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A new class of metamaterials exhibiting coherent, collective response has been introduced. It
is shown that the sharp resonant behaviour of coherent metamaterials can only be observed in
arrays of metamaterial elements and is absent from the respose of a single isolated unit cell. As a
result, such arrays are extremely sensitive to positional disorder and resonances degrage rapidly
with increasing randomization. These obsered strong inter-element interactions render coherent
etamaterials ideal candidates for gain-assisted functionalities as deonstrated by the suggestion
and numerical study of a novel amplifying/lasing device, termed tha lasing spaser. An antipode
class of incoherent metamaterials is also presented, where the resonant respose of a single unit
and of an infinite array are very similar resulting in weak dependnce on disorder.

The first metamaterial analogue of electromagnetically induced transparency is demonstrated
experimentally and theoretically in essentially planar structures. The phenomenon arises from
destructive interference of fields radiated by strongly coupled metamaterial elements that support
anti-symmetric weakly-radiating current configurations, termed trapped-modes. This behaviour
is accompanied by sharp resonances and steep normal dispersion which leads to long pulse delays,
It is shown that cascading of metamaterial slabs increases the bandwidth of the pulse delay effect,
while extension to all-angles and all-polarizations is demonstrated by appealing to incoherent
metamaterials.

The first experimental study of metamaterials with toroidal symmetry is reported. Resonant
circular dichroism is observed in a a metamaterial consisting of toroidal wire windings. Further
numerical investigation attributes the gyrotropic behaviour to current standing waves corre-
spoding to the eigenmodes of the unit cell winding. Multipole expansion of the resonant current
configurations indicates a dominant electric dipole-magnetic dipole contribution to gyrotropy fol-
lowed by electric dipole-electric quadrupole order effects, while a non-negligible toroidal response
comparable to electric quadrupole in scattering efficiency also emerges.

Finally, collective effects are studied in quasicrystal hole arrays and it is demonstrated that
non-resonant scatterers can lead to strong lattice resonances and extraordinary trasmission even
in the case of quasi-periodicity. Microwave and optical quasicrystal patterns exhibit similar
response exceeding predictions based on absence of inter-element interactions and even reaching

a nearly invisible state in the microwave part of the spectrum.
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1. INTRODUCTION

1.1 Motivation

Electromagnetic phenomena underpin the majority of contemporary technologies, ranging from
telecommunications to data processing. These technologies depend heavily on and are fuelled by
advances in electromagnetics. Mobile phone antennas, fiber networks, phased antenna arrays,
radomes, sensors are all mainly based on structured electromagnetic materials. Metamaterials
are a special class of artificial electromagnetic structures aiming to control wave propagation.
Their unusual and useful functionalities originate from structuring on a sub-wavelength scale and
are not attainable by materials available in nature. They hold promise of exotic applications,
such as invisibility cloaks, perfect lenses, novel light emitting devices and ultra thin delay lines,
and are expected to play a key role in the next photonic revolution leading to ground breaking

new science and applications on a global scale.

1.2 Structured Electromagnetic Materials

Controlling optical properties by structuring is common practise in nature as demonstrated by
an ever-growing body of evidence [1]. One of the most notable examples is the anti-reflective
properties of the micro-structure in the eye of certain insects resulting in enhanced sensitivity
[2]. Intriguing cases also include the iridescence exhibited by the spine of the sea mouse resulting
from hexagonal crystal-like structuring [3] and the color-selective reflection and transmission of

butterfly wing owing to its multi-layer nature [4] to name just a few (see Fig 1.1).

Fig. 1.1: (a) Hexagonal structure of the sea mouse spine, responsible for the observed iridescence [3].
(b) Microscopic protrusions on the butterfly eye function exhibit broad-band anti-reflection
properties [2]. (c) Butterfly wings present selective reflection both in terms of angle and color
as a result of micro-structuring [4] (photos from [5]).

Unaware of nature’s intricate strategies, early civilizations demonstrated substantial interest
in controlling light propagation by natural and artificial structures. Magnifying lenses have been

used since ancient times in ancient Assyria [6] and Egypt [7] presumably to facilitate the carving
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and reading of engravings, while Roman craftsmen doped glass with gold droplets resulting in a

dichroic material seen with different colors in transmission and reflection [8] (see Fig 1.2).

Fig. 1.2: The Nimrud lens (1000 BC) (a) and the Lycurgus cup (4" century AD) as seen in reflected
(b) and transmitted (c) light [13].

However, the first systematic studies of artificially structured electromagnetic materials had
to wait until the development of spectroscopy and the unification of electromagnetic phenomena
in the 19" century [9]. Fraunhofer presented the first gratings for spectroscopic measurements
and described theoretically their dispersive behaviour [10]. Soon after Lord Rayleigh predicted
the presence of a band gap for 1D periodically stacked structures with alternating layers [11].
At the same time, J. C. Bose performed in India a series of still not-widely known experiments
on electromagnetic composite media including stacks of metal plates and twisted jute ensembles,

demonstrating polarization rotation and other electromagnetic phenomena [12].

Jute elements.

Fig. 1.3: (A stack of aluminium plates placed between the pages of a railway catalog (a) and a twisted jute
ensemble (b)-(c) employed by J. C. Bose in polarization experiments with mm-wave radiation
[12].

Further significant advancements were triggered by the development of wireless communica-
tions and radar systems especially during and after World War II, where devices such as antenna
radomes, filters, transmitters and receivers were of crucial importance. It was not long until it
was realized that arrays comprised of subwavelength electromagnetic resonators can dramatically
reduce the scattering cross-section of antennas at most frequencies, thus leading to the concept of
frequency selective surfaces (FSS) [14]. In particular, FSS are usually double periodic resonator
arrays that exhibit filter behaviour, rejecting or transmitting the incident radiation within a

narrow frequency band, while appearing transparent or opaque, respectively, outside this band.
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Although, they were initially invented in order to reduce the radar cross-section of mobile an-
tenna systems [15], they have found wide applications enabling and enhancing the performance
of important devices, such as reflector arrays [16] and high impedance surfaces [17].

In parallel, inspired by the world-changing applications of semiconductor electronics, E.
Yablonovith and S. John proposed that photons in dielectric periodic stuctures can behave anal-
ogously to electrons in semiconductors and suggested the use of such photonic crystal in order
to inhibit spontaneous emission [18] and localize photons [19], respectively. Although initial
investigations were restricted to the microwave domain by fabrication limitations [20], borrow-
ing manufacturing techniques from the semiconductor industry soon lead to photonic crystals
operating in optical wavelengths [21]. Photonic crystals hold promise of important applications
including optical buffers [22] and light-emitting devices [23], while their ability to control light

confinement has already lead to commercial uses in optical fibers [24].

Fig. 1.4: (a) Mid-infrared multi-band FSS [25]. (b) Three-dimensional photonic crystal [26]. (c) Photonic
crystal waveguide that exhibits slow light behaviour [27].

Today, interest in artificial structures has been renewed largely due to two reasons: first the
rapid advances in fabrication techniques which allow structuring of electromagnetic materials
at the nano-scale, and secondly due to the birth of metamaterials, a new research field in the

borders between optics and electrical engineering.

1.3 Metamaterials

Metamaterials comprise a rapidly advancing research field, with new directions constantly emerg-
ing. As a result, it is not an easy task to coin a universally accepted definition without risking
to exclude important areas of research [28]. Therefore, here we adopt the rather loose defini-
tion of [29], according to which metamaterials are artificial media consisting of electromagnetic
resonators in crystal-like arrangements with a pitch smaller than the wavelength of excitation.
Owing to their sub-wavelength structuring, metamaterials appear as effective media to an inci-
dent wave with constitutive parameters defined to a large extent by their geometry. Hence, by
appropriate patterning, the constitutive parameters of metamaterials can be tailored across a
wide range surpassing the properties of naturally available materials.

Probably the first metamaterial is the jute composite used by Bose in his polarization rotation
experiments [12]. Almost fifty years after Bose, it was suggested that a lens consisting of stacked
metallic plates acts as an artificial dielectric with refractive index less than one, while soon after
it was realized that metallic and dielectric rod can simulate plasma behaviour at microwave
frequencies [31, 32] (see Fig. 1.5). Almost another forty years had to pass before the next step in

metamaterials research, when Sir John Pendry suggested that an ensembe of split-ring resonators
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Fig. 1.5: (a) Lens comprised by metallic plates resulting in refractive index less than unity [30]. (b)
Array of dielectric rods exhibiting plasma behaviour [32]. (c¢) Primitive form of the split-ring
resonator [33].

(SRRs) -introduced earlier to create a magnetic resonance at GHz frequencies [33], can constitute
an effective magnetic medium described by a macroscopic permeability [34]. Armed by artificial
media with controllable electric and magnetic response, structures that present simultaneously
negative electric permittivity and magnetic permeability were realized [35] (see Fig. 1.6a), a
concept considered earlier but remained a theoretical peculiarity due to lack of appropriate
materials [36, 37, 38, 39]. The potential of such media was realized by Pendry who suggested
that they can be used to build a perfect lens, i.e. a lens that harvests both propagating and
evanescent fields and hence is not limited by the wavelength of light [40]. Pendry’s theoretical
predictions were soon followed by an experimental demonstration of the concept at microwave
frequencies [41].

Microwave metamaterials were successfully scaled down to operate at mid- and near-infrared
wavelengths with moderate efforts and no significant change in their electromagnetic properties
[42, 43]. However, transferring the metamaterial concept in the optics domain was hindered
by unforeseen obstacles. On one hand the technical difficulties of structuring materials at the
nanoscale restrict visible metamaterials in thin layers, in contrast to their three-dimensional
infrared and microwave counterparts. On the other hand, the high losses associated with metals
at optical frequencies and the saturation of the magnetic response of SRRs degrade significantly
metamaterial performance [44]. The solution was given by a radical change in the geometry of
metamaterial resonators, replacing SRRs with metallic elements of appropriate shape. Following
this approach optical negative refractive index metamaterials were demonstrated based on pairs
of metallic rods [45] and on its complimentary structure, namely pairs of voids on metal films
[46], as well as on variations of the latter [47] including the so-called fishnet structure [48].

Although the main body of metamaterial research has focused so far in achieving a negative
refractive index, a number of different directions have emerged. Most notably, metamaterials have
enabled experimental investigations of the newly founded field of transformation optics [49, 50],
where electromagnetic waves are guided and redirected at will, promising applications as exotic
as invisibility cloaks. Such effects are made possible by carefully tailoring the permittivity and
permeability of the medium surrounding the object to be cloaked, in order to guide incident
radiation around the latter rendering it virtually invisible. Experimental demonstrations of
cloaking by metamaterial devices have been performed successfully so far in microwave by metal-

dielectric metamaterial composites [51] as well as in the visible part of the spectrum by all-



1. Introduction 6

Fig. 1.6: (a) First realization of a negative refractive index medium [35]. (b) Microwave metamaterial
with invisibility cloak functionality [51]. (c) An optical negatively refractive metamaterial based
on the fish-net structure [48].

dielectric metamaterials [52].

Symmetry considerations have incited investigations of polarization sensitive behaviour of
chiral metamaterials, providing an alternative path to negative refraction [53, 54] and leading to
the demonstration of intriguing properties, such as giant gyrotropy [55], asymmetric transmission
[56] and optical activity without chirality [57]. Further away from the mainstream of metamateri-
als research, the behavior of metamaterials exhibiting toroidal symmetries has been investigated
theoretically and negative refraction along side with other interesting electromagnetic properties
was predicted [58].

Recently, it was demonstrated that the metamaterial response can be controlled through
symmetry breaking in split-rings (see Fig. 1.7a) by employing coupled resonances, thus introduc-
ing the concept of trapped-mode metamaterials, i.e. artificial structures exhibiting narrow-band
resonant response resulting from strong interference of its constituents [59]. This lead to a first
demonstration of a metamaterial analogue of electromagnetically induced transparency (EIT),
where a bi-layered metamaterial was rendered transparent by a resonant anti-phase excitation of
the two layers [60] (see Fig. 1.7b). Similar behavior was soon observed for plasmonic metamate-
rials [61] and experimentally demonstrated in the optical [62] based on the coupling of radiative
and dark, sub-radiant elements (see Figs. 1.7¢ & 1.7d). Finally, EIT-like behaviour was also
observed in the THz regime [63] on a scaled-down version of the metamaterial employed in [59],

while an omni-directional metamaterial analog of EIT was demonstrated in [64].

(a) (b) (c) (d)

Fig. 1.7: Unit cells of metamaterials exhibiting EIT-like behaviour: (a) asymmetrically split-rings [59],
(b) bi-layered fish-scale [59], (c) coupled metallic stripes [61], and (d) coupled split-ring res-
onators [62].

Metamaterial analogs of EIT are expected to play a key role in future developments in meta-
material research. In a first instance, low-loss metamaterials based on this concept have been
predicted [65]. Trapped-mode metamaterials, in particular, can be tailored to exhibit coherent or

incoherent behaviour, namely collective or individual response, enabling novel applications and
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alleviating fabrication restrictions. Coherent metamaterials are especially important in view of
the recent advances in the active metamaterials. Predictions for gain-assisted metamaterials in-
clude compensation of metallic losses at visible frequencies leading to loss-less negative refraction
[66, 67, 68, 69, 70, 71], amplification and lasing [73, 74]. In the case of coherent metamateri-
als, low-threshold and truly planar light emitting devices have been suggested and investigated
[74, 75], achieving enhanced functionality not accessible by conventional metamaterials. Finally,
as demonstrated in this thesis, incoherent trapped-mode metamaterials show very weak depen-
dence on positional disorder, thus allowing for fabrication imperfections and rendering accessible

methods, such as self-assembly [76].

1.4 Thesis Overview

This thesis is concerned with the study of coupled resonances, interference effects and collective
behaviour in metamaterials.

Chapter 2 provides a brief theoretical background for the undertaken investigations presented
in this thesis, while a brief description of the experimental and numerical methods employed can
be found in Chapter 3.

A novel type of metamaterial resonances, the so-called ”trapped-mode” resonances is studied
in chapter 4. The relation between the symmetry of the metamaterial resonators and the elec-
tromagnetic response is investigated experimentally and numerically in the microwave domain,
and different ways to control and tune the metamaterial response are presented.

Chapter 5 is concerned with the dispersive effects accompanying the trapped-mode reso-
nances. It is shown that such metamaterials constitute a classical analog of the quantum phe-
nomenon of electromagnetically induced transparency. As a result they allow for long pulse
delays and ultimately the realization of ultra-compact delay lines.

In chapter 6, the collective and individual behaviour of metamaterials is studied and the
concept of coherent and incoherent metamaterials is introduced. In the first case, the resonant
response is a collective property that is not found in isolated unit cells. On the contrary, incoher-
ent metamaterials the array response is not significantly different from that of a single resonator.
The dependence of the metamaterial resonant response on positional and orientational disor-
der is studied experimentally and qualitatively interpreted in terms of the unit cell electric and
magnetic response. Finally, the behaviour of coherent metamaterials in the presence of gain is
investigated and a new light-emitting device, the lasing spaser, is suggested.

In chapter 7, microwave and optical planar metamaterials exhibiting extraordinary transmis-
sion are studied. Quasiperiodic lattices of subwavelength apertures that lack individual resonant
response in the spectral region of interest, the arrays exhibit collective resonances related to the
reciprocal lattice of the pattern.

Chapter 8 presents an investigation of the polarization sensitive response of a new type of
metamaterials consisting of wire windings with toroidal symmetry. The origin of the experi-
mentally observed gyrotropy is traced to the current configuration on the wire winding and its
multipole representation, obtained through numerical simulations.

Finally, chapter 9 summarises the work presented in this thesis and discusses future directions.
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2. THEORETICAL BACKGROUND

In this chapter, a brief theoretical background to the reported work is provided. In particu-
lar, a first principles derivation of the macroscopic Marwell equations from their microscopic
equivalents is presented and constitutive relations for the response fields are introduced. In the
case of metamaterials, the contributions to the material parameters from the individual res-
onators and from their interactions are separated and the conditions for strong collective effects
are investigated. Finally, the complete and approximate forms of the multipole expansion for

electromagnetic fields radiated by localized sources are discussed.

2.1 Macroscopic and Microscopic Maxwell Equations

Within the framework of classical electrodynamics, the interactions of matter with electromag-

netic fields are described by the microscopic Maxwell equations [1]:

V-7, t) = n(F,t)/eo (2.1)
V- b(7 1) =0 (2.2)
V x &7, t) = —b(F,t) (2.3)
V x b(7,t) = po[j (7, t) + eoe(7,1)], (2.4)

where €(7,t) and g(ﬁ t) are the microscopic electric and magnetic fields at position 7 and at
time ¢, while n(7,t) and ;(77, t) are the microscopic charge and current densities respectively.
The macroscopic electric and magnetic fields, E and B, are obtained through averaging the
microscopic fields € and b over a finite, small compared to the wavelength, volume. This is
usually achieved by employing an appropriate averaging function, f () which drops smoothly to

zero outside the desired averaging volume [2]:

E(F,t) =< &(F,t) >= /f(f')e*(yt 7 t)d3r (2.5)
B(7,t) =< b(F,t) >= /f(F’)Z;(F— 7 t)dr, (2.6)

V- E(Ft) =< n(7,t) > /e (2.7)
V- B(7t) =0 (2.8)
¥ x B(7t) = —B(7,1) (2.9)
V x B(7,t) = —po(< j(7,t) > +eoE (7)) (2.10)
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The charge and current densities can be decomposed in two components, one including con-
tributions from the charges, ¢™), that can move freely (such as the free electron cloud of metals)
and one resulting from the bound charge densities, 7(") (such as the electrons in the atomic and

molecular orbitals):

(7 t) =Y q"s( = (1) + i (7 ), (2.11)

m
where the index m runs over all free electrons and index n over all atoms and molecules. After
a Taylor expansion of ﬁ(”)(f', t) around the centre of each distribution, where only the first three

1

terms * are retained and a summation over all bound charges, the averaged charge distribution

can be written as:
<n(Ft) >=p(F,t) = V- P 1) + Y 00,00, Qij (7 1), (2.12)

ij

where:
p(t) =< Y g — i m() + Y qMaF— (1)) > (2.13)

m

is the macroscopic charge density,

P(it) =< Y pma(i — (1)) > (2.14)
is the macroscopic dipole polarization,

i =" g0 () (2.15)
I(n)

is the electric dipole moment of the n-th bound charge distribution ,

Q, (7t =+ < <T@ 0w > (2.16)

(=)

is the macroscopic quadrupole density and

=33 A ()0 ) (2.17)

i(n)

is the quadrupole moment of the n-th bound charge distribution. In the above relations indices
i,j take values x,y, z, while index [(n) runs over all charges of the n-th charge distribution.
Following a similar procedure for the current density, the averaged microscopic charge density

can be approximated by:

< jz(’l" t) >=J; (T‘ t) +8t Zarj Ql_] Zeijkaka‘(ﬁ t)a (218)
ik
where

t) =<y _qmrm @) — i () + g™ @)s(F - 7 (1) > (2.19)

! In accordance with common practice [3], all multipole considerations in this thesis are limited to the electric
quadrupole-magnetic dipole order.
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is the macroscopic current density,

M) =< Y mMs(r — (1)) > (2.20)

is the macroscopic magnetization and

™ =" g x (1)) (2.21)
I(n)
is the microscopic magnetic dipole moment.
Inserting Eqgs. (2.12) & (2.18) into Egs. (2.7) & (2.10):
V- D(7,t) = p(7,t) (2.22)
6 X ﬁ(Fa t) = /’LO( (Fa t) + EOD(F7 t))v (223)

where D and H are the response fields defined by the constitutive relations (up to electric

quadrupole-magnetic dipole order):

D(7,t) = eoE(7,t) + P(7,t) — %ﬁQ(ﬁ t) (2.24)
H(7t) = ié(ﬁ t) — M (7, t) (2.25)
Ho

Equations (2.22) & (2.23) are equivalent to Egs. (2.7) & (2.10), the difference being that part
of the source terms is now included in the response fields which renders the former equations

similar to the microscopic equivalent of the latter equations and often proves convenient [1].

