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Abstract. The relationship between the scaling properties of faulted geological surfaces and 
parameters describing the underlying fault population are investigated using simulations of a 
dip-slip faulted surface. Analysis of multiple simulations of sections through the surface 
allowed the construction of a statistical relationship between the parameters defining the fault 
population and the fractal dimension of the surface. The results indicate a direct, if complex, 
relationship between the fault population and the scaling of the surface roughness. The main 
determining factor is the displacement distribution, with spacing and dip having only a minor 
contribution. This relationship is tested against examples from the Moray Firth, Scotland, and 
the central Indian Ocean. 

1. Introduction 

Natural topographies have generally been shown to be self- 
affine fractals by studies of exposed rock surfaces [e.g. 
Mandelbrot, 1977; Brown and Scholz, 1985; Farr, 1992; 
Huang and Turcotte, 1989]. A self-affine fractal is 
anisotropic; one co-ordinate scales differently from the other, 
so that in two dimensions (rx, rHy) is statistically similar to 
(x, y), where H is the Hurst exponent and r is the scaling 
factor. The anisotropy inherent with self-affine fractals means 
that care must be taken when selecting measurement methods 
for the fractal dimension: techniques such as the length 
estimator or roughness scaling, as described later, may be 
used; box-counting and ruler methods are inappropriate (see 
Malinverno [ 1995], for more discussion). 

Many authors have investigated the fractal properties of 
topographic sections, from the continents to ocean floor 
topography (see Turcotte [1992] and Malinverno [1995] for 
reviews). Less work has been directed at relating these 
properties to the processes responsible for their formation. 
King [1983] proposed two main processes which might result 
in a fractal topography; faulting and erosion. In this paper 
consideration is given to the contribution of faulting and more 
particularly to the relationship between dip-slip fault 
populations and the roughness of the faulted surface they 
produce. 

Deriving this relationship has both fundamental and 
practical value. Linking the observable geometries to 
geological processes provides a basis for interpreting such 
processes. On a more prosaic level, measurements of the 
fractal properties of surfaces are more easily obtained than 
underlying fault displacements, which are based on 
interpretation and measurement of individual faults. The 
description of the fault population that can then be derived 
has particular value in predicting sub-resolution faulting for 
both crustal extension estimates and other applications within 
the petroleum and mining industries [Childs et al., 1990; 
Scholz and Cowie, 1990; Pickering et al., 1995, 1997]. 
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The most detailed previous study of surface roughness due 
to faulting was by Malinverno and Cowie [1993]. Their 
approach considered a simple model of vertical faults 
offsetting an elastic plate, overlying an inviscid fluid. The 
expected topography was calculated analytically, using a 
mechanical model of the response of the plate to the faulting. 
Their aim was to quantify the contribution of normal faulting 
to the roughness of bathymetric profiles across mid-ocean 
ridges. They assumed the fault displacement population was 
negative exponential, as there is some evidence that fault 
populations at mid-ocean ridges follow such a distribution 
[Cowie et al., 1994]. Their analysis is not directly applicable 
to continental and non ridge related oceanic fault 
displacement populations, as these are typically power law 
distributed [e.g. Kakimi, 1980; Childs et al., 1990; Walsh et 
al., 1991; Bull and Scrutton, 1992; Jackson and Sanderson, 
1992; Pickering et al., 1994], particularly in the case of 
normal fault and reverse fault populations, which are the topic 
of this paper. Moreover, it is unlikely that their relatively 
simple elastic model is applicable to more complex 
continental tectonics. 

In this paper, the faulted horizon is modeled as a horizontal 
surface offset by faults, without including the flexural 
response due to the faulting. This approximation is reasonable 
for two reasons. First, it is unlikely that there is any 
significant flexural response for normal or reverse faults with 
throws significantly less than the crustal thickness, as these 
are highly likely to be intra-crustal. Second, the flexural 
response of the largest faults, which may penetrate through 
the crust, will not contribute to the roughness measurements 
of the surfaces except at the largest length scales, due to the 
relatively long wavelength of such a response. As the bulk of 
the measurements made are at small length scales, the 
comparison between the model sections and the natural 
sections will not be compromised. 

A simulation was made in which a series of faulted 

sections were analyzed to find the average roughness due to a 
particular fault population. The advantage of this technique is 
that the simplifications needed for an analytical solution can 
be avoided, allowing investigation of complex geometries. In 
this work, sections rather than surfaces were used as (1) the 
fractal dimension of a section (F•o) is simply related to the 
dimension of the surface F2D by: 
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[e.g. Feder, 1988] and (2) fault populations are routinely 
measured using sections and the parameters derived can be 
easily related to the fault population in higher dimensions 
[Marrett and Allmendinger, 1991 ]. 

The relationship between the roughness of the section and 
the fault population was derived by changing the parameters 
describing the population and measuring the fractal dimension 
of the resulting section. Before outlining the simulation, the 
analysis methods used to measure the fractal dimension of a 
self-affine curve are described. The simulation is then 

discussed in detail together with the results of tests designed 
to find which parameters are most important in determining 
the roughness of the horizon. The simulation is then 
compared to the results of analyses of faulted horizons 
derived from seismic sections from the Moray Firth, NE 
Scotland, and the Indian Ocean. 

