The University of Southampton
University of Southampton Institutional Repository

Kinetic study of anaerobic digestion of fruit processing wastewater in immobilized cell bioreactors

Kinetic study of anaerobic digestion of fruit processing wastewater in immobilized cell bioreactors
Kinetic study of anaerobic digestion of fruit processing wastewater in immobilized cell bioreactors
The kinetics of the anaerobic digestion of a fruit-processing wastewater [chemical oxygen demand (COD) = 5.1 g/l] were investigated. Laboratory experiments were carried out in bioreactors containing supports of different chemical composition and features, namely bentonite and zeolite (aluminum silicates), sepiolite and saponite (magnesium silicates) and polyurethane foam, to which the microorganisms responsible for the process adhered. The influence of the support medium on the kinetics was compared with a control digester with suspended biomass. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constant, K0, was determined for each of the experimental reactors. The average values obtained were: 0.080 h-1 (bentonite); 0.103 h-1 (zeolite); 0.180 h-1 (sepiolite); 0.198 h-1 (saponite); 0.131 h-1 (polyurethane); and 0.037 h-1 (control). The results indicate that the support used to immobilize the micro-organisms had a marked influence on the digestion process; the results were significant at the 95% confidence level. Methanogenic activity increased linearly with COD, with the saponite and sepiolite supports showing the highest values. The yield coefficient of methane was 270 ml of methane (under standard temperature and pressure conditions)/g of COD. The average elimination of COD was 89.5%.

0885-4513
79-92
Borja, R.
ed513484-04ff-4424-ab79-dc715ca63146
Banks, C.J.
5c6c8c4b-5b25-4e37-9058-50fa8d2e926f
Borja, R.
ed513484-04ff-4424-ab79-dc715ca63146
Banks, C.J.
5c6c8c4b-5b25-4e37-9058-50fa8d2e926f

Borja, R. and Banks, C.J. (1994) Kinetic study of anaerobic digestion of fruit processing wastewater in immobilized cell bioreactors. Biotechnology and Applied Biochemistry, 20, 79-92. (PMID:7917066)

Record type: Article

Abstract

The kinetics of the anaerobic digestion of a fruit-processing wastewater [chemical oxygen demand (COD) = 5.1 g/l] were investigated. Laboratory experiments were carried out in bioreactors containing supports of different chemical composition and features, namely bentonite and zeolite (aluminum silicates), sepiolite and saponite (magnesium silicates) and polyurethane foam, to which the microorganisms responsible for the process adhered. The influence of the support medium on the kinetics was compared with a control digester with suspended biomass. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constant, K0, was determined for each of the experimental reactors. The average values obtained were: 0.080 h-1 (bentonite); 0.103 h-1 (zeolite); 0.180 h-1 (sepiolite); 0.198 h-1 (saponite); 0.131 h-1 (polyurethane); and 0.037 h-1 (control). The results indicate that the support used to immobilize the micro-organisms had a marked influence on the digestion process; the results were significant at the 95% confidence level. Methanogenic activity increased linearly with COD, with the saponite and sepiolite supports showing the highest values. The yield coefficient of methane was 270 ml of methane (under standard temperature and pressure conditions)/g of COD. The average elimination of COD was 89.5%.

This record has no associated files available for download.

More information

Published date: August 1994

Identifiers

Local EPrints ID: 75504
URI: http://eprints.soton.ac.uk/id/eprint/75504
ISSN: 0885-4513
PURE UUID: 889df397-6ce9-41b6-8e30-2bba1e9ca5a0
ORCID for C.J. Banks: ORCID iD orcid.org/0000-0001-6795-814X

Catalogue record

Date deposited: 11 Mar 2010
Last modified: 23 Jul 2022 01:40

Export record

Contributors

Author: R. Borja
Author: C.J. Banks ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×