2.2 Material Parameters and Constitutive Relations

The electric and magnetic multipole moments depend on both the electric and magnetic fields as
well as their derivatives through complex polarizability tensors [3]. For the needs of this work,
we can restrict the following discussion to linear, homogeneous, anisotropic, non-magnetic media
[4]:

1 1 .
pi = @ijEj + 5aiiVeEj + —gii B (2.26)
Qij = akij By (2.27)
1 .
mi = ——gjikj + Xi; B; (2.28)

Assuming monochromatic excitation of a periodic bulk medium with electric and magnetic
fields given by Egelik7=iwt) & Bje(ih=iwt) regpectively, and taking into account that the macro-

scopic polarization and magnetization are obtained by averaging the microscopic multipole mo-
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ments, the response fields can be written in Einstein notation as [5]:

. L.
D, = eFE; + ai; Ej —i(gi; — §W€jkzakz¢)3j (2.29)
. 1 . 1
H; = —i(gji — iweiklaklj)Ej + (% — Xij)Bi (2.30)

The electromagnetic fields in these relations contain contributions both from the incident wave
and from the medium its self. When the latter terms are ignored, then the constitutive relations

become:

D =¢€Ey — iéB, (2.31)
H = —ig" Ey + uB,, (2.32)

where the constitutive tensors are given by:

€ij = €00ij + agj (2.33)
1 .
§il = 9ij — WEKLAkL: (2.34)
1
Ujj = —0ij — Xij (2.35)
Ho

Hence the electromagnetic response of any medium is completely defined by its constitutive
tensors, which reflect the structure of the medium on a microscopic level. In particular, the per-
mittivity € describes the electric polarizability of the medium, while its magnetic polarizability
is usually quantified through the permeability tensor i = (u)~!. The tensor ¢ expresses the
excitation of electric (magnetic) response due to excitation with magnetic (electric) fields and is
responsible for effects related to chirality, such as circular dichroism and optical activity [3].

Before the advent of metamaterials, the accessible values of these constitutive parameters were
limited to the ones that were available in nature. Metamaterials aim to expand this domain and
to achieve materials with parameters not available in nature by structuring artificial materials
at a subwavelength scale. This is performed usually by assembling electromagnetic resonators
in regular arrangements. At the resonant frequency, the electric and/or magnetic response of
the resonators contributes significantly to the macroscopic polarization and magnetization and,
consequently, to the constitutive tensors.

One of the most charasteristic examples is the engineering of strong magnetic response at
high frequencies. To this end magnetic resonators, such as split-rings are employed. Close to the
resonance the microscopic magnetic response, and consequently the macroscopic magnetization,
varies rapidly and takes large positive and negative values. Importantly, if a similar approach
is followed for the dielectric permittivity, one can obtain a medium with simultaneous nega-
tive permeability and permittivity leading to intriguing phenomena, such as negative refraction,
super-resolution and backward waves [6]. However, although research efforts have focused in
achieving a negative refractive index in the optical part of the spectrum, metamaterials offer the
possibility to engineer a large part of different constitutive tensor components, thus achieving

additional enhanced and novel functionalities.
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2.3 Collective effects in metamaterials

So far, in this theoretical discussion, interactions between the constituents of metamaterials
(meta-molecules) have been neglected. In this section, their role in the metamaterial response is
discussed.

When considering inter-element interactions, Eq. 2.31 takes the form:

D(7) = eE(F) — i€ B(F) (2.36)
H(7) = —i€" B(7) + uB(7), (2.37)

where the macroscopic fields at position Z now depend both on the incident field and the field at
different positions. Considering that the medium is composed from discrete resonators centered
at positions Z,, indexed by m, we can replace to a first approximation the resonators with
electric, p,, and magnetic, m,,, dipoles indexed by m and placed at positions 7,,. The fields
E(7y) and B(7,,) will include contributions, Eo(7,,) and Bo(7,,), from the incident field as well

as contributions, E™ () and B (7,,) from every other dipole in the array, indexed by n # m:

E(Fm) = EO(Fm) + Z E(n)(Fm) (238)
n#Em
n#m

To simplify further the discussion we will consider the special case of an isotropic non-chiral
medium with no magnetic response under illumination with a plane wave with wave fields Ey =
(Eo,0,0) and By = (0, By, 0). In this case, Egs. (2.36) & (2.37) take the form:

D=¢E (2.40)

o1 o

H=—B8, (2.41)
Ho

Within the dipole approximation, the electric field at site 7, due to the elements at sites 7, is

given by [7]:
=(n) etk Tmn | ) ,
E(n (Tm) = 7 |3 [(k |rmn| +Zk‘{rmn| - l)pn_
mn
2| + 3ik|Tmn| =3 . L
B | ‘ ‘f’ |2| | (Tmn 'pn)rmn]a (242)

where 7y, = 7o — 7, The latter equation can be simplified considerably if we consider a single
layer under normal incidence. Since the medium is periodic then the electric dipole moments
will be parallel to the incident electric field and will interact with re-radiated dipole fields along

the same direction:
E(7n)™ = A (2.43)
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with
eiklﬁmn‘ 9 2
|7rn|
k2| 7n|? + 3ik| 7| — 3
_ |7‘ | |t Z|2|T | |xm*xn|2] (244)
Tmn

If « is the electric dipole polarizability, then we can write for the dipole moments :

Pm = Ol(]- + Z Amnpn)EO (245)
m#n

and considering that all electric moments are equivalent for a periodic planar array under normal

incidence:

1

S (2.46)
é - Zm#n Am”

p =
Taking into account that the macroscopic polarization and magnetization are derived from aver-
aging the electric and dipole magnetic moments respectively, then the permittivity and perme-

ability of the medium can be written as:

1
e=¢+ f

S (2.47)
a Zm#n Am”

where f is a constant emerging during the averaging procedure of the microscopic moments in
order to obtain the macroscopic polarization and in the most simple case is related to the density
of the resonators. As expected, the macroscopic parameter includes contributions both from the
individual constituents and from interactions between them. These contributions can be easily

separated. In the case of permittivity, the single dipole, €5, and lattice, ¢;, contributions are

given by:
€s = fa (2.48)
€ = fa21 %g:bi:lzmn (2.49)
and the total permittivity can be written as:
€e=¢€yp+e€s+¢ (2.50)

The contribution of the lattice effects to the response of the medium can be quantified through
the dimensionless ratio w: )
€1, 1
w=—=(—=—"-—-1 2.51
e o (251)
Amn
approaches unity. This condition can be fulfilled in a resonant fashion, whenever either the po-

Hence, the lattice contribution becomes particularly strong whenever the product a ), | #n

larizability « or the lattice sum ) #n A vary rapidly with frequency leading to two different

regimes where strong collective effects can be observed, one related to the individual element
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resonances (resonances of a) and the other to the lattice resonances (resonances of > 4n Apn).

2.4  Multipole Expansion of Electromagnetic Fields

In addition to the parametrization of the microscopic electromagnetic fields of section (2.1), mul-
tipole expansions also facilitate the parametrization of the fields scattered by localized sources.

In particular, if monochromatic time dependence ~ e~ is assumed, Maxwell equations read:

V- E(F) = (%) /<o (2.52)
V-B() =0 (2.53)
V x E(F) = ikB(F) (2.54)
V x B(i) = uo(f(f‘)+eozkE(f’)) (2.55)

where k = w/c and the inhomogeneous wave equations can be derived:

(V2 + k) B(7F) = —puoV x J(7) (2.56)
(V2 + ) E(F) = —poikJ(7) + V() /eo (2.57)

The solutions to these inhomogeneous equations can be found with the help of the Green function

of the wave equation:

G(7, 1) = - (2.58)

B(") = [ V x J(#)G(F, 1" )dr'" (2.59)
. 1 [ .
B = -~ [ G 7)ar'® + ik / 1o ()G (7, 7Y dr' (2.60)
€0
Now the Green function G(7,77) can be expanded in a spherical harmonics basis Y, [1]:
G(F ) =ik > G(F, ) ji(kr' Y (kr)Yim Y, (2.61)
m
where
Yim(0,0) = T+ ) P (cosb)e (2.62)

are the spherical harmonics and

- —1)m - dl—l—m
Py = R (1 - a2y

(2% —1)! (2.63)

dxl—i-m

are the associated Legendre functions, while j;(kr) and h;(kr) are the spherical Bessel and

Hankel functions, respectively [1]. Substituting the expanded Green function from Eq. (2.61)
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into Egs. (2.59) & (2.60) gives [8]:

BE) = S 0E (k) Yin (8, 6) — 0 25 T (kr)Yi (6, 0) (264)
Ilm

() = Y h 1V x u(kr)Yim (0, 6) + Vil (k1) Yim (0, ) (2:65)
ilm

where [ = —i7 x V is the angular momentum operator and:

ol = g [ Wi 07 9 T (2.66)
—ik? o

Vi = qaggy | OO0 ko T~

- %(2 + 7V )n()] (2.67)

Equations (2.66) & (2.67) define the magnetic and electric multipole moments, respectively
and are exact for arbitrary dimensions of the source [8]. In the long wavelength limit, the

multipole moments can be approximated by [9]:

ik 2 . . ,
Vi = m/r”i’zm(yﬂ)ﬁ -V x J()dr? (2.68)
E ikl+2 1y * JATAY - T
Yim = oD@ ) T V(@ likuer - ()=

- 5(2 +7 V() dr (2.69)

Now, the integral in Eq. (2.68) identifies with the static magnetic multipole moments, while in
Eq. (2.69), if the first term in the parenthesis is neglected due to an extra order of k-dependence,
the remaining terms identify with the static electric multipole moments [8]. Indeed, with some
algebraic effort the first static multipole moments can be written in cartesian coordinates as
[3, 8]:

electric dipole : pi = i J;dV (2.70)
electric quadrupole : Qij = % / (rid; + Jirj)dV (2.71)
magnetic dipole : m; = %/(Fx J)idV (2.72)
magnetic quadrupole : m;; = %/(Fx _’)irjdV (2.73)

The omission of the term [ Y} (', ¢ )ikuo - J(7)dr'® has generated a lot of controversy,
since it is only valid in the long wavelength limit and only when the electric multipole moments
provide the dominant contributions to electric multipole radiation [10]. Indeed, for quasi-static
current configurations on toroidal solenoids it has been shown that this approximation is invalid

and leads to the loss of a family of multipole moments which has been termed toroidal [10]. The



2. Theoretical Background 21
first terms of the toroidal family are [11]:
1 - -
toroidal dipole : 7= 1 [(7- )7 — 7 g]d>r (2.74)
1 -
toroidal quadrupole : T = %[47%‘7% (7 9) (2.75)
—5r2(ry Jy, + rdi) + 2r2 (7 - 7)5ik]dV
The respective radiating efficiency of the first multipole moments is given by [11]:
electric dipole : = MHQ (2.76)
pote: P~ 1ome? '
wpo
tic dipole : P, = 7i|? 2.
magnetic dipole 9mc |73 (2.77)
electric quadrupole : P = wCho Z 1Qij|° (2.78)
160mc3 T
o ~ WOuo o
toroidal dipole : Pr = |T| (2.79)

127cb
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3. METHODS

3.1 Microwave spectroscopy

3.1.1 Microwave Networks

Microwave spectroscopy is completely analogous to optical spectroscopy the main difference
being in the frequencies involved and in the measurement systems. At microwave frequencies,
measurements are usually performed with vector network analyzers (VNA) that are capable of
simultaneously providing both amplitude and phase information by measuring voltage at its
ports. In particular, a VNA constitutes a, usually two-port, microwave network and as such it
can be characterized by reflection and transmission coefficients associated with its port. More
precisely, the voltage, bl and b2, on each one of the VNA’s ports can be related to the incident
voltage, a; and as, on both ports by the so-called S-matrix [1]:

bi _ (Su Si2) [a
(o) =5 52) () @

The physical meaning of the S-matrix components can be directly derived from Eq. 3.1. For
example when the voltage in port 2 is zero (az = 0) S11 = Z—ll, i.e. S is the reflection coefficient
associated with port 1. Similarly Sso is the reflection coefficient at port 2, while So; and Sy are
transmission coefficients from port 1 to port 2 and from port 2 to port 1, respectively.

An alternative description of a two port network is in terms of the transmission (ABCD)
matrix, which relates voltages and currents in the network’s ports, in contrast to the S-matrix

that involves only voltages. The components of the transmission matrix are defined as [1, 2]:

Vs
A=3 (h=0) (3.2)
B=2 (Vi=0) (3.3)
P
C=-3 (h=0) (3.4)
p=-2 w9, (3.5)
L

leading to the following relation:

()= 2) ()

Although the S-parameters provide an intuitive description of the network, the importance of

the ABCD matrix lies in the fact that cascaded networks can be described simply by the product
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of the ABCD matrices of its components [1]. In this thesis, the S-matrix is primarily used for the
characterization of the metamaterial samples, while the transmission matrix is employed during

calibration calculations.

3.1.2 Experimental Setup

Microwave metamaterials were characterized in an anechoic chamber with the help of two broad-
band horn antennas (Schwarzbeck M. E. BBHA 9120D) (see Fig. 3.1a). Transmission and reflec-
tion measurements in the range of 2 to 18 GH z were performed by placing the samples between
the two antennas and the corresponding S-parameters where recorded with a vector network an-
alyzer (Agilent E8364B). Due to the finite size of the metamaterial samples, cross-talk between
the two antennas and scattering at the edges of the samples interfere with the transmitted and
reflected signals. On a first stage, this was remedied by constructing a reflecting and absorbing
screen with a circular aperture where the metamaterial samples are placed. In particular, the
screen consisted of a wooden panel covered on one side with a thin aluminium sheet and on both
sides with thick microwave absorber. As a result, waves not directly incident on the exposed
metamaterial area are absorbed by the microwave absorber, then reflected by the aluminium
sheet and absorbed a second time, thus minimizing their effect on the measurements. In ad-
dition to that, the screen blocks a large part of the waves that would propagate around the

metamaterial sample and would otherwise result in antenna cross-talk.

(a) (b) (c)

sample — aluminium sheet

A

absorber

supporting
wooden frame

Fig. 3.1: (a) Experimental setup for the characterization of microwave metamaterials. Front (b) and
side (c) view of the screen employed to minimize scattering and antenna cross-talk.

Transmission angle resolved transmission measurements, were performed in a modified mi-
crowave setup based on the same principles. The sample was placed on a rotating frame resting
on a wooden table (see Fig. 3.2). On one of the table’s faces a fixed absorbing screen with a
circular aperture was mounted facing one of the antennas. A second, smaller, rotating, absorbing
screen with a rectangular aperture was placed on the other side of the sample. The role of the
first screen was to minimize antenna cross-talk and therefore a larger cross-section was needed.
The smaller screen was used to minimize diffraction from the edges of the sample and a rectan-
gular aperture was prefered in order to ensure that a sufficiently large area of the sample was
illuminated. The maximum angle of incidence was limited by the sample size, as for angles of

incidence near 90° the sample cross-section becomes increasingly small. The combination of the
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fixed and rotating absorbing allowed measurements up to 75°.

bsorb
(a) absoroer (b) aluminium
sheet
sample
sample

r o=
=

Fig. 3.2: Side views of the experimental setup used for microwave angle-resolved measurements.

3.1.3 Calibration

In general, vector network analyzer (VNA) measurements of a certain device under test (DUT)
response suffer from six types of systematic errors related to: (i) directivity, (ii) crosstalk, (iii)
source impedance mismatch, (iv) load impedance mismatch, (v) reflection tracking, and (vi)
transmission tracking. All of these errors can be minimized by applying a two-port error cor-
rection [3]. In particular, one can think of a network analyzer as an ideal error-free network
analyzer with two error boxes connected between its ports and any DUT (see Fig. 3.3). If the

scattering matrices of the error boxes are given by:

EA _ apo Aao1 (37)
aip ai

By = boo  bo1 (3.8)
bio bna

then the transmission matrix, Tpyr of the device under test can be related to the measured

transmission matrix, Ty, by [4, 5]:

b
Tpur = aloi ~'T,B, (3.9)
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where the matrices are given by:

ap1@10 \ —ajy 1

1 1 —b
B=—— ” (3.11)
b01b10 boo —|EB|

Connecting three known standards to port A and port B of the VNA, the components of matri-

A= L <_EA| “00> (3.10)

ces A and B can be estimated, respectively, while an extra measurement of a known standard
involving both ports is required to estimate the term Zf’ﬁ. Although, usually mechanical stan-
dards are employed for such a calibration, here an electronic calibration kit was used, where the
impedance is switched by PIN-diode or FET switches, ensuring that the calibration standards

never wear out [3].

Fig. 3.3: Error adaptor model used in 2-port calibration models of vector network analyzers.

When antenna measurements are performed, then two antennas are connected to the network
analyzer’s ports and the ”device under test” effectively includes the antennas and all components
placed between the antennas. Therefore, a two-port calibration can only be performed from the
VNA to the edges of the cables connecting the antennas to the VNA, and will only eliminate
errors related to this path. In particular, in the case of free-space measurements additional
systematic errors occur, which have to be accounted for. These errors include interference of the
transmitted and reflected fields with fields scattered at the edges of the samples and at the fixture
supporting the sample, multiple reflections between the antennas and between the antennas and
the sample, as well as deviations of the incident wavefront from the ideal plane wave form. The
most straightforward approach to solve interference errors is to ensure that the sample area is
much larger than the cross-section of the incident wave. However such an approach is unrealistic,
at least in the microwave regime. A more practical solution is adopted here, namely to employ

a large absorbing screen to block radiation not directly incident in the sample and to damp
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diffraction from the sample’s edges. In addition to that, wave front related errors have been

minimized by employing dielectric microwave lenses !.

Fig. 3.4: Error adaptor model used in the gated reflect line calibration model of vector network analyzers.
The DUT in this case corresponds to the antennas and the sample. The dashed lines mark the
reference planes of the two-port calibration.

However, it is not easy to handle the problem of multiple reflections, which virtually renders
normal incidence reflection measurements unavailable. To this end the so-called gated reflect
line (GRL) calibration was employed, which is known to provide at least one order of magnitude
higher accuracy compared to other methods of free-space calibration [6]. The concept behind
GRL calibration is similar to the two-port calibration model, by replacing the antennas, the
sample and the fixture supporting the sample by two error adaptors and a DUT, corresponding to
the sample (see Fig. 3.4) . The error adaptors and the DUT are represented by the corresponding

scattering matrices:

Spe = (C“ C”) (3.12)
C21 (22

dy d
SEd:<d11 12) (3.13)

The first step of a GRL calibration is to estimate the values of ¢y; and di2 by performing

I designed and manufactured by E. Plum
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reflection measurements with out a sample. The measurements take place in the time domain
and are Fourier transformed in the time domain, where reflections originating from different
sources can be distinguished. In particular, as expected the first reflection occurs at the emitting
antenna, the second at the receiving antenna, while at a later time multiple reflection take place
as well. By applying a gate in the time domain around the reflection response associated with
the emitting antenna and repeating the procedure in the reverse direction, the error terms cqq
and dj; can be determined and finally included in the original two-port calibration. By using

this new calibration two known standards are measured, namely air with scattering matrix:

0 e—iwd/c
Sa = ) 3.14
A (e—zwd/c 0 ) ( )

and a metal plate with scattering matrix:

-1 0
Sm = < 0 1) . (3.15)

The measured reflections from the known standards can be related to the scattering matrices
SEe,SEd, Sa and Sy

—2iwd/c d
Tir 1 = = = 6022252122 2 (3.16)
Dy = S e (317
Cinetal 1 = — f 11001222 (3.18)
Conetal 1 = — ld i(f;; (3.19)

From this system of equation, the remaining S-parameters of the error adaptors can be deter-
mined and then embedded in the original calibration [6].