2. Methods of Data Analysis 

The first step in the fractal analysis of self-affine profiles is to 
sample the profile at regular intervals to produce a series. The 
three most common analysis methods applied to these series 
are (1) roughness scaling methods, (2) scaling of a length 
estimator, and (3) spectral analysis. In this paper, only the first 
and second methods are used due to difficulties in applying 
the spectral techniques to this particular problem, as discussed 
later. 

2.1. Roughness scaling methods 

These methods are based on the relationship between the 
average dispersion of a sub set of a series and the size of each 
sub-set. For a time series this dispersion is usually defined as 
the root-mean-square (rms) deviation of the members of the 
subset from the mean. The rms deviation (6) is a measure of 
the roughness of the profile. The size of the subset is the 
number of values multiplied by the sample interval; for 
topographical sections this corresponds to the horizontal 
length (1). For a self-affine fractal: 

ty = y 1 n (2) 

where H is the Hurst exponent [Mandelbrot, 1977] and ?'is a 
constant. F is simply related to H by [Mandelbrot, 1985]: 

F = 2 -H (3) 

There are different methods of employing equation 3 to find 
the fractal dimension of a profile or time series. The simplest 
is that recently described by Ivanov [1994]; referred to as the 
"scaling of internal dispersion". The series is divided into sets 
of equal length, and the rms deviation from the mean (ty) is 
calculated for each one. These values are then averaged to 
give <o'>. By varying the length of these subsets, the 
relationship between <o'> and length can be derived, giving 
the value of H and F (Fz). A similar method was employed by 
Malinverno and Cowie (1993) to calculate F•4c, where rather 
than the deviation from the mean, the deviation from a line fit 
using a least squares method was calculated. The two 
measures of dispersion are similar; however they do give 
somewhat different results, as will be discussed later. 

2.2. Length estimator method 

This method was developed by Higuchi [1988] and has 
been applied to various geological problems [Schulz et al., 
1994]. Consider a time-series X of N values; 

X(1), X(2), X(3) ...... X(N) (4) 

new time series are constructed from X, defined as follows: 

X•' : X(m), X(m + k), X(m + 2k) ...... 

X(m + ß k) (m = 1,2 ..... k) (5) 
k 

where brackets denotes integer notation, and both k and m are 
integers. Variable m gives the initial time for each sub series, 
k is the interval. For any given k, there are k sets of new time- 
series. For example, if k = 3 and N = 100, then three series are 
obtained: 

X• ' X(1), X(4), X(7) ...... X(97), X(100) 

X• ' X(2), X(S), X(8) ...... X(98) (6) 

X s s' X(3), X(6), X(9) ...... X(99) 

The length of the curve Xkm is defined as follows: 

[.] 

Lm(k) = • I X(m+ ik) - X(m + (i- l).k)l N- I (7) 
i=! [..].k 

where (N-l)/[..].k is the normalisation factor and: 

[..] = IN-ml (8) k 

The length of the curve for the time interval k is defined as the 
average value over k sets of Lm (k), (<L(k)>). If the time series 
represent a fractal curve then: 

< L(k) > o• k -(r") (9) 

where F is the fractal dimension (Ft•E). Graphs of <L(k)>/k 
are usually plotted against k, as these yield F directly. Note 
that for a series where the sample interval is •: 1, k is the 
number of sample intervals rather than the size of the analysis 
interval. Higuchi [1988] demonstrates that the method is a 
significant improvement on other curve-length estimator 
methods [e.g. Burlaga and Klein, 1986] and it gives the 
expected results on simulated data with known fractal 
dimension. The method is similar to the scaling of "structure 
functions" used by Weissel et al. [ 1994]. 

2.3. Spectral Analysis 

This is the most common technique applied in the literature 
to measure the scaling properties of series. A Fourier 
transform of the series is taken, producing an amplitude 
spectrum. For a fractal curve this amplitude spectrum should 
have the form [Berry and Lewis, 1980]: 

A -_- f-(s/2-r) (10) 

where A is the amplitude at frequency f and F is the fractal 
dimension. The exponent of the amplitude spectrum is 
commonly referred to as b, therefore b = - (5/2 - F). 

This simple relationship can only ever be an 
approximation. The fractal dimension F for a two dimensional 
profile must lie between 1 and 2 by definition [Mandelbrot, 
1977]. This corresponds to -3/2 _< b _< - 1/2. However, it is 
possible to produce a profile with an amplitude spectrum with 
a value of b less than -3/2. Such a profile would have a fractal 
dimension close to 1, but not less than 1. It is equally possible 
to produce a section with b >-1/2, but again this must have a 
fractal dimension _< 2. This problem was addressed by Fox 



PICKERING ET AL.' FAULT POPULATIONS AND SURFACE ROUGHNESS 2693 

[1989]. For values of b _> - 0.5 the fractal dimension 
approached 2.0, but never exceeded 2.0. A fractal dimension 
of 2.0 implies a plane filling curve. This is impossible for an 
ordered time series, as there can only be one y value for a 
given x value. Similarly at b _< - 1.5 the fractal dimension 
never equaled 1, but asymptotically approached 1. Fox [1989] 
derived an empirical relationship between b and F which can 
be used to more accurately determine F from b. 
Unfortunately, there are additional problems with using the 
spectral method. First, spectra derived from real data are often 
very noisy [e.g. Turcotte, 1992, p. 82], and long sections are 
required to find a reasonably stable value of b. Second, there 
is a particular problem in removing the average dip from 
faulted sections. 

