 

peak, off-peak and weekend travel. Achieving this however is simply a matter of processing 

the data to create the direct trains travel time matrix (T′), as although the methodology 

presented here was developed for a linear route and weekday services, no changes are 

necessary to relax these conditions and enable analysis of more complex situations. 
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