The GRL calibration was used in all microwave normal-incidence experiments reported in
this thesis. Since at oblique incidence a metal plate can no longer be considered as a standard, it
was not possible to apply the GRL at angle-resolved measurements and only a two-port calibra-
tion was employed in this case. The GRL calibration was performed automatically as a part of
the software package 85071EU-100 provided by Agilent, which offered the opportunity for gated
response measurements. During gated response measurements, the measured frequency response
is Fourier transformed to the time domain. There, a gate is applied around the response of
interest and then the signal is transformed back to the frequency domain. This procedure proves
particularly useful for free-space normal incidence measurements, where unwanted multiple re-
flections provide noise and artifacts in the spectrum. The improvement on the measurements
due to the GRL calibration and the gated response measurements is demonstrated in Fig. 3.5 by

an example involving transmission from a planar metamaterial.
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Fig. 3.5: Transmission of a planar metamaterial after a 2-port calibration (red) and a 2-port calibration
followed by a GRL calibration (black).

3.1.4 Errors

In all microwave experiments a two-port calibration followed by GRL calibration was applied.
Thus, the effect of systematic errors related to the VNA, cables and connectors was minimized.
However, systematic errors due to interference of the transmitted and reflected fields with fields
scattered at the fixture could not be accounted for entirely by the calibration a lower frequencies.
On the other hand, the only alternative would involve larger absorbing screens on both sides of
the sample, hence enforcing a low accuracy in the sample positioning. Thus, the measurements
range was In fact, this constituted the second main source of uncertainty. In particular, a GRL
calibration requires measurement of a metal plate having the same size and placed at the same
position as the sample. However, there is a certain uncertainty in the positioning of the metal
plate and sample. At the same time, with every change of sample small displacements of the
fixture provided extra errors. Positional errors were kept below at all times 5% by measur-
ing a metal plate after the sample measurements and performing a new calibration when the
metal plate reflectivity was different from unity by more than 5%. Reducing further the effects
of positioning errors would require continuous recalibrations rendering measurement times not
practical. Drift errors were also observed particularly in the phase measurements but occurred
at long time scales and therefore were negligible compared to the above errors. Although the
source of these drift errors was probably related to temperature changes, they did not affect the
measurements in significant ways and hence no systematic study was performed to clarify their

origin.
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3.2 Finite element analysis

Finite element analysis (FEA) is a method of numerical analysis aiming to approximately solve
problems that can be formulated in terms of partial differential equations and functional min-
imization, such as boundary-value problems [7]. It is usually attributed to Courant [8], who
applied the FEA to a torsion problem. Since then, FEA has grown in popularity, especially with
the solid mechanics community. In addition, during the last decades, the elimination of spurious
results together with the wide availability of powerful computers lead to numerous applications
in electromagnetics problems. Furthermore, when compared to alternative numerical simulation
approaches, such as the finite difference time domain (FDTD) method it presents important ad-
vantages. Perhaps the most important in view of the work presented here is the ability to handle

efficiently very complex geometries, with a cost however, in computer power requirements.

3.2.1 Description

Finite element analysis is applied to the solutions of partial differential equations within a space

), subject to boundary conditions on its boundary 9€2:

Lo = f, (3.20)

where L is a linear differential operator, f is the excitation and ¢ is unknown. The first step of
FEA is an appropriate discretization of domain §2 and an approximation of ¢ based on its values
¢; in these discrete locations indexed by 7 and an interpolation in the whole domain 2 by a basis

function N;:

¢ ~ Z N;¢; (3.21)
In the Galerkin formulation, a residual is then defined [10]:

R=LY Ni¢;— f, (3.22)

which is the difference between the approximate and exact solutions. An efficient method to
minimize this residual is to average R over {2 by using appropriate weighting functions W =

> ; Wj, which leads the following linear system of equations:
K- d=F, (3.23)

where K = [, WiLN;, ®; = ¢; and F; = [, W;f. The system of equations (3.29) can be solved
by using well established methods from linear algebra.
In the case of high frequency electromagnetics, FEA is usually applied to the wave equation
for the electric (or magnetic field) over a space Q:
R -
Vx =V X E—-kjé& B =—ikoZoJ, (3.24)
for
with boundary conditions of the type 7 x E=0and A xV x E = N on the disjoint surface

boundaries of 2, dQp and 9Ny, respectively. In this formulation, a dependence of the type
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exp™? has been assumed, while kg = w/c, €. and i, are relative permittivity and permeability
tensors, respectively, and Zy = \/}T/Eo is the free-space impedance.

Equation (3.24) has infinite degrees of freedom and therefore a discretization has to take
place in order to be able to address the problem numerically. During FEA the discretization is
performed by approximating the domain 2 with standard geometrical shapes called elements. In
two dimensions the elements of choice are often triangles, while for three dimensional problems
tetrahedra are usually preferred, due to their ability to easily cover arbitrarily-shaped domains
(see Fig. 3.6). The procedure of discretization (called meshing) includes also a labelling of the

elements and their nodes for easy reference.

(a) (b)

Fig. 3.6: Examples of two-dimensional (a) and three-dimensional (b) meshed employing triangular and
tetrahedral mesh elements, respectively.

Once discretization has taken place, the values of E can be approximated inside each element
by assigning values in certain points of the element and then use a set of interpolating basis
functions to obtain a continuous approximation of E. The electric field is usually assigned values
at its (corners) nodes and linear interpolating functions are employed, although higher order
polynomials or even vector bases can be used [9]. In particular, bases of the latter type use
assigned values of the tangential electric field at the edges of the element instead of electric field
values at the nodes and vector interpolating functions instead of polynomials resulting in an
appealing approach which is known to minimize spurious errors [10]. Hence, within each element

e, E can be approximated as [9]:
Ef(z,y,2) = Y Nf(x,y,2)Ef, (3.25)

where Nf(m, y, z) is the vector basis function and EY is the tangential component of the electric
field at edge 4 of element e with m nodes. Hence, summing over all element edges (excluding
those at dQp where the tangential component of E vanishes) the electric field over the entire
domain 2 is obtained:

E =Y NE, (3.26)

i=1
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At this point Eq. (3.24) is multiplied by the so-called weighting or testing function W and

integrated over the whole domain  leading to [9]:
/// [(V x W)z (V x E) — k2We, E|dV = (3.27)
%

://mﬁ.[m?x(g;lﬁxE)]dS—///Vz‘kOZOW-de (3.28)

Now the boundary conditions can be directly introduced by separating the surface integral on
domains 0Q2p and 0Qy. Finally, considering that the test function can be expanded similarly to
the electric field by W = Z;=1 NjEj and replacing in Eq. (3.27), the following linear system of
equations results [9]:

K-FE =0, (3.29)

where K is the so-called stiffness matrix given by:
K, = /// (% % N (§ x No) — k2N, 6, NV — (3.30)
1%

_//{mﬁ. [N; x (a7'V x N;))dS (3.31)

bjz—/// ikoZoN; - JAV (3.32)
\%4

3.2.2 Implementation

and

For the numerical simulations requirements of the work reported in this thesis a commercial
software package was employed, i.e. COMSOL 3.3, which includes a graphical user interface for
geometry specification and automated mesh generation and solution. An almost universal, across
this dissertation, FEA model for metamaterials is presented in Fig. 3.7. The incident wave is
considered to propagate along the negative z-axis, while the metamaterial extends in the xy plane.
In order to simulate open space termination, the top and bottom boundaries in the xy plane
are set to scattering boundaries, which are transparent to incident plane waves. To truncate the
simulation domain and avoid any unwanted reflections from the scattering boundaries, perfectly
matched layers (PLM), a type of anisotropic absorbers, are introduced. Such subdomains provide
strong absorption with no reflection independently of incidence angle, frequency and polarization
[9]. Finally, by employing periodic boundary conditions (PBC) only a single unit cell of the

metamaterial structure is required in order to simulate an infinite periodic array.

3.2.3 Errors

During FEA calculations two types of error occur. The first is inherent in the approximation pro-
cedure of FEA, since the geometry domain which in general is of arbitrary shape, is approximated
by elements of specific shape, while the solution is also approximated within each element by the
interpolation function, which might not capture all the details of the field variation. However,
both can be reduced by refining the mesh and/or by employing higher order basis functions.

In the simulations reported here, errors were reduced by successively refining the mesh and
monitoring the fields at a specific boundary, At each step the new mesh was obtained by splitting
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(@) (b) (c)

scattering boundary w/
PML incident field

Q continuity
metal periodic boundary
L% conditions
substrate ——>
(quartz, silicon, PCB)
continuity

periodic boundary

z
conditions
y ¢ X

Fig. 3.7: Anatomy a FEA model: subdomain (a) and boundary (b-c) settings.

scattering boundary

in two all elements of the mesh of the previous step. This procedure stopped when further mesh
refinement returned results not different from the previous step within a 5% or smaller error
margin. In most cases, comparison with experiments was possible which increased the confidence
in the results.

The second type of errors is due to the finite number of digits used during the calculations.
In the cases considered here, such random errors were found to be of the order 10~° or smaller

and were not given further consideration.
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4. SHARP RESONANCES IN PLANAR METAMATERIALS

4.1 Introduction

The functionality of most metamaterials (with few exceptions [1, 2]) is based on the resonant
interactions of the metamaterial constituents with the incident electromagnetic radiation and
the associated dispersive effects [3]. Hence, the ability to control and tune these resonances is
crucial in enabling and optimizing future metamaterial devices. Although versatile applications
have been demonstrated from the microwave [4, 5, 6] down to the infrared part of the spectrum,
providing functional metamaterials into the visible domain remains challenging. Fabrication
difficulties aside, the main obstacle appears to be the strong dissipation of metals at optical
frequencies [7, 8], which broadens resonances and weakens the dispersive effects. More concisely,
the result of dissipation is to decrease the strength of the resonances leading to limited function-
ality. In particular, losses in such composites have three sources: (i) dissipation in the metal, (ii)
dissipation in the dielectric and (iii) radiative losses. In microwave down to mid-IR wavelengths,
losses are mainly related to dissipation in the dielectric and scattering into free-space, while met-
als are still good conductors. At optical frequencies, the losses occur primarily due to the finite
conductivity of the metals, as well as due to scattering. Therefore, minimizing scattering losses,
e.g. coupling to free-space radiation, is important for metamaterials operating on all parts of the
electromagnetic spectrum. On the other hand, metamaterials exhibiting sharp resonances can
provide enhanced functionalities, such as ultra-compact slow-light devices, as well as truly-planar
amplifying and lasing devices.

In this chapter, three different approaches for achieving sharp resonances are studied. Proof
of principle experiments are performed in the microwave domain, while numerical simulations
are employed to investigate the origin of the resonances. The optimization of the metamaterial

design and the relevant limitations are also discussed.

4.2  Symmetry breaking

The response of metamaterials stems from the excitation of resonant current configurations
supported by the metallic unit cell resonator. These current modes are determined by the
geometry of the unit cell resonator and, in general, they share the same symmetries with the
latter, similarly to the guided modes of a waveguide [9], or the propagating modes of a photonic
crystal [10]. In particular, it is expected from fundamental symmetry considerations that the
current density J () will be an eigenvector of the symmetry operators S corresponding to the
symmetries of the resonator: SJ(7) = +J(7). Depending on whether the associated eigenvalue is
+1 or —1, we can classify the current excitations as symmetric and antisymmetric, respectively.

As an example consider a symmetrically split-ring (SSR) which is frequently encountered in
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metamaterial research [11]. Such a resonator is invariant under reflection across a horizontal and
a vertical plane. Consequently, the supported current modes will have the same symmetries. For
example at the frequency of the fundamental mode, where the current forms a standing wave
with two nodes at the edges of each arc, the resonator supports symmetric, dipole-like (Fig. 4.1a)

and antisymmetric, ring-like (Fig. 4.1b) currents.

Fig. 4.1: Current modes of a symmetrically-split ring: (a) symmetric, strongly coupled to free space and
(b) antisymmetric, inaccessible through free-space at normal incidence.

The symmetric current configuration is strongly coupled to free space radiation due to the
strong dipole component which leads to strong scattering and short resonance life times. On the
contrary, the dipole moment of the antisymmetric mode vanishes and scattering occurs only at
electric-quadrupole/magnetic-dipole order or higher. This significantly enhances the lifetime of
the resonance and leads to a much higher quality factor. The virtually zero coupling of this mode
to the free-space radiation has led to the characterization ”trapped-mode” [12]. This resonance
is inaccessible at normal incidence, but it can be excited by weakly breaking the symmetry of the
resonator. In particular, the symmetry of a symmetrically-split resonator (SSR) (Fig. 4.2a) can
be broken in two ways, i.e. along the horizontal or vertical axis, which results in asymmetrically-
split rings with unequal arc lengths (ASR type A) (Fig. 4.2b), or unequal gaps (ASR type B)
(Fig. 4.2c), respectively.

The concept of symmetry breaking was studied experimentally by manufacturing two different
microwave ASR metamaterials, one with different arc lengths (sample A) and one with different
gaps (sample B) (see Fig. 4.3). The arc lengths of sample A corresponded to angles of 140° and
160°, while the gaps of sample B corresponded to 30° and 10° angles. In both cases, the unit
cell size in both cases was 15215 mm, while inner and outer ring radii were 5.6 mm and 6.4 mm,
respectively. The metamaterial arrays were manufactured by etching a 35 mum-thick copper
cladding on a 1.5 mm-thick PCB substrate with relative perimittivity e = 4.05 — 0.05i *. As a
reference, a symmetrically-split ring with arc length corresponding to a 160° angle was employed
and its spectrum was numerically calculated.

The spectral response of type A ASRs is presented in Fig. 4.4 together with the reference

1 Most results reported in this thesis correspond to microwave samples supported by a standard PCB substrate
(FR4) with 1.5 mm thickness and relative permittivity ¢ = 4.05 — 0.05. When this is not the case, it will be
explicitly mentioned.
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Fig. 4.2: Symmetry breaking in split rings: (a) Symmetrically-split ring (SSR). (b) Asymmetrically-split
ring with different arc lengths (ASR type A). (¢) Asymmetrically-split ring with different gaps
(ASR type B). In each case, the dashed blue lines represent the reflection symmetry planes.
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Fig. 4.3: Unit cell and fragment of the asymmetrically-split ring metamaterials: (a) ASR array with
different arc lengths, (b) Asymmetrically-split ring sample with different gaps.

curve of a SSR array under illumination with a horizontally polarized wave ? at normal incidence

2 For the orthogonal polarization the ASR metamaterial does not exhibit sharp resonances and is almost



4. Sharp Resonances in planar metamaterials 38

(see inset to Fig. 4.4). The SSR metamaterial exhibits a wide transmission stop band centered
at 6.3 GHz with full width at half maximum (FWHM) of 4.6 GHz, which corresponds to a
reflection peak with a quality factor @ = 1.4.
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Fig. 4.4: Normal incidence response of asymmetrically-split rings with different arc lengths: (a) trans-
mission, (b) reflection and (c) absorption. For comparison, the response of a symmetrically-split
ring array is also presented (dashed blue). The transmission stop bands are marked as (i) and
(iii), while the trapped-mode resonance is marked as (ii). The polarization of the incident wave
is along the horizontal axis as shown on the shown in the inset to (b).

In the case of the ASR array, the stop band is split in two and three distinct features can
be distinguished: (i) a low frequency transmission stop band at 5.55 GHz, (ii) a narrow pass
band at 5.75 GHz and (iii) a high frequency stop band at 6.85 GHz. The Q-factor of the
stop bands, features (i) and (iii), was calculated as 2.8 and 2.7, respectively. Importantly, the
quality factor of the narrow pass band, feature (ii), was estimated as 16.7, almost an order of
magnitude higher than those of the stop bands of both the ASR and SSR arrays. This high

indistinguishable from the SSR array.
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Fig. 4.5: Current modes of asymmetrically-split rings with different arc lengths at (i) the low frequency
transmission stop band (5.4 GHz), (ii) the "trapped-mode” resonance (5.87 GHz) and (iii) the
high frequency transmission stop band (7 GHz).

quality factor corresponds to a long resonance lifetime justifying the characterization of the
resonance as “trapped”. Finally, this high Q-mode coincides with a strong absorption peak,
indicating that the currents and local fields are significantly enhanced at this frequency and thus
more strongly absorbed. As it will be shown at a later section, this also imposes an upper limit
on the practically attainable @ factors.

In order to study the origin of the observed resonances, finite element modelling was employed.
The structure was modeled as infinitely thin perfectly conducting rings supported by a 1.5 mm
thick PCB substrate with permittivity ¢ = 4.07 — ¢0.05. Periodic boundary conditions were
used to simulate an infinite double-periodic array. Figure 4.5 presents the horizontal component
(along the x-axis) of the current density on the arcs of unit cell resonator for the case of the
high-Q pass band as well as for the two stop bands. In particular, at the low frequency stop
band (5.4 GHz)), both arcs are excited in phase with the longer arc dominating the response of
the resonator. The situation is reversed at the high frequency stop band (7 GHz), where it is
the shorter arc that is more strongly excited, while again both arcs are excited in-phase. On the
contrary, at the ”trapped-mode” resonance (5.87 GH z) both arcs are excited almost equally but
with opposite phases. As a result the fields radiated by this antisymmetric current configuration
interfere destructively in the far-field zone, thus dramatically reducing scattering losses. This
leads to accumulation of energy on the split-ring in the form of strong current oscillations and
enhanced local fields as indicated by Fig. 4.5.

A similar situation occurs in the case of type-B ASR metamaterial, presented in Fig. 4.6,
where the normal incidence response of the metamaterial is presented. As a reference we show
again the response of the SSR metamaterial. In contrast, to type-A ASRs, in the present case,
the polarization of interest is the one with the electric field polarized along the vertical axis (see
inset to Fig. 4.6). While the SSR metamaterial shows no sharp resonant spectral features, the
ASR array exhibits a narrow reflection peak (see feature (i) in Fig. 4.6a) immediately followed
by a broad transmission peak (see feature (ii) in Fig. 4.6). The width of the features is 386 M Hz
and 4.2 GHz leading to quality factors 13.7 and 1.31, correspondingly.