The amplitude spectrum of a sloping straight line (e.g. a 
triangle function or ramp) is power-law with b = -1.0. [e.g. 
Kreyszig, 1988, p. 599]. Applying F = 5/2 + b, would give a 
F = 1.5, using the results of Fox [1989] gives F = 1.47. A 
simple sloping line actually has a fractal dimension F of 1.0. 
Any profile with an average slope will give a power law 
spectrum with b -- -1.0, irrespective of the true fractal 
properties. To avoid this problem it is necessary to remove 
any average slope, or regional dip with respect to horizons. 
This is common practice, however Weissel et al. [1994] 
suggest that such de-trending may alter the underlying scaling 
properties, as it has a disproportionate effect on the 
topography at larger length scales. More importantly, if a 
section has two average slopes, they cannot both be removed 
prior to analysis. A section with a set of normal faults has two 
significant slopes within it, the regional dip of the horizon and 
the average dip of the large fault planes. If an attempt is made 
to remove one dip, then the other will remain. This leads to 
the spectra of these sections giving values of b close to -1.0, 
irrespective of the true roughness. Therefore this method has 
not been used for the sections in this paper. 

3. Analysis of Roughness of Simulated Faulted 
Horizons 

The true roughness of a faulted horizon will not only 
depend on the offsets caused by the faults, but also on the 
physical roughness of the fault planes and the horizon itself. 
Here the assumption is made that the roughness of the fault 
plane and the horizon is of significantly smaller magnitude 
than that produced by the fault offsets and is therefore 
neglected. A simple model is used of a horizontal surface, 
offset by parallel normal faults with faults down-throwing in 
either direction with equal probability. A vertical section is 
then taken through this horizon, perpendicular to the strike of 
the faults. Within the model there are several parameters that 
will determine the fractal dimension. These include the fault 

displacement population, the positioning of the faults, and 
...... dip •au•t . 
related oceanic fault populations which have been shown to 
follow a power law distribution of displacement. For 
consistency with Pickering et al. [1995] the cumulative 
definition is used to define the fault displacement population: 

-D 

N = cu (11) 

where N is the number of faults _> u. Models for the 

positioning of faults are less well developed, and are 
frequently based on the distribution of the spacings between 
faults along dip sections. Resolution limited sections cannot 
reliably differentiate between different spacing populations, 
as the spacings between the visible faults are not drawn from 
the true underlying spacing distribution. Studies of faulting at 
outcrop where the minimum resolution is closer to the real 
limit of the fault population, have suggested a clustered 

distribution rather than a uniform one, but whether this is 
closer to negative exponential or power law is still not clear 
[e.g. Gillespie et al. 1994]. Line et al. [1997] find a negative 
exponential distribution for a fault set cutting dolerite sills in 
central Sweden. 

The dip of normal faults varies from close to vertical. down 
to 30 ø or less depending on the depth of the fault within the 
crust and the detailed mechanics of the faulting [Jackson and 
McKenzie, 1983]. Within a simulation, the effect of each 
parameter on the fractal dimension can be quantified and 
tested for statistical significance. In each simulation run the 
section has the same statistical properties; however, the order 
of the faults on the section and the spacings between them are 
picked at random from the chosen distributions. 

3.1. Varying the displacement population D value 

The effect of the D value of the fault displacement 
population on F was analyzed using synthetic sections with 
vertical faults with a maximum (arbitrary) displacement of 3.0 
and D values varying from 0.5 to 2.0 at intervals of 0.1. 
Example sections are shown in Figure 1. The scale range of 
the sections was held constant by varying the number of 
faults, for example, at D = 2.0, 10,000 faults were required, 
whereas at D = 1.0 only 100 faults were used. The scale range 
of the fault population on each section was held constant 
because, as demonstrated in Figure 2, varying the resolution 
limits for a constant D value of the fault population can cause 
a variation in the measured fractal dimension. The estimates 

of F from the dispersion methods remain relatively constant 
until the population is reduced to -100, below which the 
values rapidly decrease. The length estimator method is more 
sensitive to the scale range limitations of the data, with F 
values falling below a sample size of - 300. In order to 
remove this effect from the simulation results the scale range 
of the population must be constant. Two orders of magnitude 
were chosen to be analogous to the typical scale range on 
seismic sections, and 10,000 was the limit for the largest 
number of faults that could be used. The faults were 

positioned randomly, producing a negative exponential 

(a) 

(b) 

(c) 

(d) 