In the case of ASR with different gaps the origin of the observed resonances can be explained
along the same lines as in the case of ASRs type-A. Since the metamaterial is illuminated
with vertically-polarized microwaves and only this component is detected, we can restrict our

explanation to the vertical component of the current configuration on the ASRs. Figure 4.7a
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Fig. 4.6: Normal incidence response of asymmetrically-split rings with different gaps: (a) transmission,
(b) reflection and (c) absorption. For comparison, the response of a symmetrically-split ring
array is also presented (dashed blue). The polarization of the incident wave is along the vertical
axis as shown on the shown in the inset to (a).

presents a colormap of the vertical component of the current density along the top arc of the
ASR 2 for different frequencies. One can consider that the arcs of the ASR consist of two parts,
a short and a long one separated by the vertical plane passing through the centre of the ring.
Similarly to ASRs with different arcs, the current in these two parts flows in opposite directions.
At low frequencies the longer arc is more strongly excited than the shorter one, while at high
frequencies the situation reverses. When the difference in excitation strength of the two parts
of the arc is maximum, then one of the arcs will radiate strongly leading to a reflection peak.
This situation is illustrated in Fig. 4.7, where the full current configuration is shown. One would

expect another reflection maximum occurring at high frequencies, where the shorter part of the

3 Due to the symmetry of the ASR we can consider only one of the arcs in this discussion.
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Fig. 4.7: Current modes of asymmetrically-split rings with different gaps at the transmission stop band
(5.51 GH~z) and pass band (5.59 GH?z).

arc is excited more strongly. However, such a resonance is not observed probably due to the fact
that the gap in the latter case is much wider and hence associated resonances are considerably
weaker than in the former case. On the contrary, at a specific frequency, where the two parts
are excited almost equally * this antisymmetric current configuration scatters weakly resulting

in the observed transmission peak (see Fig. 4.7).

4.3 Coupled elements on the same plane

Another approach in controlling the resonance quality factor in metamaterials involves consid-
ering a unit cell consisting of two similar components,with closely spaced resonant frequencies.
This is a well known approach in the design of frequency selective surfaces in order to achieve
multi-band behavior [13]. A simple example of such a structure is an array consisting of pairs of
concentric rings. In fact, nested-ring designs have been employed in various applications, such
as filters [14, 15], reflectarray antennas [16] and off-normal incidence diplexers [17] to name a
few. However, here we are interested in narrow-band spectral features and their dependence on
polarisation and angle of incidence.

We manufactured a 15 mm-pitch metamaterial array of concentric rings with radii 4.5 mm
and 5.45 mm, respectively (see Fig. 4.8) supported by PCB sustrate. As a reference we used an
array of single rings with a radius of 5.45 mm and the same unit cell size.

In Fig. 4.9 experimentally measured transmission, reflection and absorption spectra are pre-
sented for both metamaterials. The single-ring array exhibits a behaviour typical of FSS with a
2.55 GH z-wide stop-band at 6.38 GHz (Q = 2.5). On the contrary, the behaviour of the concen-
tric ring metamaterial is very similar to the ASR array type A, with a narrow transmission peak
(feature(ii) in Fig 4.9a) appearing at 6.2 GHz with a width of 750 M H z, which corresponds
to a Q-factor @ = 8.3. This peak lies between a low- and a high-frequency broad transmission
stop-bands (see features (i) and (ii) in Fig 4.9a), which are associated with the excitation of the

larger and the smaller ring, respectively. As expected, the pass-band corresponds to a narrow re-

4 The short part will need to be excited slightly more strongly than the longer, in order to compensate for the
difference in length.
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Fig. 4.8: Unit cell and fragment of the concentric ring metamaterial.
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Fig. 4.9: Normal incidence response of concentric rings: (a) transmission, (b) reflection and (c) absorp-
tion. For comparison, the response of a single ring array is also presented (dashed blue).

flection dip (feature (ii) in Fig 4.9b) with increased absorption (Fig 4.9¢), both typical signatures
of "trapped-mode” resonances.

The corresponding, numerically simulated, current density maps are presented in Fig 4.10.
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At the low frequency stopband (Fig 4.10a) the larger ring is more strongly excited than the
smaller one, while the situation is reversed at the high frequency resonance (Fig 4.10c). At the
trapped-mode resonance (Fig 4.10b), both rings are equally excited, but with opposite phases.
As a result the radiated fields interfere destructively leading to the observed narrow pass-band.
In all cases, the excitation of each ring resembles two curved dipoles oscillating in-phase, and
when the two rings are equally excited the net magnetic dipole moment of the pair is zero. This is
in contrast to the ASR metamaterial, where the induced ring currents lead to a strong magnetic
dipole moment normal the plane of the ring. As it will be shown at a later chapter, this can lead

to dramatic differences in the metamaterial response.

(a) 13 () 24 (g 06
< (i) ) 0 L (if) l 0 ( (iif) ) 0
-1.3 -2.4 0.6

Fig. 4.10: Current modes of concentric rings at (i) the low frequency transmission stop band (5.80 GHz),
(ii) the "trapped-mode” resonance (6.20 GHz) and (iii) the high frequency transmission stop
band (8.25 GHz).

As a result of the unit cell symmetry this structure is insensitive to the polarisation of the
incident wave. In addition to this, the concentric metamaterial is angle insensitive even for very
large angles. This is demonstrated in Fig. 4.11, where experimentally measured transmission
spectra, taken with a step of 5%, are presented for transverse electric (TE) and transverse magnetic
(TM) polarisation (see insets). The trapped-mode resonance (which corresponds to the red-stripe
at about 6 G H z parallel to the horizontal axis) persists even at very large angles of incidence and
its frequency remains virtually constant. This is clearly seen in Fig. 4.12a, where the variation in
the frequency position of the trapped-mode resonance is shown for both polarisations. Even at

75°, the position does not vary more than 3% and 1% for TE and TM polarization, respectively.

The only significant change in the spectrum is in the bandwidth of the trapped-mode reso-
nance; Figure Fig. 4.12b presents the variation in the frequency position of the 3 dB level left
and right of the transmission peak. This variation is less than 10% for all measured angles of
incidence and both polarizations. The performance of the studied metamaterial compares well
with other approaches aiming to achieve angle insensitivity behavior in fss [18] and outperforms
by far conventional FSS [13]. At the same time, it allows for easily controllable spectral features
by changing the difference between the inner and outer ring radii.

The key concept in the present approach is the interaction of two resonators with closely
spaced individual frequencies. In between these frequencies, the two resonators are excited with
opposite phases and an anti-symmetric current configuration is established. The similar shape
of the resonators ensures that scattering from the current on one resonator is almost completely

compensated by scattering from the other resonator, which leads to long resonance lifetimes
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Fig. 4.11: Transmission spectra of a concentric ring array with varying angle of incidence for TE (a) and

TM (b) polarization (see insets).
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Fig. 4.12: Bandwidth (FWHM) of the concentric ring metamaterial as a function of the angle of incidence

for TE (blue) and TM (black) illumination.
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Fig. 4.13: Transmission spectra of a jerusalem cross metamaterial (dashed green), a single ring array
(dashed blue), and an array of rings nested within jerusalem crosses (solid red).

and high Q-factors. However, it is not necessary for the two coupled elements to be identical,
in order to achieve narrow resonances. This concept is demonstrated in Fig. 4.13, where the
transmission spectra are shown for a metamaterial consisting of a jerusalem cross nested within
a ring. Both the jerusalem cross and the ring resonator exhibit broad transmission stop bands at
closely spaced frequencies (see dashed green and blue curves). In between these two stopbands,
lies a transmission peak, typical of the trapped-mode resonance. Nevertheless, in this case the
compensation is incomplete, which imposes a limit on the minimum width of the spectral features.
Despite this restriction, having resonators with different shape provides yet another degree of

freedom in the design of planar metamaterials.

4.4 Coupled elements on different planes

An alternative way to achieve high-Q resonances is by considering coupled elements on different
planes. In this case, the interacting resonators should be identical in order to achieve near
complete compensation of the respective radiated fields, while a small displacement along the
propagation direction ensures that their individual resonances are not degenerate.

As a first example, a metamaterial consisting of two identical double-periodic arrays of single
rings with 5.45 mm radius was employed. The two arrays were displaced along the direction
of wave propagation by introducing an increasing number of standard A4 paper sheets and the
resulting normal incidence reflection was measured. The results are shown in the colormap of
Fig. 4.14 as a function of frequency and distance between the two arrays. Two wide reflection
peaks can be distinguished: one at around 7.5 GHz that persists for all separation distances
and a second one at lower frequencies ranging from 6.5 GHz to 5 GHz. In between these two
reflection peaks, a narrow dip is visible (see arrows in Fig. 4.14), where reflection diminishes with
increasing separating distance. This dip corresponds to the trapped-mode resonance and is a
result of the displacement of the two layers. While at small separating distances this resonance
can not be distinguished, it is well developed at larger distances. However, the width of the

resonance also increases with increasing separating distance, since the individual resonances of
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each layer are further spaced, and thus the respective quality factor drops. This trend is plotted
in the inset to Fig. 4.14, where the Q-factor of the trapped mode resonance decreases from 28 at
0.6 mm to almost 5 at 2.7 mm. This provides an easy and controllable way to tune the frequency
position and bandwidth of the pass band (although not independently) by simple changing the

separating distance of the two layers.

Fig. 4.14: Colormap: Normal incidence reflection of two identical regular metamaterial ring arrays sep-
arated along the propagation direction as a function of frequency and separation distance.
The arrows follow the evolution of the reflection dip which corresponds to the trapped-mode
resonance. Inset: Quality factor of the trapped-mode resonance as function of separating
distance.

However, when very thin structures and high-Q factors are both desirable the suggested
scheme is insufficient, since the trapped-mode resonance is not well developed for small separating
distances. In this case, one can employ slightly different resonators to improve coupling to free-
space radiation. This is illustrated by employing arrays of continuous wire patterns, termed

fish-scales due to their shape (see Fig. 4.15).

15 mm

/
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Fig. 4.15: Unit cell and fragment of the fish-scale metamaterial.

A single metamaterial array exhibits a broad reflection band typical of FSS centered at around
6.5 GHz (Fig. 4.16a). When a second identical layer is introduced, a narrow reflection dip can
be distinguished (dashed-line) at around 4.5 GHz, corresponding to a weak transmission peak

(Fig. 4.16b). This trapped-mode resonance becomes more visible in Fig. 4.16¢), where the two
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fish-scale arrays have different wire thickness (0.8 mm and 0.4 mm), since this difference further
separates the resonant frequencies of the two layers. This is even more apparent in (Fig. 4.16d),
where one of the layers is inverted. Here the trapped-mode resonance also moves to a higher

frequency, since the inversion changes considerably the coupling of the two metamaterial layers.
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Fig. 4.16: Normal incidence transmission and reflection spectra of single-layer (a) and bi-layered fish-
scales (b)-(d), where the two arrays are separated by a 1.5 mm thick dielectric. In (b) the two
layers are identical, in (c) there is a small difference in the line thickness of the two arrays,
while in (d) one of the layers is inverted. The dashed lines in (b)-(d) mark the position of the
trapped-mode resonance.

4.5 Conclusions

In conclusion, three different approaches are discussed that aim in achieving narrow resonances in

planar metamaterials based on coupling of metamaterial arrays that lie on the same or different
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plane, which leads to the so-called ”trapped-mode” resonances. The quality factor of these
resonances can be very high at microwave frequencies, where it is only limited by the dissipation
in the dielectric. However, it is expected that scaling into the optical domain will result in lower

quality factors due to the strong losses associated with the metals at these frequencies.
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5. INDUCED TRANSPARENCY AND SLOW LIGHT IN PLANAR
METAMATERIALS

5.1 Introduction

Changes in the velocity of light propagating through dispersive media have been the subject of
extensive investigations in the past [1]. However, the advances in the fabrication of artificial
electromagnetic materials have lead to a renewed interest in this topic. Indeed the ability to
delay a pulse by several times its width is expected to play a central role in the development of
future optical technologies. One of the most promising applications is the realization of an optical
buffer, where information can be stored temporarily, while it is being processed. Such a device can
lead to optical routers instead of the existing electronic ones, resulting in significant increase of
communication speed. In addition to buffering, slow light can enable time-domain information
processing, such as multiplexing and performing convolution integrals [2]. Also, reducing the
velocity of light pulses can lead to enhancement of linear and non-linear interactions [3], which
in turn can improve the efficiency of a number of devices such as amplifiers, lasers, detectors, to
name just a few. Common requirements [4] of slow light devices include long pulse delays (at least
a few times the pulse width) over a wide bandwidth (of the order of several Gb/sec) with little
distortion of the pulse shape. Furthermore, they have to be (ideally optically) tunable at a fast
reconfiguration rate (at the ns scale) with low losses, although high losses can be compensated
by introducing gain. Finally, they have to be compatible with existing fabrication technologies
and compact for efficient integration into future devices.

Although, the first experimental studies of low group velocities appeared in the late 60’s
[5, 6], research in slow light exploded after the demonstration from Hau and Harris [7] of a group
velocity as low as 17m/s in a cold sodium atom vapor by employing the quantum phenomenon
of electromagnetically induced transparency (EIT) [8], where interference of a probe and a pump
laser beam renders an otherwise opaque medium transparent over a narrow frequency range
within an absorption line. Soon similar coherent quantum phenomena were employed to generate
slow light in different types of media, such as crystalline solids [9, 10] and quantum wells [11].
However, this approach was restricted to the available material resonances, while most of the
proposed techniques, involved special and often cumbersome experimental conditions, such as
cryogenic temperatures and the use of high intensity laser sources. This obstacle was surpassed
by appealing to classical analogs of EIT. Indeed, it was suggested that classical systems such
as plasmas [12, 13, 14], electrical circuits and even mechanical spring-mass oscillators [15] can
demonstrate behaviour analogous to EIT. In particular, the implementation of EIT-like effects
in optical resonators has proved of high importance in terms of applications, since in this case
the operating frequency can be tuned simply by varying the system geometry (scaling), while

no pumping or cooling is necessary. It was proposed that classical field interference in coupled
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resonators can lead to EIT-like and slow light behaviour [16, 18, 17]. Experimental investigations
involved typical arrangements, where a dielectric waveguide is coupled to a dielectric resonator
chain, which can extend in a direction parallel [19, 20] or perpendicular to the waveguide [21, 22].
In parallel, slow light was also demonstrated in other classical systems, such as photonic crystals
[23] and photonic crystal waveguides [24, 25]. Although these approaches lead to demonstration of
considerable delays they suffer from the restraints of a constant delay-bandwidth product, i.e. the
price for low group velocities is narrow bandwidth, which is inherent in all resonant phenomena.
This obstacle was surpassed by dynamically tuning the system, while light propagates in the
structure [26, 27| enabling even storing and retrieving light pulses at will. Very recently, slow light
has been also demonstrated in optical fibers, where wide bandwidth tunable delays were observed
tuned at a very rate much faster than previous approaches [28, 29]. However, theoretical studies
have suggested that the maximum achievable delay is roughly proportional to the refractive
index contrast. Therefore, metal-based metamaterials arise as a candidate for the realization of
practical devices and in fact it has been predicted that light can be delayed or even stopped in
metamaterial waveguides [30], although an experimental verification for the latter is pending.
Nevertheless, a fundamental drawback of all approaches to slow light sofar is their dimension
along the light propagation direction which hinders on-chip integration for future devices. For
example, the length of a typical photonic crystal- or optical fiber-based optical buffer should be
several meters long [2, 31], while a typical chip has a footprint of a few um?2. Therefore, orders
of magnitude reduction of size is needed before such applications can be realized.

Here, an alternative approach is presented based on the concept of planar ”trapped-mode”
metamaterials introduced in chapter 4. It is shown that considerable pulse delays can be achieved
in such structures which have vanishing thickness along the propagation direction. Moreover,
it is suggested that the electromagnetic behaviour of planar metamaterials may represent a
classical analog of EIT. Finally, we demonstrate that significant bandwidth enhancement can be
achieved by cascading the suggested metamaterial design, while the resulting structure is still
of subwavelength thickness, thus paving the way to the realization of extremely compact optical

components with high integration efficiency.

5.2 Slow light propagation

Light pulses propagate through dispersive media with a velocity different than the phase velocity,
vp(w) = ¢/n(w), where n(w) is the refractive index at frequency w. This pulse velocity is usually

called group velocity !, v, and is defined as: index [1]:

or

(5.1)

n’

dw

3
+
&

where k is the complex wavenumber.

In fact, it was predicted [32] and later observed [33, 34] that the group velocity can be much

I The group velocity does not always coincides with the information velocity. For example, at an absorption
resonance the group velocity can be greater than ¢, although information can not be transmitted at that speed

[1].
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smaller or greater than ¢ without strong distortion due to pulse reshaping phenomena. From
Eq. 5.1 it follows that in order to achieve slow light propagation, i.e. low group velocities, one has
to maximize the refractive index and/or its first derivative with respect to frequency. Usually,
one has little control over n, but by operating in frequency regions of strong dispersion, such as a
sharp resonance or the band-edge of a crystal, very high values of Z—Z and consequently long pulse
delays are possible. Indeed, the real, Re[n|, and imaginary, Im[n], part of the refractive index,
which control the dispersion and the absorption, respectively, that a wave traveling through a
medium experiences, are not independent. More concisely, causality requirements lead to the

Kramers-Kronig relations:
Re[n(w)] =1+ EP/c>o de’ (5.2)

T Jo w?2-uw

A well known consequence of Eq. 5.2 is the anomalous dispersion observed at absorption
resonances, which results in pulse advance [1]2. Inversely, one would expect that sharp normal
dispersion would occur at a narrow minimum of loss or a maximum of gain. This behaviour is
illustrated in Fig. 5.1, where two characteristic cases of anomalous and normal dispersion are

presented.

Anomalous Dispersion Normal Dispersion

(@) (b)

Im[n]
Re[n]
Im[n]
Re[n]

W w
(0] (o]

Fig. 5.1: Real (red) and imaginary (blue) part of the refractive index for (a) single Lorentz oscillator
and (b) two Lorentz oscillators with slightly different frequencies.

Another consequence of the Kramers-Kronig relations is that one cannot have very sharp
dispersion over a wide bandwidth, i.e. very steep dispersion can occur only at the expense of
bandwidth. This limitation is quantified by the so-called delay-bandwidth product, which is
constant for a given physical process and it constitutes a popular figure of merit for comparing
different slow light mechanisms.

As expected, a pulse whose spectrum lies entirely within the frequency region of normal
dispersion will be delayed, but retaining its shape. However, if the pulse spectral width extends
outside this region, then distortion will take place, since, if we consider the pulse as an ensemble
of monochromatic components, then due to the fact that the group velocity will vary with

frequency, different pulse components will be delayed by different amounts and the pulse envelope

2 In this case, the signal does not actually propagate faster than the speed of light (this would violate causality),
but rather it is reshaped in such a way that the maximum of the transmitted pulse is shifted within the envelope
of the incident pulse
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will broaden. This broadening is quantified by the group velocity dispersion, GV D, defined as:

d*k

GVD - w,

(5.3)

Similar will be the effects of higher order dispersion terms, while the dispersive nature of
the absorption will also contribute to distortion. This will limit the available bandwidth and
consequently decrease the delay-bandwidth product. In order to take into account the limitations
that arise from distortion, in the following discussion, we will consider as a figure of merit the
fractional delay, namely the ratio of pulse delay over the width (full width at half maximum) of
the transmitted pulse. The minimum pulse duration (and consequently the bandwidth) will be
limited by the requirement that, in order for two pulses to be distinguished, their peaks have to
be separated in time by at least one pulse width (FWHM).

5.3  Electromagnetically Induced transparency

Electromagnetically induced transparency (EIT) is a coherent non-linear quantum phenomenon
that occurs in atomic media due to quantum interference of two laser beams tuned at different
atomic transitions. A detailed analysis of EIT lies beyond the scope of the thesis. Instead, it
will suffice to mention the fundamental characteristics of EIT by appealing to a simplified EIT
system which will allow us to draw the analogy with metamaterial systems later on. In this brief
introduction we will mainly follow the recent review by Fleischhauer et al. [35]. Finally, it will
be assumed that the response of the atomic system is parallel to the electric field of the incident
waves, so that we can avoid the complications of a vector consideration.