Figure 1. Examples of the sections produced and analyzed in 
the simulation. The faults are all vertical and follow a power 
law distribution of displacement with a constant scale range. 
The spacing population for these examples is negative 
exponential. The faults face in either direction with equal 
probability. The D value of the population and the number of 
faults in each example are (a) 0.5 - 10, (b) 1.0 - 100, (c) 1.5 - 
1000 and (d) 2.0 - 10,000. The horizontal and vertical scales 
are arbitrary and make no difference to the fractal dimension 
of the self-affine scaling of each section. 
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Figure 2. Graph showing the effect of truncating the fault 
population on the measured fractal dimension. All the 
sections analyzed had displacement populations with D = 1.0 
and a negative exponential spacing set. The scale range of the 
faults was changed by varying the number of faults while 
keeping the maximum fault size constant. All three F 
measures are reduced by truncating the population, 
particularly at scale ranges lower than two orders of 
magnitude. 

distribution of spacings with an average spacing <s> which 
varied so that all the sections were ~ 100 arbitrary units long. 
Varying the maximum fault size (and <s> as will be discussed 
later) will have no effect on the fractal dimension (F). At least 
1,000 sections were produced for each D value. Each one was 
sampled producing a series of 512 values, which were then 
analysed using the methods described earlier. 

Figure 3 shows an example of the typical graph produced 
for each analysis method for a section produced from a D 
value of 1.0. These graphs show a good fit to the single fractal 
model. At each population D value, each set of values of F;, 
F•tc, and F:E form an approximately normal distribution 
(Figure 4). The spread of values may be caused by 
measurement error, if all the sections have the same 
theoretical value of F. Alternatively, it may represent a real 
spread in the actual values of F due to the varying positions of 
the faults and spacings. It is most likely that the spread is a 
combination of the two, although in what proportion is 
difficult to quantify. The mean values of F derived for each D 
value are plotted on Figure 5 together with the associated 
standard deviations. 

As expected, there is an increase in fractal dimension F, 
with increasing population D value (Figure 5). At low 
population D values (_< 0.5), F is close to 1.0 and the sections 
are very smooth. As the fault population D value increases 
above 0.5, the fractal dimension measured by all the methods 
increases, however, the average value of F:E is slightly lower 
than that of the two dispersion methods for D values less than 
1.5. This difference is only marginally significant, and is 
likely to be due to the slightly greater sensitivity of this 
analysis method to the scale limitations of the fault set. At 
high D values the fractal dimension measured by all the 
methods approaches -1.5. This is in broad agreement with the 
results of Malinverno and Cowie [1993], who found a fractal 
dimension of 1.5 for a fault population obeying a negative 
exponential frequency distribution. Scale-limited fault sets 
from such a population are similar to scale-limited sets from a 
power law distributed population with a high D value. 

3.2. Varying the dip of the faults 

The effect of fault dip on the fractal dimension of the 
surface was investigated in a series of simulations in which 
dips were varied at regular intervals from 30 ø to 90 ø . In these 
simulations the fault displacement population was power law 
with D = 1.0, the spacing distribution was negative- 
exponential and each section had 100 faults, with a maximum 
displacement of 3.0. For each simulation, 1,000 sections were 
produced and analyzed. 

The results are shown in Figure 6 and indicate that the dip 
of the faults makes little difference to the values of either Ft 
or Fc•. In contrast the values of F•uc decrease with decreasing 
dip which is likely to be caused by the calculation method. 
The FMc method calculates rr based on the deviations from a 
line fitted using a least-squares criteria. When the faults are 
vertical, the fitted line will never fall on a fault plane as any 
sub-section will always partly include some horizon (Figure 
7a). For dipping faults it is possible for a sub-section to only 
contain a fault plane, in which case the total deviation for that 
sub-section will be zero (Figure 7b). As this is more likely to 
occur the shorter the sub-section taken, the average dispersion 
measured for these short sub-sections will decrease. The 

effect on the rr- 1 graph is to cause an increase in gradient at 
smaller lengths giving a greater average slope. This increases 
the measured Hurst exponent and decreases the measured 
fractal dimension. As this effect is more likely to occur at 
lower angles of dip, the values of F•uc decrease with 
decreasing dip. Although the values of F•uc are systematically 
lower, the differences are small and are related to the method 
of measurement rather than any real physical change in the 
roughness of the surface. 

3.3. Varying the spacing of the faults 

The fractal dimension of the faulted surface may be 
affected by the positioning of the faults on the section. Two 
representative statistical spacing distributions were tested in 
the simulations, a negative exponential distribution, and a 
power-law distribution. The profiles described so far have all 
had a random positioning of faults, that is a negative 
exponential distribution of spacings. These were defined by 
an average spacing <s>. It is important to appreciate that 
reducing <s> does not increase the clustering, it only 
increases the fault density. Reducing <s> will also reduce the 
length of the section for a given number of faults, and 
therefore each fraction of the section will still contain as many 
faults as it did before, and the estimates of F will remain the 
same. 

The clustering can be increased by using a power-law 
distribution of spacings, defined by exponent S. As S is 
decreased, the set of spacings decrease more rapidly with 
cumulative number, and the faults are positioned closer 
together. Therefore spacing populations with lower values of 
S are more clustered than those with high values of S. 
Simulations were made using a series of values of S, ranging 
from 0.25 to 2.0, at intervals of 0.25. The maximum spacing 
was set at 20 for all the simulations. Varying the maximum 
spacing will not affect the fractal dimension, for reasons 
similar to those discussed for varying <s>. The scale range of 
the spacing set will depend on the value of S (for a fixed 
number of faults), as the displacement range depended on D. 
Therefore, high values of S will give a narrow scale range of 
spacings. The results of this simulation are shown in Table 1. 

For high values of S, there is little difference from the 
values calculated for the negative-exponential spaced 
sections. This is expected, as the resolution limited spacing 
sets produced by high values of S will be similar to the 
negative-exponential set of spacings. For the dispersion 
methods, F; and F•tc, the values decrease as S decreases. This 
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can be understood by considering how cf is calculated. The 
values of cf used for the graphs are the average value, of cf 
from all the sub sections at that particular length. A large 
fraction of a section with clustered faulting will contain 
similar numbers of faults as the same fraction of a section 

with more uniformly distributed faulting. These will therefore 
give similar values of cf. In contrast, the majority of small 
fractions of a clustered section will contain no faults at all, as 
they will occur between clusters of faults and give zero values 
of cf, reducing the average value of cf measured at small 
length scales. This will steepen the cr- I graph, increasing H 
and decreasing F. The values of FLE show a different trend. 
There is a small increase in FLE from 1.22 at $ = 2.0-1.5, to 
1.27 at $ = 0.5. The increase is accompanied by an increase in 
the spread of values and may not be significant, but the values 
of F• do not decrease. This is again due to the calculation 
method. This method does not split the sections into small 
fractions, but examines a series sampled at different interval 
sizes. The majority of the curve length will be contributed by 
intervals which include jumps across faults. Therefore the 
curve length is mainly controlled by the size and number of 
faults, but is relatively insensitive to the spacing. 

4. Analysis of Roughness of Natural Faulted 
Horizons 

Several factors need to be considered when relating the 
fractal dimension of a natural faulted horizon to the D value 
of the fault population. Industry standard seismic sections 
only resolve the larger faults (usually 10 m or more of throw) 
and cover 2 orders of magnitude at best. This results in a 
poorly defined D value for individual sections. The fault 
population may also not be ideally power law: although the 
power law model is the best fitting distribution, individual 
sections will vary and may have more large (or small) faults 
than predicted by the ideal model. Therefore the variation in 
roughness may be greater for sections with the same fault 
population D value than in the simulation. The simulations do 
not model the response of horizons to faulting (drag and roll 
over, for example) and this may produce more roughness than 
that predicted by the simulation. 

4.1. SSL-MF89 Moray Firth Seismic Sections 

These sections are derived from the SSL-MF89 survey from 
the Moray Firth. The fault displacement population in the 
Moray Firth has been established previously as power-law by 
Pickering et al. [1994]. There are 21 sections from this set 
which contain sufficient faults to cover the two orders of 

magnitude required to avoid resolution effects in the 

Figure 3. Graphs used to find the values of H and F for a 
typical simulated section. The section contained 100 faults, 
following a power law displacement distribution with D = 
1.0, and a negative exponential spacing set (i.e., similar to 
Figure lb). All three graphs show a good fit to a straight line, 
confirming that the sections are fractal. (a) Graph of cr against 
sub set length (1) calculated using the internal dispersion 
method of Ivanov [1994]. The gradient of a line fit using a 
least squares method gives a Hurst exponent H/= 0.69, hence 
F/= 2 - H• = 1.31. (b) Graph of cr against I calculated using 
the deviation from a best fit line as used by Malinverno and 
Cowie [1993]. The graph gives HMc = 0.71, hence FMc = 1.29. 
(c) Graph of /_dk against k where L is the curve length 
calculated using the method of Higuchi [1988] and k is the 
interval size. The graph yields F• directly, which in this case 
is 1.21. 
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Figure 4. Histograms of the measured values of (a) F/(b) F•tc and (c) FLE, for 5,000 simulated sections. Each 
section contained 100 faults, following a power-law distribution of displacement with D = 1.0. The spacings 
followed a negative-exponential distribution. Each set of F values approximately fit a normal distribution 
(also shown) with (a) mean = 1.30 and standard deviation 0.08, (b) 1.29, 0.06 and (c) 1.20, 0.06. The means 
and standard deviations for a series of these distributions produced by varying the D value of the fault 
population, are shown in Figure 5. 

estimation of surface roughness. The horizon chosen for 
analysis was the Top Triassic as this is a clear reflector and 
was also used in Pickering et al. [1994]. An example section 
is shown in Figure 8. The average D value for the set of 
seismic profiles is 0.84, while individual sections have best 
fitting power-law distributions with D values which vary from 
0.63 to 1.14. Although the population on each section is likely 
to be a random sample from a fault population of D - 0.8, the 
D values for the individual sections may more closely relate to 
the surface roughness, as they better represent the variations 
in faulting between the sections. The spacing distributions 
were not well-defined, although most of the sections gave a 
reasonable fit to a negative exponential distribution and none 
of the sections had faults that were particularly clustered. 