As an example we will consider a so-called A atomic system, which consists of three states,
i.e. |1 > (the ground state), |2 > (the excited state) and |3 > (a metastable state). The excited
state is dipole-coupled to both states |1 > | and |3 >, with corresponding resonant frequencies
wo1 and wog, respectively, while transitions from state |3 > to state |1 > are not allowed. This
is illustrated in Fig 5.2a. The atomic system interacts with two laser beams: a weak probe E,
with frequency w, = wa1 + ¢, where ¢ is a small detuning from the |1 >— |2 > transition, and
a strong pump beam FE. with frequency w. = w3 applied the |2 >— |3 > transition. We are
interested in the linear response of the atom vapor to the probe field £, which will be given by

the real (x’) and imaginary (x”) part of its relative susceptibility x(wp):
P(wp) = eo(X'(wp) + ix" (wp)| Ep, (5.4)

where P(wp) is the induced polarization. The latter is related to the off-diagonal elements

(coherences), pa1, pa3 of the system’s density matrix by:

Natom
\%

P(wp) = [d12p21€7iw21t + d32p23€7iw23t + C.C.]7 (55)

where & atem s the atomic density, di2 and dzz are the dipole moments associated to transitions

|1 > —|2 > and |3 > —|2 >, respectively, while c.c. stands for complex conjugate. The coherences
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11> — |1>
(@) (b)

Fig. 5.2: (a) A A-system under the bare picture. The excited state |2 > is coupled to the ground state
|1 > by a probe beam of strength €, and frequency wp, detuned from the resonant frequency
w21 by a small amount 6. A pump beam of strength 2. and frequency w. = was resonantly
couples the excited state |2 > to the metastable state |3 >. (b) Under the dressed state picture,
the effect of the pump beam is considered to induce a splitting of the excite state |2 > to the
(dressed) states |2d > and |3d >. The detuning of the probe beam from the dressed states is
denoted by A; and A, respectively.

can be found by solving the Liouville equations of motions:

,L'chi(st
p23 = P13 (5.6)
Qe o
P13 = %pzl (5.7)
Qe Qe

p21 13 (5.8)

=S t2i  y+ai”

The linear susceptibility can then be estimated by retaining only terms linear in e®rt:

X ~ diapare” 1, (5.9)
or
46(02 — 462)
"~ |dio? - 5.10
X el e ey 522 (>10)
and 252
X"~ |diaf? J (5.11)

(402 — Q2)2 + 46242’

where 7 is the coherence decay rate of state |2 >, while dephasing of state |3 > is considered
negligible. The most striking characteristic of Eq. 5.11 is that the imaginary part, x” of the sus-
ceptibility vanishes for zero detuning of the probe, § = 0, meaning that no absorption occurs at

resonance. Note that this is possible only due to the effect of the pump beam. Indeed, for Q. = 0,
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Eq. 5.11 reduces to x” ~ ‘d12|2462271727 which is takes its maximum value for § = 0. This cancel-
lation of absorption can be explained in terms of interference of different excitation pathways.
In a semiclassical picture the coherences express the oscillating dipole moments induced by the
applied electromagnetic fields. Then, the origin of the interference can be traced on the second
term of Eq. 5.8, where the pump beam couples po; associated with the |1 >— |2 > transition to
p13 and pog through .. These two terms express the interference between the direct excitation
pathway |1 >— |2 > and an indirect via state |3 >, |1 >— |2 >— |3 >— |2 >. Although the
latter has weak probability of occurring, this is compensated by the large amplitude of the pump
field. On the other hand, the strong probability of the former direct excitation is restrained by
the low intensity of the probe beam. This interference becomes more evident if we transfer in
the dressed state picture. In this framework, the effect of the pump is reduced to a splitting of
the resonance at which the probe beam is tuned, which now experiences two new dressed states
|2d > and |3d > whose energies have shifted approximately by +/(2./2 from the energy of state
|2 > (see Fig. 5.2b). If we denote the detunings of the probe beam from the dressed states as
Ay = wo + Qe/2 —w, and Ay = wa — Q¢ /2 — w), respectively, then the susceptibility can be

readily written as:

A1 Az (A1 4+ Ay)
AATAZ +2(A1 + Ag)?

X/ ~ |d12|2 (512)

and )
")/(Al + AQ)

AATAZ + 72 (A1 + Ag)?

X"~ |daf® (5.13)

In this form, the contributions from the two dressed states through the detunings A; and Ag
become obvious, while the appearance of the sum Aj + As in the nominator of the susceptibility
directly shows the quantum interference. At zero detuning from the bare excited state, the
dressed states contribute with opposite phases in the susceptibility and exactly compensate one
another leading to zero absorption. At the same time due to Kramers Kronig restrictions, the real
part of the susceptibility exhibits strong dispersion. In fact, for small detunings, the dispersion
of the real part of the susceptibility, is inversely proportional to the splitting of the dressed states
dx'Jdw ~ (A1 — Az) 2, meaning that smaller splittings (i.e. weaker pump field) leads to sharper

dispersion.

5.4 Pulse Delays in Microwave Trapped Mode Metamaterials

The sharp resonances exhibited by the trapped-mode metamaterials (see chapter 4) provide an
ideal opportunity to realize pulse-delaying schemes in very thin media. In contrast to all other
approaches, where constraints are introduced in the minimum thickness of the medium, the
thickness of planar metamaterials along the propagation direction is many times smaller than
the wavelength and is only limited by fabrication requirements. As an we will investigate the
dispersion properties of the bi-layered fish-scale metamaterial, where the front and back layers
are displaced along the lateral direction by half a unit cell with respect to one another. As it
will be shown, this particular design allows for low distortion pulse delays, while it can also be

cascaded by successive stacking of metamaterial slabs leading to significant bandwidth increase.



5. Induced Transparency and Slow Light in Planar Metamaterials 57

Ty
me &z—&

4.3 rad/GHz

=
my
Iy

2.9 rad/GHz

5.9 rad/GHz

\

Fig. 5.3: Transmission (blue) and phase change (red) for (a) ASR metamaterial with different arc lengths,
(b) concentric ring metamaterial and (c) the bi-layered fish-scale metamaterial with displaced
top and bottom layers. The insets in the graphs show the propagation direction and the
polarization of the incident wave, while the green panels mark the frequency regions of sharp
normal dispersion.

Figure 5.3 presents transmission intensity and phase change for asymmetrically-split ring

(ASR), concentric ring (CR) and bi-layered fish-scale arrays. Narrow trasmission resonances can
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be observed in all cases, coresponding to the trapped-mode, antisymmetric current excitations.
As expected by the Kramers-Kronig relations, these resonances are accompanied by sharp nor-
mal phase dispersion, which is approximately linear at the vicinity of the transmission peaks.
Importantly, the sharpest phase dispersion is observed for the bi-layered fish-scale metamaterial
with a slope of 5.9 rad/GH z as compared to 4.3 rad/GHz and 2.9 rad/GH z for the ASR and
CR arrays, respectively. Furthermore, in contrast to the latter metamaterials, the phase change
in the case of bi-layered fish-scale metamaterial is a monotonous function of frequency and hence
group velocity dispersion is expected to be weaker.

The slow-light behaviour of the bi-layered fish-scale array is further illustrated in Fig. 5.4a,
where the group delay is presented as a function of frequency. The group delay peaks at the
trapped-mode resonance exceeding 1 ns, which is the maximum achievable delay in the structure
regardless of the incident pulse width, while away from resonance, the group delay takes very
small values around zero. On the other hand, the group velocity dispersion (see Fig 5.4b) vanishes
at the transmission peak, but reaches very high positive and negative values at frequencies
slightly above or below the ”trapped-mode” resonance. Consequently, as the spectral width of
an incident pulse increases the effects of the group velocity dispersion will become important
leading to broadening of the pulse. Similar will be the effects of higher dispersion terms and of

the dispersive nature of the transmission amplitude.
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Fig. 5.4: Group delay (a) and group velocity dispersion (b) for the bi-layered fish-scale metamaterial
(shown in the insets). The dashed lines and red arrows mark the frequency, where dispersion
is at a maximum. The blue arrows in (b) mark maxima of the group velocity dispersion.

However, both the group velocity and the group velocity dispersion vary with frequency
and therefore the delay and distortion that a pulse will experience will depend on its spectral
width and, consequently, to its duration. This behaviour is illustrated in Fig. 5.5a, where the
fractional delay and broadening (both normalized to the transmitted pulse duration) of the
transmitted pulse are presented for pulses of different duration. More concisely, the bi-layered
fish-scale metamaterial provides the longest fractional pulse delays for short, spectrally broad
pulses, while broadening effects are relatively weak (less than 50% of the incident pulse duration).

For example a 0.5 ns long pulse will broaden to 0.7 ns and will be delayed by more than 0.35 ns,



5. Induced Transparency and Slow Light in Planar Metamaterials 59

which corresponds to a fractional delay of about 50%. This counter-intuitive behaviour can
be explained by considering the interplay of three different factors, i.e. (i) how much of the
pulse spectral power lies within the area of constant normal dispersion, (ii) broadening due to
distortion and (iii) the incident pulse duration. By decreasing the latter, the fractional delays
become longer, but at the same time the spectrum of the pulse becomes broader and factors
(i) and (ii) tend to decrease the fractional delay. However, outside the trapped-mode resonance
the group velocity dispersion has very small values. Therefore, the pulse spectrum can become
increasingly wide without leading to very strong distortion effects. As a result, the duration of
the pulse will become smaller and the fractional delay will increase. This is not the case for the
ASR metamaterial (see Fig. 5.5b), where the largest fractional pulse delay of 20% occurs for an
optimum pulse duration of about 2.5 ns. In this case the delays are much smaller than in the
bi-layered fish-scale, mainly due to the less steep slope of the phase curve at the trapped mode
resonance but also due to the strong dispersion of both the group velocity and the transmitted

intensity. These factors lead to broadening which limits the available fractional delays.
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Fig. 5.5: Fractional pulse delay (blue) and fractional broadening (black), defined as the ratio of the delay
and the transmitted pulse duration over the duration of the incident pulse, respectively, for the
bi-layered fish-scale (a) and the ASR (b) metamaterial shown in the corresponding insets.

5.5 Metamaterial Analog of Electromagnetically Induced Transparency

The observed behaviour of the trapped-mode metamaterials can be considered as a classical ana-
log of electromagnetically induced transparency, as the weak coupling of the counter-propagating
currents to free space in the metamaterial is reminiscent of the weak probability for photon ab-
sorption in EIT observed in atomic systems. The main difference lies in the fact that, in the
metamaterial case, the transparent state is a result of classical field interference, rather than
quantum interference of atomic excitation pathways.

To draw the parallel further we will appeal to a circuit representation of the metamaterial
[36]. The response of a single layer to an an incident electromagnetic field E; can be described
by the induced current I. To simplify the following discussion, we will approximate the fish-
scale metamaterial unit cell by a pair of parallel thin dipoles without a dielectric substrate. The

induced current can be expressed in terms of an effective voltage V' = [F;, where [ is the effective
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length of the dipoles [37], by introducing the single layer impedance Z,:
V=21,

or
IE; = 7,1, (5.14)

The impedance Z, = Z; 4+ Z,, includes both the unit cell element self impedance Z, and
the mutual impedance between different elements on the same layer Z,,. Near the unit cell
element resonance w,, the term Z varies rapidly with frequency and can be approximated by:
Zy=Rs+jLs(w? —w?)/w >~ (Rs+ Zm) +2jLs(w — w,), where R, and Ly can be considered as
the resistance and the inductance of the circuit equivalent and are assumed constants defined by
the geometry of the structure. Then, the reflectivity R of an array of dipole pairs will be given
by [38]:

Re[Z,)?

R~ 200
|Zo?

(5.15)

When a second layer is introduced at a distance d along the propagation direction of the
incident wave, then interactions between the two layers have to be taken into account. More
concisely, the current I; (I3) on the first (second) layer induces a voltage on the second (first)
layer and Eq. 5.14 becomes:

B, =Z,- 11+ Z. - I (5.16)
B e’ =Z, - I, + Z, - I, (5.17)

where ¢ = 27/) is the phase difference in the excitation of the two layers due to their physical
separation and Z. is the coupling impedance. The solution of the system of equations Egs. 5.16
& 5.17 yields:

Zo — Zee' i 21
L~= 2 E=e%F 5.18
1 72— 72 e D ( )
Zoye' — Z, Zs
2~ G s (5.19)

where we have introduced for later convenience 7y = Z,e~ ' — Z,, Zo = Z,e'® — Z, and D =
Z% — 72, Neglecting dissipation effects, the losses in the two-layer dipole array will be given by
the reflectivity |R| which will be proportional to:

Z + Zs

R| ~ iy + ige™®| ~
Bl ~ fi + dze™] ‘Z1Z2+Z0(Z1+Z2)

| (5.20)

In Eq. 5.20 the current from the second layer is multiplied by a phase factor, in order to
account for the retardation of the scattered fields due to the physical separation of the two
layers.

A similar relation can be obtained for the case of ASRs and DRs, namely for two interlaced
arrays on the same layer. In this case, each array is characterized by its impedance, Zél) and

Z(()Q) and the corresponding currents are given by:
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(1)
Zy) —Z. . Iy
e 2t T D E; (5.21)
(2)
Zy) - Z, Z
L~ B =22, (5.22)

zZWzP 72 D

where Zy = 2V — 7., Zo = 2 — Z, and D = 7, = 2V Z8? — Z2. The reflectivity will be
given again by Eq. 5.20.

Fig. 5.6: (Approximation of the bilayered fish-scale metamaterial. The fish-scale unit cell is replaced
with a pair of parallel half-wavelength dipoles. The polarization of incident wave is considered
to be parallel to the dipole axis.

In both bi-layered and interlaced arrays, losses are eliminated when the sum Z; + Z5 is at a
minimum, which implies that the currents on each array oscillate with opposite phases according
to Egs. 5.21 and 5.22. This is in direct analogy with the detunings from the dressed states in
EIT that contribute with opposite phases in the imaginary part of the linear susceptibility (see
Eq. 5.13). Indeed, the imaginary part of impedances Z; and Zs can be understood as detunings

from two resonant frequencies. The difference in the latter resonances is analogous to the AC
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stark splitting in EIT as a result of the pump beam and is induced either by physical displacement
of two identical layers, or simply by making one of the layers slightly different than the other
one. On the other hand, reflection maxima will occur when Z; or Z, is at a minimum, namely
when the induced current on one of the layers vanishes leading to strong scattering from the

other layer.

N

single-layered

el

bi-layered

-~
q\(: —

l
1

Fig. 5.7: (a) Representative reflectivity spectrum from Eq. 1 for single layer (dotted blue) and two-layer
(solid red) structures approximated by Z, = 60 + 18 - 10" %(w — w,)i and Z. = 55 — 60i, where
wo = 36.4-10° rad/s. (b) Current strength on the front (red) and back (blue) layer. Dashed
lines mark the positions of the reflection maxima. (c) Phase of the induced currents on the
front (red) and back (blue) layer. At the trapped mode resonance an antisymmetric mode is
established, with the currents on the two layers having a 7 phase difference.

This behaviour can be illustrated in the following example, where the bi-layered fish-scale is

approximated by two arrays of thin, perfectly conducting, dipole pairs. The unit cell of each
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layer had dimensions of 40240 mm and consisted of two parallel 27.3 mm long dipoles separated
by 7.5 mm. The two layers were displaced by 4 mm with respect to each other along the
direction of wave propagation. By limiting our analysis in a narrow frequency region around
the half-wavelength resonance of the dipoles (~ 5.5 GHz), we can assume a sinusoidal current
on each dipole. Then the impedance Z, can be calculated [39], which yields approximately:
Z, =60+ 18- 107%(w — w,)i, where w, = 36.5 - 1072 rad/s, while only the dispersion of the
imaginary part of the single element impedance has been taken into account. In a similar way,
the coupling impedance Z. for a two-layer dipole-pair array can be estimated near the resonant
frequency w, as Z. = 55 — 60i. The reflection curve for this case is presented in Fig. 5.7a,
where the reflectivity of a single layer array is also included for comparison. The most striking
characteristic of the reflectivity curve is the EIT signature of a narrow minimum within the broad
single-layer reflection peak. The currents on each layer and their relative phase difference is also
presented in Figs 5.7b and 5.7c, respectively. In the far-field zone, the waves emitted by these
resonant, anti-symmetric currents interfere destructively due to the m phase difference, hence
dramatically reducing scattering losses. As a result the currents induced in the metal stripes in
each layer become exceptionally high near the trapped mode resonance (see Fig. 5.7b). Although
this estimation is prone to significant approximation and becomes increasingly unrealistic away
from the half-wavelength dipole resonance, nevertheless it proves that the circuit representation
is adequate to reproduce at least qualitatively the similarity of the trapped-mode metamaterials
with EIT systems.

5.6 Bandwidth Enhancement In Cascaded Metamaterials

The bandwidth of the normal dispersion region can be significantly increased with a small penalty
in the maximum achievable delay and an actual increase in the maximum transmission within this
frequency region, by successively stacking fish-scale metamaterial slabs. Indeed, the fish-scale
design can be cascaded in such a way, that each slab is inverted with respect to the adjacent ones
(see left panels in Fig. 4.8), while the distance between successive fish-scale patterns is defined
by the thickness of the dielectric substrates (1.5 mm). The experimental results for three and
four fish-scale layers are shown in Figs. 4.8a and 4.8b, respectively.

In both cases, stacking of multiple slabs results in an increase of maximum transmitted
intensity and width of the frequency region, where normal dispersion occurs. In particular, with
each additional layer, a new transmission peak appears shifted at lower frequencies with respect
to the bi-layered fish-scale case. These new peaks can be attributed to the different modes that
become accessible with increasing number of layers due to ”hyridization” of the modes that
each pair of adjacent of fish-scale layers supports [40]. At the same time, the sharp normal
phase dispersion extends over a wide frequency band exceeding 1.5 GHz and 2.5 GH z for three
and four layers, respectively. However, the steepness of the phase slope weakly varies between

resonances, which introduces distortion (broadening) and limits the attainable delays.

5.7 An optical delay line

In order to demonstrate the scalability of the presented approach and its applicability to the

actual technological challenges, we simulate a trapped-mode metamaterial operating at telecom-
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Fig. 5.8: Experimentally measured transmission amplitude (blue) and phase change (red) for three (a)
and four (b) fish-scale layers. The arrows mark the positions of individual resonances, while
the area of normal dispersion is highlighted (green).

wavelengths, i.e. ~ 1.5um. Since bi-layered structures are not easily manufactured at nanoscales,
we consider a single-layer metamaterial based on asymmetrically-split rings (ASRs). The modeled
structure has a 2102210 nm unit cell and is supported by a 200 nm thick silicon substrate with
permittivity e = 12. The rings are considered to be made of silver, for which the permittivity is
given by a Drude model fit to experimental data. Transmission and phase for the optical ASR
array is shown in Fig. 4.9a, which shows the characteristic trapped-mode behaviour. Due to the
large asymmetry, the transmission window extends over a wide region of about 40 T H z, while at
the same time sharp normal dispersion occurs. The corresponding fractional delay for different
durations of the incident pulse is presented in Fig. 4.9b. The maximum achievable delay occurs
for about a 30 fs incident pulse which is delayed for about 20%. This delay is small in view of
potential applications, however the bandwidth at which it occurs is quite broad. At the same time
the broadening that the pulse experiences is weak, remaining under 30%. The delay-bandwidth
product of the structure is about 0.2, which is of the same order of magnitude with that of a
typical resonator waveguide. However, it has been suggested that a more appropriate figure of
merit should take into account the length of the structure [41]. Therefore, we will consider as a
figure of merit the delay-bandwidth product divided by the ratio of the thickness of the structure
along the propagation direction over wavelength. For the ASR presented here this FOM is about
1.3, which is at least comparable if not higher than a large number of other approaches [41].
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Fig. 5.9: (a) Transmission and phase change spectrum for an infrared ASR array. A steep phase disper-
sion can be distinguished at the trapped mode resonance, where with losses of about —6 dB.
(b) Corresponding fractional pulse delay and broadening.

5.8 Conclusions

In conclusion, a new approach to slow light has been presented, one that, in contrast to previous
schemes does not require the medium to extend along the propagation direction. This can
lead to an extremely small footprint, and also provides the opportunity to structure already
present interfaces. It is also shown that the trapped-mode metatamaterial behaviour constitutes
a classical analog of EIT, where quantum probability amplitudes are replaced by fields radiated
from resonant current configurations. Open questions that need to be addressed include the
possibility for tunability of the pulse delay and the compensation of losses in the optical part of

the spectrum



1]
2]
3]

[4]

[10]

[11]

[15]

BIBLIOGRAPHY

L. Brillouin, Wave Propagation and Group Velocity (Academic Press Inc., New York, 1960).
T. Baba. Slow light in photonic crystals. Nature Photonics 2, 465 (2008).

T. F. Krauss. Slow light in photonic crystal waveguides. Journal of Physics D: Applied
Physics 40, 2666 (2007).

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain. Slow light optical buffers: Capabilities
and fundamental limitations. Journal of Lightwave Technology 23, 4046 (2005).

D. J. Bradley, G. M. Gale, and P. D. Smith. Self-induced transparency and dispersion delays
in potassium vapour. Nature 225, 719 (1970).

D. Grischkowsky. Adiabatic following and slow optical pulse propagation in rubidium vapor.
Physical Review A 7, 2096 (1973).

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).

S. E. Harris, J. E. Field, and A. Imamoglu. Nonlinear optical processes using electromag-

netically induced transparency. Physical Review Letters 64, 1107 (1990).

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R.
Hemmer. Observation of ultraslow and stored pulses in a solid. Physical Review Letters 88,
023602 (2001).

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd. Superluminal and slow light propaggation
in a room temperature solid. Science 301, 200 (2003).

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang,
and S. L. Chuang. Slow light in semiconductor quantum wells. Optics Letters 29, 2291
(2004).

S. E. Harris. Electromagnetically induced transparency in an ideal plasma. Physical Review
Letters 77, 5357 (1996).

D. F. Gordon, W. B. Mori, and C. Joshi. On the possibility of electromagnetically induced
transparency in plasma. I. Infinite plasma. Physics of Plasmas 7, 3145 (2000).

D. F. Gordon, W. B. Mori, and C. Joshi. On the possibility of electromagnetically induced
transparency in plasma. II. Bounded plasma. Physics of Plasmas 7, 3156 (2000).

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, Am. J. Phys. 70, 37 (2002).



Bibliography 67

[16]

[17]

[18]

[22]

[23]

[25]

[26]

[27]

(28]

L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchencko. Tunable delay line with
interacting whispering-gallery-mode resonators. Optics Letters 29, 626 (2004).

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki. Interference
effects in lossy resonator chains. Journal of Modern Optics 10, 2515 (2004).

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd. Coupled-
resonator-induced transparency. Physical Review A 69, 063804 (2004).

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson. Experimental realiza-
tion of an on-chip all-optical analogue to electromagnetically induced transparency. Physical
Review Letters 96, 123901 (2006).

Q. Xu, J. Shakya, and M. Lipson. Direct measurement of tunable optical delays on chip
analogue to electromagnetically induced transparency. Optics Fxpress 14, 6463 (2006).

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger. Induced transparency and
absorption in coupled whispering-gallery microresonators. Physical Review A 71, 043804
(2005).

K. Totsuka, N. Kobayashi, and M. Tomita. Slow light in coupled-resonator-induced trans-
parency. Physical Review Letters 98, 213904 (2007).

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M.
Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt. Ultrashort
pulse propagation at the photonic band edge: Large tunable group delay with minimal
distortion and loss. Physical Review E 54, R1078 (1996).

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama. Extremely
large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Physical
Review Letters 87, 2563902 (2001).

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab. Active control of slow light on
a chip with photonic crystal waveguides. Nature 438, 65 (2005).

M. F. Yanik, W. Suh, Z. Wang, and S. Fan. Stopping light in a waveguide with an all-optial
analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004).

Q. Xu, P. Dong, and M. Lipson. Breaking the delay-bandwidth limit in a photonic structure.
Nature Physics 3, 406 (2007).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R.
W. Boyd, and A. L. Gaeta. Tunable all-optical delays via Brillouin slow light in an optical
fiber. Physical Review Letters 94, 153902 (2005).

K. Y. Song, M. G. Herrez, and L. Thvenaz. Observation of pulse delaying and advancement
in optical fibers using stimulated Brillouin scattering. Optics Express 13, 82 (2005).

K. L. Tsakmakidis, O. Hess, and A. D. Boardman. Trapped rainbow storage of light in
metamaterials. Nature 450, 397 (2007).



Bibliography 68

[31] L. Thevenaz. Slow and fast light in optical fibres. Nature Photonics 2, 474 (2008).
[32] C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970).

[33] L. Casperson and A. Yariv, Phys. Rev. Lett. 26, 293 (1971).

[34] S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).

[35] M. Fleischhauer, A. Imamoglu, and J. P. Marangos. Electromagnetically induced trans-
parency: Optics in coherent media. Rev. Mod. Phys. 77, 633 (2005).

[36] B. A. Munk and R. J. Luebbers, IEEE Trans. Antennas Propag. AP-22, 776 (1974).

[37] G. Sinclair. The transmission and reception of elliptically polarized waves. Prceedings of the
LR.F. 38, 148 (1950).

[38] B. Munk, R. Kouyoumjian, and L. Jr. Peters. Reflection properties of periodic surfaces of
loaded dipoles. IEEE Transactions on Antennas and Propagation 19, 612 (1971).

[39] C. T. Tai. Coupled antennas. Proceedings of the I.R.E. 36, 487 (1948).

[40] N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Plasmonic building block for magnetic

molecules in three-dimensional optical metamaterials. Advanced Materials 20, 3859 (2008).

[41] J. B. Khurgin, J. Opt. Soc. Am. B 22, 1062 (2005).



6. COLLECTIVE EFFECTS IN PASSIVE AND ACTIVE METAMATERIALS

6.1 Introduction

The strongly dispersive nature of the metamaterials response stems from the resonances of its
individual constituents (meta-molecules). As a result the electromagnetic behaviour of individual
meta-molecules and metamaterial arrays are usually very similar and any differences can be
attributed to the moderate interactions between adjacent elements [1, 2]. However, it has been
shown that inductive coupling between metamaterial resonators can lead to collective behaviour
and reveal new effects [3, 4, 5]. In particular, periodic arrangements of split-ring resonators in
one, two and three dimensions can support a new kind of waves termed magneto-inductive waves
[4, 6]. Such waves arise from the voltage induced in each split-ring due to the time-varying
magnetic fields associated with the currents on the other resonators in the array. Magneto-
inductive waves present intriguing properties: they exhibit strong dispersion, they can only
propagate only within specific pass-bands, they can be forward or backward waves [4, 6, 7, 8, 10].
These properties are desirable in various applications and to this end numerous devices based
on magneto-inductive waves have been suggested, including waveguides, junctions, couplers and
transducers [4, 9, 10, 11]. In addition, it was suggested that magneto-inductive waves can be
employed to launch electromagnetic waves [12], while applications in sub-wavelength imaging
[13] and nuclear magnetic resonance imaging [14] were also considered.

Collective effects in metamaterials become especially important, when the effects of disorder
on the metamaterial response are considered. Indeed, weakly interacting meta-molecules should
not be greatly affected by disorder, while drammatic changes are expected in strongly-interacting
systems. Studies of disorder in metamaterials have focused mainly to periodic arrays of resonators
whose resonant frequencies follow a random distribution. In particular, it was predicted that in
the case of magnetic metamaterials, introducing disorder in the form of weak fluctuations in
the parameters of the unit cell resonators or as impurities can lead to significant changes in the
effective permeability, which typically takes lower values with increasing fluctuation intensity
or impurity concentration [15, 16]. The strong dependence of metamaterial parameters in the
microscopic disorder was attributed to the scattering of magnetoinductive waves at the resonators
with different parameters and at the impurities, hence introducing an additional loss mechanism
[16]. This behaviour was verified experimentally in arrays of microwave split-ring resonators,
whose geometric parameters varied according to a uniform distribution [17]. In contrast to
the effects of random fluctuations in the resonator geometry, studies of the effects of different
disorder types in metamaterials are not well understood. Preliminary theoretical investigations
of one-dimensional nanoparticle chains that support guided waves have shown that increase of
positional disorder leads to increased damping for such waves [18]. Also, non-systematic studies

of magnetic metamaterials consisting of split-rings have shown qualitatively that the response
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of split-ring arrays is affected by random displacements of the individual unit cells, as well as
by displacements of whole two-dimensional layers [2]; however, in all cases of positional disorder
the metamaterial resonant response persisted. Finally, similar effects where observed for the
negative refractive index of a microwave metamaterial with a dendritic unit cell [19].

Here, two extreme cases of metamaterials are introduced: coherent metamaterials, where the
resonant response is a property of the metamaterial array and is not found in a single meta-
molecule, and incoherent metamaterials, where the response of individual arrays and resonator
arrays are almost identical. We attribute this behaviour to the presence or absence, respectively,
of magnetization which is not coupled to the magnetic field of the incident wave due to its orien-
tation: normal to the array plane and parallel to the incident wave propagation direction. This
fundamental difference leads to dramatic behaviour in presence of disorder: coherent metamate-
rials depend critically in the periodic nature of the array, while the antipode class of incoherent
metamaterials appears almost independent of disorder. The collective nature of the coherent
metamaterial response allows for a strong feedback mechanism which can be employed in active
devices. Such a device, termed the lasing spaser, is suggested here and its potential for amplifi-
cation and light-emission is demonstrated numerically both in the optical and mid-infrared part

of the electromagnetic spectrum.

6.2 Single element and collective resonances in trapped-mode metamaterials

The observed trapped resonances in the asymmetrically-split ring (ASR) and the concentric
ring (CR) metamaterials, although both manifest as sharp minima in the reflection spectrum,
are of different origin, the former depending essentially on a collective (coherent) effect, while
the latter is predominantly a property of a single meta-molecule. To illustrate this fact, finite
element numerical simulations were performed on self-standing, infinitely thin, perfectly conduct-
ing structures and the scattering properties under plane wave illumination of both an infinite
metamaterial array and an isolated single meta-molecule were simulated. In the first case, the
reflection spectrum of the infinite periodic array was calculated and was compared to the back
scattered electromagnetic field spectrum of a single metamaterial resonator. This comparison is
justified by the fact that in both cases the spectrum is estimated following a similar procedure:
the electromagnetic fields are estimated on a surface in the presence of the metamaterial struc-
ture (be it a single resonator or an array) and are subtracted from the fields estimated in the
absence of the resonators.

The results for asymmetrically-split ring resonators are presented in Fig. 6.2. The inner
and outer radius of the simulated ASRs was 5.6 mm and 6.4 mm, respectively, while the arcs
corresponded to 160° and 140° angles. In the case of the array, a square unit cell of 1.5 mm
side was used. In both cases, the incident plane wave was polarized along the x-axis of Fig. 6.2a.
A single ASR presents a rather broad maximum in its scattering spectrum at 9.25 GHz with
a width of 228 M Hz (Fig. 6.2b), in contrast to the behaviour of the ASR array that exhibits
a narrow reflection minimum at 8.85 GHz with a width of roughly 733 M Hz (see Fig. 6.2g).
The origin of this qualitative difference in scattering properties becomes evident, when one has
closer look at the multipole moments corresponding to the current configuration on the split
ring arcs. In the case of a single split ring, the induced electric dipole moments on the arcs

oscillate in-phase (Fig. 6.2c) leading to a peak in the total electric dipole moment (Fig. 6.2d)
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Fig. 6.1: Scattering properties of asymmetrically-split rings. (a-e) isolated split ring: sketch of single split
ring (a), scattering spectrum under plane wave illumination (b), x-component of the electric
dipole moment for each arc (c) and for both arcs combined (d), and z-componenet of the
magnetic dipole moment (e). (f-j) split ring array: sketch of metamaterial array (f), reflection
spectrum (g), x-component of the electric dipole moment for each arc (h) and for both arcs
combined (i), and z-component of the magnetic dipole moment (j).

which is responsible for the scattering maximum. On the contrary, in the case of the ASR
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array, an anti-symmetric current configuration is supported, where the induced electric dipole
moments oscillate in anti-phase (Fig. 6.2h) resulting in a minimum of the total electric dipole
moment of the unit cell (Fig. 6.2i). This anti-phase oscillation corresponds to a loop current
and a resonant peak in the magnetic dipole moment spectrum (Fig. 6.2j). Since no counter
propagating currents are supported by the single ASR, there is no resonance in the magnetic
dipole moment spectrum. Indeed, while a single magnetic dipole can radiate strongly in a wide
range of angles, in an infinite array of magnetic dipoles oriented perpendicular to the plane of the
array (z-axis of Fig. 6.2a), radiation is only allowed in the plane of the array and is suppressed
in all other angles. Hence, in an ASR array energy is accumulated in the magnetic dipoles that
are uncoupled to free-space, while scattering losses occur only due to the weak electric dipole.
On the contrary, the magnetic dipole moment of a single ASR scatters strongly leading to high

radiation losses and a suppression of the trapped-mode resonance.

(@) (b)
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Fig. 6.2: Scattering properties of concentric ring pairs: sketch of isolated meta-molecule (a) and the cor-
responding scattering spectrum under plane wave illumination (b); sketch of the metamaterial
array (c) and the corresponding reflection spectrum (d). The dashed lines mark the position of
the scattering/reflection minima associated with the trapped-mode resonance. Inset: Simulated
current configuration at the trapped-mode resonance for a CR array.

The situation is dramatically different when the scattering properties of a single CR and a
CR array are compared (Fig. 6.2). Indeed, scattering from a single CR resonator (Fig. 6.2b)
and reflection from an infinite periodic array of such resonators (Fig. 6.2d) are very similar:
the scattering spectrum of a single CR presents at 1.219 GHz wide minimum at 9.7 GHz,
while reflection from a CR array exhibits a 1.005 GHz wide dip at 9.8 GH z, both manifesta-
tions of the trapped-mode resonance. The reason why concentric rings behave differently from
asymmetrically-split rings is the absence of induced magnetic dipole moments. Indeed, from

the simulated current configuration (inset to Fig. 6.2d), it is evident that the CR resonator can
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be decomposed in two parts that support loop-like currents that flow along opposite directions.
Hence the corresponding magnetic dipole moments have opposite phases and the total magnetic
dipole reponse vanishes. Since the trapped-mode resonance in the CR case does not require a
strong magnetic dipole, then a single CR does not experience the strong magnetic dipole scat-
tering losses and, consequently, can support the anti-symmetric current configuration necessary

for the trapped-mode resonance to manifest.

6.3 Effect of positional disorder in trapped-mode metamaterials

The demonstrated collective or individual character of the trapped-mode metamaterials’ response
leads to distinct behaviour in the presence of the disorder. In a first instance, the behaviour of
the trapped-mode resonance upon disordering the regular lattice is investigated.

Positional disorder was introduced in the metamaterial array by randomly displacing each
meta-molecule from its original position in the periodic array according to the following proce-
dure: the center of each unit cell is displaced to a randonmly chosen point within a square of
side « centered at the original position of the meta-molecule’s centre. The degree of disorder
is quantified by the dimensionless parameter, D, defined as the ratio of « over the unit cell
side. Disordered arrays consisting of ASRs and CRs were manufactured for different degrees of
disorder. In particular, for each value of the disorder parameter, D, five different ASR arrays
and a single CR array were studied '. The geometry of both metamaterial arrays is presented
in Fig. 6.3. The inner and outer radius of the ASRs was 2.8 mm and 3.2 mm, respectively,
while the ASR arcs corresponded to 160° and 140° angles. The inner and outer radii of the CRs
was 2.15 mm & 2.35 mm for the smaller ring and 2.625 mm & 2.825 mm for the larger ring,
respectively. In both cases, the unit cell’s dimensions were 7.527.5 mm.

The response of the disordered arrays under plane wave illumination was studied and the
corresponding results are shown in Figs. 6.4 & 6.5. In all cases the incident wave was polarized
with its electric field parallel to the split ring arcs. Panels (a)-(g) of Fig. 6.4 demonstrate the
strong dependence of the ASR metamaterial to positional disorder. Indeed, the trapped-mode
resonance degrades considerably even for weak disorder (0.22 < D < 0.32) and becomes indis-
cernible for moderate disorder (D = 0.55). On the other hand, in the case of CR metamaterial
arrays, the trapped mode persists even for strong disorder (see panels (f)-(j) of Fig. 6.5) and any
marked changes in the resonance are observed at high values of D (D > 0.63). Strikingly, the
reflection dip can still be observed at the the highest value of disorder (D = 1).

The dramatic difference in the behaviour of the two metamaterials becomes apparent, when
the dependence of their resonance linewidth on the disorder is considered (see Fig. 6.6). The
procedure by which the linewidith is estimated is presented in Fig. 6.4a: a line is considered
to pass through the reflection maxima located on the left- and right-hand side of the reflection
dip; then the depth of the reflection dip is estimated considering as maximum the level of the
fitted line and the full width at the level where reflection reduces to 50% of the maximum. Here,
the inverse linewidth, 7 is employed as a measure of the resonance lifetime, which represents the
coupling of the current configuration to free-space radiation and is directly related to the average

strength of the anti-symmetric component of the current mode induced in the meta-molecules by

I Preliminary experiments indicated very weak dependence of the concentric ring metamaterials to positional
disorder, allowing thus to limit the number of needed samples to one per degree of disorder.
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Fig. 6.3: (a) Geometry of the ASR metamaterial unit cell. (b)-(e) Fragments of ASR metamaterial
arrays for D =0 (b), D = 0.5 (¢), and D =1 (d). (e) Geometry of the CR metamaterial unit
cell. (f)-(h) Fragments of ASR metamaterial arrays for D = 0 (f), D = 0.5 (g), and D =1 (h).

the incident electromagnetic wave. The disordered ASR metamaterial arrays exhibit a fast decay
of the resonance lifetime with increasing disorder and already for moderate disorder (D = 0.63)

it becomes impossible to distinguish the resonance in the reflection spectrum. On the contrary,

the resonant behaviour of concentric ring arrays appear almost independent of disorder even for
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Fig. 6.4: Reflection of disordered asymmetrically-split ring (a-g) and concentric ring (h-n) metamaterial
arrays for different values (0—0.55) of the disorder parameter, D. In the case of asymmetrically-
split rings, five different realizations corresponded to to each value of D. The left column
illustrates the degree of disorder for each value of D.
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Fig. 6.5: Reflection of disordered asymmetrically-split ring (a-e) and concentric ring (f-j) metamaterial
arrays for different values (0.63—1) of the disorder parameter, D. In the case of asymmetrically-
split rings, five different realizations corresponded to to each value of D. The left column
illustrates the degree of disorder for each value of D.

values of disorder parameter as high as D = 0.81.