Each section was sampled into a series of 512 values (- 
every 75 m) and then analyzed to find F/, F•tc and FLE. 
Typical graphs for the methods are shown in Figure 8. The 
graphs show a good fit to the single fractal model, which 
precludes any use of more complex multi-scaling analyses. 

The results from all the analyses are summarized in Figure 9, 
with the estimates of F plotted against the D value derived 
from the fault set on each section. Also plotted are the results 
from a series of simulations run with parameters designed to 
match those of the Moray Firth sections. These simulations 
were run with fault displacement population D values from 
0.6 to 1.2. The scale range of the fault set was kept constant at 
2 orders of magnitude, a negative exponential (random) 
spacing was used in the simulations together with a fault dip 
of 70 ø (the average dip of the faults on the SSL-MF89 
sections). The large variation in the F values given similar D 
values means that a single section alone cannot be used to 
accurately predict population D values. However, there is 
agreement between the measured and predicted averages of F 
and D. 

Figure 9a shows the results using the F• method. Most of 
the values of F• fall within the expected range from the 
simulation. As this is only the center 68% of the distribution, 
five or six values in a sample of 21 would be expected to lie 

0.5 t t.5 2 0.5 t t.5 2 0.5 t t.5 2 

D-value (fault population) D-value (fault population) D-value (fault population) 

Figure 5. Plot of the average (a) F•, (b) F•tc and (c) F•e for sections with fault displacement population D 
values varying from 0.5 to 2.0. The number of faults was varied from 10 to 10,000 to hold the scale range of 
the fault set constant at 2 orders of magnitude. The spacing distribution was negative exponential. The mean 
value of F for each set of sections is shown as a solid line. The dotted lines are the mean plus or minus the 
standard deviation of the set of F values at each population D value. The values of F increase from - 1 at D = 
0.5 to - 1.5 at D = 2.0. 
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certain, but there is a clear change in the population, with a 
relative drop in fault frequency. They argued that this change 
in distribution is either caused by the finite thickness of the 
strong brittle layer, or alternatively is due to one of the fault 
sets representing a reactivation of a pre existing fabric with 
the other a new fault set. 

Van Orrnan et al. [ 1995] analyzed a number of north-south 
seismic reflection profiles within the Central Indian Ocean 
Basin and concluded that while the average fault spacing of 7 
km was maintained across the zone of deformation, the 
displacement on the faults increased from west to east (with 
greater distance from the convergence pole) indicating that 
deformation had proceeded by the reactivation of a select 
fault population. With continued convergence across the 
deformation zone the reactivated faults continued to 
accumulate strain while few new faults where initiated. 

The fractal dimension F of the horizon in Figure 10a was 
calculated using the three techniques outlined earlier and the 
results are shown in Figures 10b - 10d. Note that as the 

o;•0 o;•0 o;•0 o=0 

Fault dip 

Figure 6 Graph showing the effect of fault dip on the 
measured fractal dimension. All the sections contained 100 

faults, with a negative exponential distribution of spacings 
and a D value of 1.0. Fault dip was varied from 30 ø to 
vertical. F/and FLe are not significantly affected by fault dip. 
In contrast Fs•c is reduced as dip is decreased (see text). 

outside this band. The average value of F/= 1.25, which is 
close to the 1.22 predicted by the simulation for a D value of 
0.84, which is the average for this set of sections. The values 
of FMc are also close to the expected band, but more fall 
outside than would be expected. The average value is slightly 
lower than predicted by the simulation at D = 0.84, 1.13 as 
compared to 1.16, but the agreement is still reasonable. The 
lower value of this measure compared to F• is caused by the 
dip of the faults. Figure 9c shows the results of the length 
estimator method. The Fre values fall within the expected 
band from the simulation, but are generally slightly higher 
than predicted. The average value at D = 0.84 is 1.18, which 
is slightly higher than the 1.14 predicted, but again the 
agreement is reasonable. 

4.2. Central Indian Ocean seismic section 

The second example is from a 500 km multi-channel seismic 
reflection profile shot over the intra-plate deformation area in 
the central Indian Ocean [Bull and Scrutton, 1992]. The 
tectonics of the area have been documented in several studies 
[e.g. Weissel et al., 1980; Petroy and Wiens, 1989; Stein and 
Weissel, 1990; Neprochnov et al., 1988; Bull, 1990; Bull and 
$crutton, 1990 and 1992; Charnot-Rooke et al., 1993; Van 
Orrnan et al., 1995], which have identified many structures 
related to deformation under a compressive stress regime. The 
horizon analyzed here is the lowermost sedimentary horizon 
that could be consistently interpreted above the top of oceanic 
layer 2, which is offset by a series of reverse faults. These are 
interpreted as reactivated normal faults originally formed at or 
close to the mid-ocean ridge [Bull and $crutton, 1992]. The 
fault displacement population was analyzed by Bull and 
$crutton [1992] who identified two power law distributions. 
At the large scale (150 - 900 m) the faults obey a power law 
with a high D value of 1.9. Below 150 m the analysis is less 