The dependence or independence of the metamaterials to positional disorder can be attributed
to the different origin of the trapped-mode resonance. Indeed, as shown in section 6.2, the main
difference between the response of the ASR and the CR metamaterials lies in the presence of a
strong induced magnetic dipole moments in the former and the absence thereof in the latter. In
particular, at resonance conditions, concentric rings support a weak electric dipole moment (by
design), while the magnetic dipole moment vanishes. Hence, any interactions between adjacent
elements will be mediated by the weak electric dipole and multipoles of electric quadrupole order
or higher resulting in short-range interactions. As a result mutual interactions between the meta-

molecules (both of electric or magnetic dipole-type) are very weak, and the collective response of
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the arrays does not depend strongly on the positions (or disorder) of the molecules, thus reducing

to a direct sum of the individual molecular contributions.

(a) (b)

3y

Fig. 6.6: Inverse linewidth, 7, for the asymmetrically-split ring (a) and the concentric ring (b) metama-
terial. In (a), red points correspond to the five different realizations at each degree of disorder,
while black empty circles correspond to the average inverse linewidth over five measurements.
Red (a) and blue (b) solid lines serve as eye-guides. The corresponding insets illustrate the
different origin of the trapped-mode resonance in the two cases.

Asymmetrically-split rings, on the other hand, present a more complex behaviour. They
support both a weak electric dipole moment (by design) and a strong magnetic dipole moment,
which arises directly from the anti-symmetric current configuration that also leads to the trapped-
mode resonance. While in an infinite, regular array these magnetic dipoles are not allowed to
radiate away from the plane of the array, this is no longer true when disorder is introduced
and scattering losses are hence increased. This leads to a decrease of the intensity of the anti-
symmetric current configuration and a broadening of the resonance. Furthermore, the ASR
resonators can interact with one another through their induced magnetic dipole moments, which
can also disturb the anti-symmetric current mode and degrade the quality of the trapped-mode
resonance. In fact, one can argue that the decay of the quality of the resonance can be explained
on the basis of these two effects, namely increased scattering losses due to magnetic dipole
radiation and magnetic dipole-dipole interactions. At weak disorder, radiation losses are low
allowing for the existence of strong magnetic dipole moments, and hence inter-element magnetic
interactions should be at their strongest. By increasing the degree of disorder, magnetic dipole
scattering is expected to become increasingly important, reducing the energy stored in the anti-
symmetric current configuration and the magnitude of the induced magnetic dipole moments,
thus minimizing the effect of magnetic dipole-dipole interactions.

Extending further this qualitative argument, one can recall that the inverse linewidth, 7, a
measure of the resonance lifetime of a damped oscillator, should be roughly proportional to the
energy stored in the resonator per cycle. In the case of the ASR metamaterial, energy is stored in
the form of oscillating magnetic dipoles. It is argued here that upon disordering the array losses
increase due to magnetic dipole scattering predominantly. The radiation losses of disordered

magnetic dipole arrays can be easily calculated provided that interaction between the array
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elements is limited to interference of the radiated far-fields. The results corresponding to 21221
arrays of non-interacting magnetic dipoles oriented perpendicular to the array plane are presented
in Fig. 6.7b. For each degree of disorder, D, 10 different disordered arrays are considered and the
corresponding scattered far-fields in the plane of the array are calculated [20]. As expected, the
main feature of the graph is that the scattering losses (averaged over the 10 different realizations)
increase. While in a regular array (D = 0) most of the energy is scattered in the plane of
the array, when disorder is introduced, energy is radiated away from the array at directions
outside the array plane and as a result the energy stored in the magnetic dipole moments of
the meta-molecules diminishes. For comparison, the inverse linewidth of the disordered ASR
metamaterial resonances and its variance are also presented in Fig. 6.7a. In particular, the
inverse linewidth (which is proportional to the energy stored in the array) decreases with D,
while the corresponding variance peaks close to D ~ 0.4. Indeed, with increasing disorder the
meta-molecules can be found further away from their initial positions, and thus the variance of
meta-molecule configurations at each degree of disorder increases with increasing of the latter.
On the other hand, strongly disordered array experience very high scattering losses that do
not allow engaging the trapped-mode resonance independently of the specific meta-molecule
arrangement. The same argument holds for interactions between the induced magnetic dipoles.
Hence, the maximum in variance can be explained on the basis of competition between these two
factors: increase of disorder leading to increase of the variance of meta-molecule arrangements

and disappearance of the resonance at strong disorder.

(a) (b)

Fig. 6.7: (a) Average values (blue open circles) and variance (red empty rhombes) of the inverse
linewidth, 7, as a function of the positional disorder parameter, D, for the case of
asymmetrically-split rings. (b) Average values (blue open circles) of the scattering power,
8, as a function of the positional disorder parameter, D, for the case of magnetic dipole arrays.
Blue and red solid lines serve as eye-guides.

6.4 Effect of orientational disorder in asymmetrically-split ring metamaterials

The inherent anisotropy of the ASR resonator allows for a different type of disorder to be studied,
i.e. orientational disorder. Introduction of such disorder provides further insights into the be-

haviour of coherent metamaterials and leads to situations very similar to other physical systems
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with strong interactions of magnetic type.

Orientational disorder is introduced in the ASR metamaterial by rotating by 180° (flipping)
randomly chosen unit cells. The disorder was quantified by the ratio, F, of rotated (flipped)
ASRs over the total number of unit cells. For each value of the disorder parameter, F, five

different ASR arrays were manufactured 2.
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Fig. 6.8: Reflection of disordered asymmetrically-split ring (a-g) and concentric ring (h-n) metamaterial
arrays for different values (0.63—1) of the disorder parameter, F'. In the case of asymmetrically-
split rings, five different realizations corresponded to to each value of F. The left column
illustrates the degree of disorder for each value of F'.

The response of the disordered arrays under plane wave illumination was studied and the
corresponding results are shown in Fig. 6.8. Panels (a)-(1) demonstrate the strong dependence
of the ASR metamaterial to orientational disorder, with the trapped-mode resonance degrading
gradually with increasing number of flipped elements. However, in contrast to the quick disap-
pearance of the resonance in the case of positional disorder, the ASR metamaterial appears to be
less influenced by orientational disorder, and the trapped-mode resonance can be distinguished
even when 45% of the ASRs are flipped. Furthermore, while at most degrees of disorder all five
different realizations present very similar reflection spectra, these become distinctively different

2 The parameters of the asymmetrically-split ring arrays and the experimental conditions are the same with
section 63.
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close to F' = 0.32. This becomes more evident in Fig. 6.9, where the inverse linewidth, 7, is
presented as a function of the disorder parameter F'. A quick decrease in the resonance lifetime
is observed at the region of F = 0.32 coinciding with an increase in the spread of the estimated

values from the five different realizations.

(a) (b) ()

Fig. 6.9: (a) Average values (blue open circles) and variance (red empty rhombes) of the inverse
linewidth, 7, as a function of the orientational disorder parameter, F', for the case of
asymmetrically-split rings. (b) Average values (blue open circles) of the scattering power,
8, as a function of the orientational disorder parameter, F', for the case of magnetic dipole
arrays. (c) Average values and variance of the magnetization of a 10x10 Ising lattice estimated
by Monte-Carlo simulations. Blue and red solid lines serve as eye-guides.

One can attempt to attribute the decay of the resonance lifetime upon the introduction
of orientational disorder in the metamaterial arrays, to scattering from the magnetic dipoles
induced at the trapped-mode resonance. The results of such simulations are shown in Fig. 6.9b,
where the scattered wave intensity away from the plane of the array is presented as a function of
the fraction, F' of flipped dipoles, for 21221 arrays of non-interacting magnetic dipoles oriented
perpendicular to the array plane. The energy radiated away from the plane of the array increases
rapidly for F < 0.2 and remains roughly constant for higher values of F'. In contrast to the
behaviour of the ASR metamaterial, no sudden increase of scattered intensity occurs at F =~
0.3, implying that a different mechanism is responsible for the degrading of the trapped-mode
resonance. In fact, the rapid decrease of the inverse linewidth at F' = 0.32 with the simultaneous
increase of variance is reminiscent of phase transitions in other magnetic systems, such as the
Ising model [21]. The average magnetization over 100 realizations of a 10210 spin lattice with
nearest-neighbour interactions is presented as a function of temperature in Fig. 6.9c. A rapid
decay, similar to the one observed for the ASR metamaterial inverse linewidth, is observed
near the critical temperature, T ~ 2.3, accompanied with a maximum in the fluctuations of
the magnetization over different realizations. This phenomenological similarity implies that the
behaviour of the ASR metamaterial could be explained in terms of inter-metamolecule magnetic

dipole interactions.

6.5 Lasing Spaser

The two planar metamaterial structures studied in this chapter are examples of artificial me-
dia with strong and weak inter-meta-molecular interactions representing two characteristic and

”

antipode classes of what it is called here ”coherent” and ”incoherent” metamaterials. The fun-
damental difference in the nature of their narrow resonances, collective in the first case and

individual in the latter, determines the potential applications of these structures, most notably



6. Collective Effects in Passive and Active Metamaterials 81

the lasing spaser [22].

pump beam

e

silver
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\ amplified
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Fig. 6.10: Illustration of lasing spaser concept. An array of asymmetrically-split rings supported by an
active substrate is pumped by a laser beam. As a result, an amplified narrow-divergent beam
emerges.

The lasing spaser is an extension of the spaser (surface plasmon amplification by stimulated
emission of radiation) [25], which is a quantum amplifier of surface plasmons. A spaser works in
a way analogous to the laser, with a resonant plasmonic material replacing the laser cavity and
emitting surface plasmons instead of electromagnetic radiation. Such a system is uncoupled to
free-space radiative modes in order to increase the efficiency of the surface plasmon amplification.
The lasing spaser is based on the same effect. However, instead of being completely uncoupled,
the plasmonic resonators in this case are weakly coupled to free-space propagating modes. This
results in a planar narrow-diversion coherent source of electromagnetic radiation that is fuelled
by plasmonic oscillations of a two-dimensional resonator array, where the coherency of the optical
source is ensured by the synchronous oscillations of the plasmonic currents in the array.

In a ”coherent” metamaterial formed by asymmetrically-split rings, the regular array gives
the highest value of quality factor compared to disordered arrays. It is argued here that, similarly,
when both phased (coherent) and uncorrelated (incoherent) current oscillations are present in

an array of meta-molecules of this type, the uncorrelated component will decay more rapidly.
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Therefore in the presence of gain the phased, coherent component of amplified spontaneous
current fluctuations will win over incoherent fluctuations providing for a self-starting regime of
the lasing spaser.

Here a first step towards this direction is undertaken and the amplifying properties of an ASR
metamaterial in the presence of gain are studied numerically. The diameter of the simulated
ASR-resonators is 140 nm, with a unit cell of 210 x 210 nm. The angular lengths of the metallic
wire segments correspond to angles 31 = 160°, B3 = 125° | while the size of their cross-section
is 20 x 50 nm. The metal of the nano-wires is assumed to be silver with a dielectric constant
described by the Drude model. The substrate is 100 nm thick with ¢ = 9.5, and gain is
introduced through the imaginary part €” of the substrate’s dielectric constant, which is related
to the gain/attenuation coefficient o by Qflm(\/m)

a=2702 cm”

0=2347 cm”

0=1544 cm"

/1

0=-618 cm"

Fig. 6.11: Characteristic transmission spectra of the ASR metamaterial on an active substrate for dif-
ferent values of the substrate gain coefficient a.

Figure 6.11 shows the transmission characteristics of the optical ASR array for different
levels of bare substrate gain presented in terms of the gain coefficient . For negative values
of « (lossy substrate) the metamaterial attenuates electromagnetic radiation, principally due to
dissipation losses in the dielectric substrate. With increasing the levels of gain, material losses
in the metamaterial are compensated, and attenuation gives place to strong amplification which
peaks at the frequency of the trapped-mode (A ~ 1.68).

The conditions under which amplification occurs are better seen in Fig. 6.12, where transmis-
sion and reflection are presented in the wavelength-gain plane. The dashed contours mark the
regions of unity transmission and reflection, respectively. The corresponding threshold for the

!in reflection. Strong

gain coefficient is ayj, ~ 1850 em™! in transmission and ayj, ~ 900 em™
amplification takes place in a small elliptical area within the unity contours and both transmis-

sion and reflection peak simultaneously for o ~ 2700 em~! and A = 1.68 um, exceeding 35 dB
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and 25 dB, respectively. At the same time the amplified transmission and reflection peak become
increasingly narrower and collapse at maximum amplification. Further increase in the substrate
gain leads to a rapid decrease in small-signal amplification and broadening of the amplification
peak. This is because gain broadens the resonance in the same way that losses broaden ab-
sorbtion resonances, and achieving anti-phase oscillations of currents in the split-ring arcs of the

plasmonic resonator becomes more difficult as radiation losses increase.

(b)

Fig. 6.12: Transmission (a) and reflection (b) of an ASR metamaterial as a function of wavelength and
substrate gain coefficient a. The dashed contours mark the positions of unity transmission
and reflection, respectively, and surround the areas where amplification occurs. The threshold
values, aup, of the gain coefficient are also marked.

The increase of amplification and the collapse of the linewidth can be clearly seen in Fig. 6.13,
where the transmission levels at the trapped-mode resonance peak and the line width (full width
at half maximum) are plotted as a function of the gain coefficient, a, for the optical ASR
metamaterial as well as for a similar structure resonating at 8.4 um . The curves for both cases
are qualitatively similar demonstrating the scalability of the concept: significant amplification
occurs for moderate levels of gain with simultaneous collapse of the linewidth and is followed by
a sharp decrease of maximum transmitted intensity. However, there is a significant difference in
the required levels of gain, principally due to the dissipative losses in the metal that affect the
performance of the optical ASR metamaterial.

The small scattering losses of the current-modes in the metamaterial array make the levels of
threshold gain and gain needed to achieve peak amplification of 35 —40 dB practically attainable.
For instance, quantum well structures can provide gain of the order of 103 em™! [26], which is
similar to the threshold value required for an ASR array operating at 1.65 pum. Furthermore,
quantum cascade amplifiers can readily provide the gain values needed in the mid-infrared case,
since attainable gain coefficients in this wavelength range exceed 100 cm~! [27]. This easy-to-
achieve threshold gain condition gives a crucial advantage over the recent suggestions to combine
amplifying media with nano-shell [28] and horseshoe resonant elements [29] to create a compact
plasmonic nanolaser. There the high dipole radiation losses of plasmonic resonator make the

threshold gain level extremely difficult to achieve. Furthermore, the lasing spaser allows high

3 Transmission spectra estimated by method of moments simulations on a mid infrared ASR array were pro-
vided by Prof. S. L. Prosvirnin. The inner and outer radius of the infinitely-thin split-ring was 575 nm and

625 nm, respectively. The 1.5 um-pitch metamaterial array was placed on a 2 um active substrate with dielectric
permittivity e = 10.9.
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Fig. 6.13: Transmission properties of near- and mid-IR resonator arrays. Small-signal amplification
(blue) and spectral width (red) of the resonant transmission peak as a function of gain level in
the substrate. Corresponding values for the imaginary part of the substrate permittivity are
also given. The horizontal dashed blue lines represent the levels of single-pass amplification
through the bare substrate. The vertical dash-dot lines mark the threshold values of the gain
coefficient.

amplification and lasing in a very thin layer of material with a modest gain level, making it
a very practical proposition. The thin-layer geometry is a desirable feature for some highly-
integrated devices and from the point of view of heat management and integration. Here the
amplification/lasing frequency is determined by size of the ring and may be tuned to match
luminescence resonances in a large variety of gain media. All together this makes the lasing

spaser a generic concept for many applications.

6.6 Conclusions

Two antipode classes of metamaterials have been identified, with strong and weak inter-element
interactions. The former provides a collective resonant response which is not available in a single
meta-molecule, while the response of the latter is essentially the same, irrespectively of whether
a single unit cell or an infinite array is considered. This characteristics lead to very different
behaviour upon disordering the regular arrays, with ASRs being strongly affected even by weak
or moderate disorder, and CRs ratining their resonant response even in the presence of very
strong disorder. This opens avenues for novle applications, such the lasing spaser introduced
int he previous chpater, where the coherency of the ASRmetamaerial can provide for a self-
starting regime in the presence of gain. On the contrary, ”incoherent” metamaterials do not
possess a mechanism of synchronization of current oscillation in individual meta-molecules and
are not suitable for lasing spaser applications. However,the resonant properties of ”incoherent”
metamaterials are more tolerant to disorder making them more suitable for manufacturing using

methods prone to imperfections such as self-assembly [30].
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7. SURFACE STATES OF STRUCTURED INTERFACES

7.1 Introduction

The study of the transmission of electromagnetic radiation through subwavelength holes has been
initiated by the work of Bethe who showed analytically by appealing to Babinet’s principle, that
the transmitted intensity through a hole of radius 7 in a infinitely thin perfectly conducting plane,
decays as (r/A)* in the limit of very small holes (r/\ — 0), where ) is the free space wavelength
of the incident wave [1]. Later, Bouwkamp corrected Bethe’s theory by including terms of higher
order in /X [2, 3]. Although the transmission through an array of holes, both in infinitely thin
and thick conducting planes has been extensively studied in the microwave part of the spectrum
[4, 5, 6, 7], the interest in this phenomenon was recently renewed by the work of Ebbesen et
al [8], who demonstrated experimentally that the transmission through nano-structured metal
films exceeds the original predictions of Bethe [1] by several orders of magnitude. When the
transmission was normalized by the filling factor of the pattern, i.e. the ratio of the sample
area covered by holes over the full sample area, it was shown that more light was transmitted
than was incident directly on the holes, which implies that the transmission is mediated by
inter-hole interaction. In fact, measurements at different angles of incidence further support this
hypothesis, since the obtained band structure diagram demonstrates clear band gaps, which are
consistent with the dispersion relation for surface plasmons on a periodically corrugated surface.
Later works confirmed the surface plasmon transmission mechanism but highlighted also the role
of Wood’s anomalies [9, 10, 11], which occur whenever a diffraction order becomes parallel to the
surface of the film. At wavelengths where Wood’s anomalies appear, reflection becomes maximum
which corresponds to transmission minima. However, in the vicinity of these wavelengths surface
bound states exist which can couple to external radiation though the periodicity of the lattice.
In the optical domain such states are called surface plasmons, while in the case of microwaves
they are common surface currents, the main difference between them being that plasmons are
formed by bound charges and can penetrate the bulk metal. This was further clarified by Pendry
who showed that a periodically structured perfectly conducting surface can be described by an
effective permittivity resembling the behavior of plasmons and named the bound states as ”spoof”
plasmons [12].

A different but equivalent approach was suggested as a description of the phenomenon based
also on the concept of dynamical diffraction and Wood’s anomalies, but employing Babinet’s
principle to result in a simpler description [13, 14]. The complementary screen of the hole
array is considered, which is comprised by metal disks. In the limit of very small radius over
wavelength ratio, the disks can be approximated by dipoles with known polarizability and the
reflection coefficient of the array can be calculated. However, in this case, the field on each site of

the structure includes non-local contributions from the rest of the array. By Babinet’s principle,
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the transmission of the hole array can be found from the reflectivity of the complementary disk
array.

Recently, the transmission of quasi-periodic hole arrays has been also investigated both ex-
perimentally [15, 16, 17, 18] and theoretically [19]. Underlining the role of the periodicity and
long range order in the extraordinary transmission phenomenon, the theory of ordered arrays
was extended to include the quasi-periodic case [19], predicting that the physical mechanisms

are the same in both cases.