(a) 

x 

ß 

% 

./' 

Y 

o-0 o;•0 o;•0 o=0 

(b) 

X Y 

Figure 7 Schematic drawing showing how the calculation of 
sigma in the F•tc method causes lower values of F•tc when the 
faults have non zero dip. The solid line represents the section, 
and the dashed line represents the best fit line to each sub 
section. (a) All the faults are vertical and only sub-sections 
which only contain horizon (e.g. Y) will give zero values of o'. 
(b) Faults have non vertical dips, but most of the sub sections 
containing faults still give values of cr • 0. However, the 
largest fault is now entirely within sub section X, and this sub 
section gives a zero value of 
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Table 1. Results of the Simulation Testing Different Power 
Law Distribution of Spacings for the Same Fault 
Displacement Population. 

S F/ FMc 

0.50 1.20 +_ 0.13 1.17 +_ 0.12 1.27 +_ 0.13 

0.75 1.26 +_ 0.09 1.23 +_ 0.07 1.24 +_ 0.08 
1.00 1.28 +_ 0.08 1.26 +_ 0.07 1.23 +_ 0.06 
1.25 1.30 +_ 0.08 1.28 +_ 0.06 1.23 +_ 0.06 
1.50 1.31 + 0.08 1.29 + 0.06 1.22 + 0.06 
1.75 1.31 + 0.08 1.30 + 0.06 1.22 _+ 0.05 
2.00 1.32 + 0.08 1.30 + 0.06 1.22 + 0.05 

In this simulation D = 1.0 and the maximum fault size was 3.0. 

1000 sections were produced for each value otS. 

sampled sections must be single-valued, the dips of the faults 
are not honored and the faults become effectively vertical, 
positioned at the tip of the hanging-wall. All three graphs 
show a change in scaling, at length scales of around 5-6 km. 
This change is likely to be caused by the change in fault 
displacement population, where the sharp decrease in fault 
density has caused a reduction in the fractal dimension of the 
horizon. The values from each method are all fairly similar, 
with the large scale values of F around 1.5 and the smaller 
scale dimension around 1.1 (see Table 2). 

In order to compare these results to the simulation, the 
program was altered so that the apparent movement on the 
faults was reverse. Two fault populations were used, 
mirroring the results of Bull and Scrutton [ 1992] with a dip of 
40 ø and a negative exponential spacing distribution. The first 
had a D value of 1.9, and a maximum displacement of 900 m. 

The second population had a maximum at 150 m, but the D 
value was varied from 0.5 to 1.5, due to the uncertainty in the 
measurement of this parameter. The sections were then 
sampled to form a single-valued section, making the faults 
vertical. Two fractal dimensions of the synthetic profile were 
derived from the graphs of each method, in the same way as 
for the analysis of the natural section. The dimensions at the 
large scale, shown in Table 2, match those from the real data 
quite closely, with any difference between the mean from the 
simulation and the measured value from the natural section 

well within the expected range. Note that the values from the 
simulation are lower than those shown in Figure 5 due to the 
narrower scale of the population used. The values for the 
fractal dimension at the small scale (see Table 2) show a more 
significant difference from those seen on the natural section. 
Even when a small scale D value of 1.5 was used the values 

(1.07, 1.05 and 1.01 respectively) were still below those 
measured, particularly FLe. Given the uncertainty in the fault 
population analysis at the small scale, it is difficult to attach 
much significance to this difference; however, there may be 
an additional source of roughness, the most likely being 
folding associated with the reverse faulting. 

In summary, for the Central Indian Ocean Basin the 
simulations support the contention that the fractal dimension 
of a faulted surface is controlled by the underlying fault 
displacement distribution. This change in scaling at 5 - 6 km 
in F together with the observation of Van Orman et al. [ 1995] 
that there is no change in mean fault spacing across the 
convergence zone, suggests that there is a mechanical control 
on fault spacing. It is interesting to note that the change in 
scaling occurs at a length scale similar to the thickness of the 
oceanic crust. 

I I s in TWT -•' I km 

• (s) 

0.01 

-'-I FMC = 1.091 ............... 

(3' (S) C/k 

' -, -, - •,-•,,,•, ........... 0.01 

o.1 sub-set length (km) lOO o.1 sub-set length (km) lOO 
(b) (c) 

I k 10,000 

(d) 

Figure 8. (a) Example horizon from one of the SSL-MF89 seismic sections. The horizon is Top Triassic, 
offset by a fault population with a D value of approximately 0.8.(b) - (d) Graphs used to find H and F for the 
SSL-MF89 section shown in Figure 8a: Figure 8b F/, Figure 8c Ft•c and Figure 8d FLE (see Figure 3). The 
graphs show a reasonable fit to a straight line giving F/= 1.25, Ft•c = 1.09, and F•E = 1.16, respectively. 
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Figure 9. Plots of fractal dimensions (a) F/, (b)Ft•c and (c) FL,•, plotted against the fault population D value 
for each of the 21 SSL-MF89 Top Triassic horizons. The average value of each set of F measures (solid 
squa,r½s) is plotted against the average D value (0.84). The error bars for this average arc the standard error 
(cr/¾v) in both F and D. Also shown arc the results of a simulation run with sections designed to match the 
dip and scale range of the faults on the SSL-MF89 sections (s½½ text). These arc plotted as Figure 5. 

5. Summary and Conclusions 

Three measures of the fractal dimension F of a surface are 

outlined, two of which F/ and FMc use roughness scaling 
methods, the other F/,E is based on the length estimator 
method. A simple model of a faulted horizon was used to 
simulate the variation in the fractal dimension F of a profile 
with changes in the fault population. The fault displacements 
were always power-law distributed, as there is considerable 
evidence that such a distribution is a good description of 

many populations, and best describes both of the natural 
examples used in this paper. Such a distribution can only 
apply over a finite range of displacement and length scales, 
and this range limits the application of the methods described 
in this paper. However as this range can spread from 
millimeters to kilometers (as is the case for the Moray Firth 
example), this does not necessarily limit the usefulness of this 
type of analysis. 

In the simulations the horizon was originally horizontal 
and planar and was then offset by planar faults. A number of 
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c•(s) 

0.1 

F• = 1.52 

sub-set length (km) lOOO 
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L/k 
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Figure 10 (a) Digitized horizon representing the lowermost sedimentary horizon that could be consistently 
interpreted from the north-south multi-channel seismic reflection profile described by Bull and Scrutton 
[1990,1992] within the Central Indian Ocean Basin.(b-d) Graphs from the three analysis methods used: 
Figurel0b, F/, Figure 10c, FMc and Figure 10d, FLE (see Figure 3). The graphs show a scaling change at 5 - 6 
km, giving a lower fractal dimension at the smaller scale related to a change in the fault population (see text). 
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Table 2. Comparative Results for the Simulated and Natural Indian Ocean Sections. 

Sections F• F•tc FLE 

Large scale Simulated 1.46 _+ 0.10 1.45 _+ 0.07 1.39 _+ 0.10 
Natural 1.52 1.46 1.46 

Small scale Simulated 1.06 _+ 0.05 1.04 _+ 0.04 1.01 _+ 0.01 

Natural 1.09 1.08 1.10 

The simulation was made with a bi-fractal fault population with D values of 1.9 and 1.0, with 
maximum values of 900 and 150 respectively. The graphs were then analyzed to give two fractal 
dimensions, in the same way as the natural section was analyzed (see Figure 10). 

fault population parameters were tested independently 
including the D value of the fault displacement population 
(which was varied between 0.3 and 2.0), the distribution of 
the spacing set (power law with a varying exponent S or 
negative exponential), and the dip of the faults (varied from 
30 ø to 90ø). 

Tests on the effect of truncation on the population showed 
that F• and F•tc gave stable values if the scale-range of the 
resolved faults was > 2 orders of magnitude. FLE was more 
sensitive to the scale-range, requiring closer to 3 orders of 
magnitude for stable values. 

The principal determining factor in the variation of F was 
the D value of the fault displacement population. F increased 
from -1.0 at D values <0.5, to -1.3 at D = 1.0, and then to 
-1.5 at D = 2.0. Variation in the dip of the faults led to only 
small changes in F, except for the values of F•tc which were 
systematically lower (due to the calculation method). 
Changing the spacing distribution of the faults affected F, but 
only if the faults were heavily clustered. In this case, the 
estimates of F• and F•tc decreased if the spacing distribution 
was power-law when compared to negative exponential, but 
only when the values of S were less than 1.0. In contrast there 
was no difference in the values of FLE. 

Associating the fractal dimension of a natural faulted 
horizon with the D value of the fault population is 
complicated by several factors. These include (1) the limited 
length of most natural sections, (2) the narrow scale range of 
the resolved fault population and (3) the contribution of other 
geological processes to the roughness. The fractal dimensions 
of the top-Triassic horizon on 21 sections from the Moray 
Firth were measured and compared to the results from the 
simulation. The measured values were generally within the 
expected range from the simulation. The average values of F 
gave a predicted average population D value close to the true 
average from the sections. The Indian Ocean example was 
more complex, due to a bi-fractal fault displacement 
population. This gave a scaling change in the measured fractal 
dimension of a faulted horizon, with different fractal 
dimensions at the large and small scales. Good agreement was 
found for the dimension at the large scale between the 
simulation and real sections; however, there were significant 
differences between the two sets of values at the small scale. 
This is probably due to additional sources of roughness from 
folding associated with the reverse faulting. 

For the purpose of finding the fault displacement 
population D value from the measured roughness, F• and 
give the simplest relationship. The difference between F• and 
F•tc gives a qualitative indication of the average dip of the 
population, with an increasing difference as the average fault 
dip decreases. When using these relationships, due 
consideration must be given to the scale-range of the resolved 
population, otherwise the D value may be underestimated. 
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