7.2 Theoretical Considerations

It is known that a single hole on a thin [1] or a thick [20] metal film can be represented by a
magnetic dipole parallel to the surface and an electric dipole perpendicular to it. In the case
of a hole array, the collective response admits a representation in terms of the self-consistent
polarization pz of each hole at the positions Rin response to an external field Eext plus the field
induced by other holes R #+ R via the hole polarizability «, that is,

iq = B (R) + Y GR - R)pg), (7.1)
R'+#R

where G(ﬁ . ) describes the field produced at hole R by the polarization of the hole at R’
In the small hole limit (A > r, where r is the hole radius), we can retain only the dipolar
component of p [20]. By considering an incident plane wave with EH momentum parallel to the
film and assuming a exp(iEH . R) spatial dependence for the hole polarizability 1, Eq. (7.1) can

be rewritten as

B, (7.2)
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where GEH = Zf#o G(ﬁ)e—“;u ‘i3 the sum of the dipole-dipole interaction over the quasi-lattice.
Finally, the transmission T is given by the coherent superposition of the far field produced by
all induced dipoles, or equivalently, the transmission along a direction defined by a projected

—

parallel momentum kﬁ“t is the far field produced by the dipole
3 e R, (7.3)
R

The lattice sum GE” exhibits pronounced maxima when the main diffraction peaks become
grazing, which are the equivalent of the Wood anomaly condition in quasicrystal arrays. Ac-
cording to Eq. (7.2), the transmission will actually exhibit a dip at the divergences of G R and
a maximum signalled by the minimum of |1/« — GEH |

In order to examine the origin of the extraordinary transmission through perforated metal
surfaces, a quasi-periodic pattern of holes on a metal film was considered. A part of the pattern

comprised by 1000 sites and its Fourier transform are shown in Fig. 7.1, where the long-range

I Long-range interaction between holes dictates the transmission resonances, so that local variations between
neighboring holes can be overlooked in this coherent-phase approximation, in which the phase imposed by the
external field drives the effective phase difference in the response of distant holes.
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Fig. 7.1: The studied quasi-periodic pattern (a) and its Fourier transform (b).

order of the pattern and the ten-fold symmetry of the reciprocal space are evident. The pattern
is characterized by the minimum hole distance d (center to center), which represents the scale
of the pattern. Since the wavelength at which extraordinary transmission occurs is related to
the periodicity of the array, one expects that in the case of a quasi-crystal array of holes on a
self-standing metal film, maxima of transmission will appear at wavelengths near the maxima of
the Fourier transform. However, these approximations are valid only in the limit of an infinite
number of holes. For a small number of holes, the long-range order is not that pronounced
and the analysis is more complicated. Moreover, the aspect ratio of the holes must be taken
into account. By scaling the initial pattern appropriately, two different types of samples were

manufactured, one in the microwave part of the spectrum and one in the optical.

7.3 Enhanced Microwave Transmission

The microwave pattern consisted of 313 circular holes with radius of 0.46 cm, resulting in a filling
factor (defined as the area occupied by holes over the whole sample area) of approximately 15%.
In this case the minimum hole distance d was d = 2.31c¢m, since the quasi-crystal was scaled to
partially fill a rectangular area 44.2 cm x 45.7 cm (the sample size). The first microwave sample
was a 0.5 mm thick self-standing Al sheet, while the second was lithographically manufactured
by etching a 35 pm Cu film residing on a 1.5 mm thick dielectric substrate with e = 3.5 — 0.03:
(see Fig. 7.2).

The experimental results for the polarization along the y-axis (see Fig. 7.2a) are shown in
Fig. 7.3 (solid curves) and are normalized only to transmission through free space. For the
orthogonal polarization similar (although not identical) results were obtained. For comparison
theoretical predictions derived in the coherent-phase approximation are also included. In all
cases, the transmission through the hole arrays exceeds Bethe’s predictions, since about ~ 10

times more intensity than what is directly incident in the area occupied by holes is transmitted.
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(b)

Fig. 7.2: Microwave samples: Cu on dielectric (a) and self-standing Al (b) quasicrystal.

In particular, for the self-standing array (Fig. 7.3a), two sharp transmissions peaks can be seen at
2.02 ¢m (I) and 2.34 em (II) wavelengths on a slowly decaying transmission background, which
as expected, lie very close to the positions predicted by theory. Peaks of shorter wavelength
arising from lower spatial frequencies (e.g., ) lie below the measured frequency range. The
width of the peaks is primarily controlled by the number of holes on the sample, since, given the
manufacturing accuracy, broadening effects due to fabrication imperfections are unlikely. The
magnitude of the peaks is 50% and 48% respectively, while at the same time the phase change
of the transmitted wave for both peaks is close to zero.

The situation changes dramatically when the metal film is supported by a dielectric substrate
(Fig. 7.3b). Peaks I and IT become considerably weaker (30% and 31%) and are separated by a
point of zero transmission at 2.1 ¢m, where the phase is undefined. This phase singularity could
be attributed to enhancement of a Wood anomaly triggered by the metal-dielectric interface.
Moreover, a new transmission peak appears at 2.93 ¢m (III) (Fig. 7.3b), where 65% transmission
is accompanied by a zero phase change. If, in addition to the dielectric substrate, a superstrate
of the same thickness and permittivity is introduced (Fig. 7.3c), peaks I and II are no longer
visible, peak III increases in magnitude reaching 90%, and the phase at the maximum is again zero
rendering the structure virtually invisible. This is a behavior typical of Breit-Wigner resonances,
which can be understood by noticing that Eq. (7.2) becomes a Lorentzian near the transmission
maximum, the phase of which changes sign when the real part of the denominator vanishes (i.e.,
right on resonance), while the imaginary part evolves smoothly.

The more complicated spectral shape observed for the structures of Figs. 7.3b and 7.3c,
results from a complex interplay between hole polarizabilities, lattice sums, and guided modes
in the dielectric slabs, which is well accounted for by analytical theory (dashed curves). While
the interaction between holes in the self-standing film (making up the G| lattice sum) has the

same distance scaling as the dipole-dipole interaction in free space, in the case of supported



7. Surface states of structured interfaces 92

150
n
5 100 g
(’) P —
R0 50
E g
: o 3
—~ @©
— -
50 £
-t (0
2 25 3 35 4 45 5
200
n
S 100 9
(’) P —
B2 53
e 0 ﬁ
7]
g %
g ~100
o
: ~200
2 25 3 35 4 45 5
1,
5 0® >
3 0.6 50 o
& z
2 0.4 0 o
= 3
— -
0.2 50 £
0 : = ~100
2 25 3 35 4 45 5

Wavelength (cm)

Fig. 7.3: Normal incidence transmission spectra through quasicrystal hole arrays on (a) a self-standing
Al film, (b) a copper film supported by a dielectric substrate and (c) a copper film sandwiched
between two identical dielectric slabs. The Bethe prediction is shown by the dashed purple
line in (a), while the green lines in (b) and (c) mark the wavelength positions of invisible
metal states, where high transmission is accompanied by zero phase change. Experimental
results (solid curves) are compared with theoretical calculations obtained in the coherent-phase
approximation [Egs. (7.2) and (7.3)] (dashed curves). The latter are normalized to match the
maximum of the corresponding experimental curves. (Theoretical spectra were provided by
Prof. J. Garcia de Abajo.
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films the situation is qualitatively different, due to the existence of cutoff-free guided TM-modes
in the dielectric. These surface-like waves trigger a slower decay with distance of the inter-hole
interaction. Furthermore, hole-mediated coupling of the external light to the TM modes provides
a loss channel that results in significant broadening of peak III, with absorption in the dielectric
adding an insignificant contribution. In contrast to the case of infinitely thick dielectrics, where
the metal-dielectric interface would give rise to two new long wavelength peaks, in the present
case, the finite thickness of the dielectric changes significantly the shape of the hole polarizability
and the G| lattice sum resulting in a single transmission peak (III) at long wavelengths and

suppression of peaks (I, IT) originating from the metal-air interface.

7.4 Enhanced Optical Transmission

The optical sample was manufactured by electron beam lithography on a 100nm thick Al film
residing on a 500um silica substrate. The skin depth of Al, defined as the distance at which
the electric field is decreased by a factor 1/e, is less than 20nm at the wavelengths of interest,
therefore the transmission through the bulk metal can be neglected. The pattern consisted of
14194 square holes of side length 0.2um and occupied a circular area of approximately 250um
diameter, resulting in a filling factor of 1.3%. The characteristic minimum distance between holes

was 1.2um. The quality of the sample was confirmed by scanning electron microscopy (figure
7.4).

Fig. 7.4: SEM pictures of the optical quasicrystal sample.

The measurements 2 were performed in a free-space setup with a super-continuum photonic
crystal fiber laser and an optical spectrum analyzer, operating in the range of 0.47 to 1.77um.
Two diaphragms were used in order to reduce the intensity of the beam in order to avoid excessive
heating of the sample. The sample was placed at the focal point of a converging lens, so that the
area of the metal film illuminated by the beam was slightly larger than the size of the pattern,
while the transmitted light was focused with a lens on an optical fiber. The experimental setup
is shown in Fig. 7.5.

The results at normal incidence are presented in Fig. 7.6, where the estimates of the tra-
ditional theory are again exceeded. In contrast to the microwave sample with the dielectric
substrate, the maxima are well beyond the cut-off of the waveguide modes in the holes. Due to

the two different interfaces, two transmission maxima are predicted by theory for each peak of

2 Optical measurements were performed in collaboration with A. S. Schwanecke.
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Fig. 7.5: Optical setup for transmission measurements.

the Fourier transform, but it is not clear if the two peaks which are visible in the experimen-
tal spectrum, correspond to a single interface and two reciprocal vectors or a single resonant

transmission peak split due to the different permittivities on the two sides of the metal film.
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Fig. 7.6: Transmission spectrum of the optical sample at normal incidence (blue) and the corresponding
Bowkamp prediction (green).

7.5 Conclusions

In conclusion, enhanced transmission of microwaves through quasi-periodic hole arrays was
demonstrated theoretically and experimentally in perfect conductors which can not support
surface plasmons. A direct relation between the reciprocal space maxima and the transmission
peaks has been established. In particular, an invisible metal state characteristic of Breit-Wigner
resonances has been observed, where almost total transmission with zero phase change can be
achieved by placing a structured film between two dielectric slabs. The wavelength position of
the total transmission can be tuned either by varying the permittivity of the dielectric slabs or
by appropriately scaling the pattern. The scalability of the approach is demonstrated by scaling

the quasicrystal pattern into the telecom spectral region and obtaining results analogous to those
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of the microwave hole arrays. Finally, the results presented here are almost independent of the

polarization of the incident wave, due to the high orientational order of the quasicrystal.
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8. POLARIZATION SENSITIVE TOROIDAL METAMATERIAL

8.1 Introduction

Toroidal, doughnut-shaped structures are ubiquitous in nature, appearing on scales which range
from the sub-atomic [1, 2] to the astronomical [3]. On the molecular level, the torus shape is
preferred by numerous biological and chemical macromolecules, such as DNA condensates [4, 5],

proteins [6, 7], bacteriophages [8] and oligosaccharides [9], to name just a few (see Fig. 8.1).

A Y
5nm 5,&
50 nm 15A

Fig. 8.1: Examples of molecular chiral toroidal structures (a-d): the head-tail connector of bacteriophage
¢29 [8] (a), a torus-shaped fullerene [11] (b), a toroidal DNA condensate [4] (c), and a DNA

exonuclease [7].

Toroidal symmetries are also encountered frequently in solid-state systems including fullerenes
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[10, 11] and ferroelectrics [12, 13]. The electronic behavior of such systems has been studied ex-
tensively and a quantum mechanical formalism has been developed to show that toroidal frames
consisting of carbon molecules support both permanent and induced toroidal moments [11]. How-
ever, the interactions of toroidal structures with electromagnetic radiation are not well under-
stood. Indeed, within the framework of classical electrodynamics, unusual phenomena associated
with violation of Lorentz reciprocity [14] and non-radiating configurations [15] have been pre-
dicted for toroidal structures. Nevertheless, experimental investigations of the electromagnetic
response of such structures are rare [16]. Here, the first experimental investigation of a toroidal

metamaterial [17] focusing in polarization sensitive effects is reported.

8.2 Resonant Circular Dichroism

In contrast to ”helical” gyrotropic media, where handedness is usually associated with the di-
rection of a "twist vector” following the cork-screw law along a helicity axis, the situation is
more complicated when the structure possesses toroidal symmetry (see Fig. 8.2). Here, the twist
vector rotates along the torus. However, although no helicity axis exists, the structure has two

well-defined enantiomeric forms, corresponding to different directions of the winding.

Fig. 8.2: Right and left-handed form of a chiral toroidal coil are connected by a mirror-reflection.

In order to investigate the gyrotropic properties of toroidal media a metamaterial consisting
of toroidal wire windings was fabricated. The metamaterial’s 15215 mm unit cell is presented on
Figs. 8.3a & 8.3b, while the full 13z13 array is shown in Fig. 8.3c. More precisely, the toroidal
wire winding of the metamaterial unit cell was etched on both faces of a dielectric slab substrate
with permittivity e = 4.5 — 0.081:¢. The strips are connected by metal wires linking strips on
opposite sides of the slab in order to create a closed toroidal wiring consisting of four full loops.
The metamaterial was formed by first manufacturing one-dimensional arrays of such wire coils
supported on a single slab of dielectric and then assembling them in a two-dimensional regular
array with pitch equal to the distance between individual wire coils in the slabs.The slab in the

grid were oriented in such a way that the toroidal axes lie in the plane of the metamaterial array.

The polarization sensitive behavior of the metamaterial was investigated by measuring all four

complex parameters of the structure’s transmission matrix in a linear polarization basis and then
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Fig. 8.3: (a-c) Artificial chiral toroidal metamaterial. Plates (a) and (b) show top and side views of
the unit cell of the toroidal structure of copper wires supported by a dielectric layer. In the
experimental measurements the toroids are arranged into a 13 x 13 metamaterial array so that
the normally incident electromagnetic wave propagates perpendicular to the axes of the toroids.

transferring to a circular polarization basis. This enabled the calculation of the corresponding
circular differential (left-right) transmission At = ¢, —¢_ and the differential phase delay Ay =
p+ — p_, respectively, which are standard measures used to characterize polarization response
of chiral media. The first is a measure of the circular dichroism of the medium, while the latter
is equal to the polarization plane rotation of a linearly polarized wave resulting from interactions
with the structure. Experimental results are shown in Fig. 8.4. Three resonant bands of strong
circular dichroism can be distinguished at around v, = 4.5GHz, vy = 7.5GH z and vg = 10GH z,
while corresponding resonant features are also seen in the circular differential phase dispersion. At
the vy = 7.5GH z both polarization states are rejected, one more strongly than the other, while
at the low and high frequency resonances, the polarization selective behaviour is particularly
strong with transmission of the non-rejected polarization remaining above 50%. At the same
time, the phase derivative for orthogonal polarizations has opposite signs, one corresponding to
a forward propagating wave, while the other to a backward wave, which is considered to be a
manifestation of negative refraction in chiral media [20]. Finite element numerical calculations
were also performed for the same structure and good agreement with the experimental results

was observed (see black circles and green curve in Fig. 8.4)
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Fig. 8.4: (a) Transmission ¢ for right (blue) and left (red) circularly polarized wave. The circular dichro-
ism At is represented by the solid black curve (experimental) and the black solid circles (numer-
ical). The positions of the main dichroism resonances at vz, v4 and v are marked by the green
strips. Inset: Sketch of the toroidal metamaterial unit cell and direction of wave propagation.
Panel (b) shows the left-right differential phase delay, Ap = ¢ — ¢_.

8.3 Origin of Gyrotropy in Toroidal Metamaterials

The nature of these resonances can be elucidated by numerical calculations of field and current
distributions induced by the electromagnetic wave in the toroidal wire coils (see Fig. 8.5). They
clearly illustrate the origin of circular dichroism of the metamaterial. Figures 8.5a & 8.5b show
the energy density maps and power flow lines (tangent to the Poynting vector at each point)
near the toroidal coil under resonance conditions (at the 4 GH z dichroism band). While right
circular polarization interacts strongly with the left-handed coil and is strongly absorbed as
indicated by the "winding” of the power flow lines in the vicinity of the wires (see Fig. 8.5a),
the orthogonal polarization state propagates almost unaffected (Fig. 8.5b). Figures 8.5¢ & 8.5d
show the amplitudes of current oscillations induced by the incident wave at two most prominent
resonances, (vo ~ 4 GHz and vg ~ 10GH z2).

From here one can clearly see that the observed resonances are linked to the excitation of
multi-nodal standing current waves, the form of which is disturbed by the sharp corners of the
wire winding that introduce higher harmonics, as well as by the finite width of the wires and
by interactions between opposite-facing loops. Under a coarse approximation, resonances occur
when the total wire length in the metamaterial unit cell is equal to an integer multiple of the ex-
citation wavelength with even number of nodes. Here the presence of the dielectric also has to be
taken into account in the estimation of the effective wavelength. Correspondingly the subscript

numbering resonances vo = 4.5 GHz, vy = 7.5 GHz and vg = 10 GHz is simply the number
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Fig. 8.5: The electric energy density (color maps) and power flow (red lines) near the chiral toroidal coil
depends on whether the incident wave is right-circularly polarized (a) or left-circularly polarized.
Plates (¢) and (d) present the multi-nodal structure of the induced current configuration on the
wire winding: two nodes are seen at v = 4.5 GHz (c) and six modes are seen at vg = 10 GHz
for both right (blue) and left (red) circularly polarized light. The amplitude of the current
oscillations depends strongly on the polarization of the incident wave.

of nodes in the standing current distribution. The array of tori shows strong resonant circular
dichroism and circular birefringence at frequency regions where electromagnetic excitation in-
duces a multi-nodal standing current wave on the wire coil with the opposite sections of the torus
working in unison (v2 & vg). This means that at any given time the currents in the opposite
sections of the coil flow in opposite directions. This can only be possible in the high-frequency
regime where the toroidal coil wire is much longer that the wavelength. On the contrary in the
low-frequency limit the induced currents will be in phase all along the wire and thus the opposite

sections of the torus would create mutually cancelling contributions to its gyrotropic response.

8.4 Multipole Expansion

The way through which gyrotropy arises in such a structure becomes even clearer within the
framework of multipole theory. In general, circular dichroism arises from the coupling of parallel
electric and magnetic dipole moments, but can also include a contribution from the electric

quadrupole moment [22, 24, 23]. In Fig. 8.6, strength of the first few multipole moments is
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presented in terms of radiated power under excitation with a linearly polarized plane wave [25]:

4
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As expected from the relatively large size of the structure compared to the wavelength, the
electric dipole moment dominates the response of the system at all frequencies, while all multipole
moments resonate together at the vo = 4.5 GHz and vg = 10 GHz circular dichroism bands.
More concisely, at the low frequency resonance, the magnetic dipole is much stronger than the
electric quadrupole, indicating that the main contribution to chirality comes from the electric
dipole-magnetic dipole coupling. A similar situation arises at the high frequency dichroism band
(v¢ = 10 GHz). However, near the weaker vy = 7.5 GHz resonance, the electric quadrupole
presents a pronounced resonance, while the magnetic dipole moment is weaker. The resonant
character of the weak dichroism at this resonance indicates electric dipole-electric quadrupole
in addition to the electric dipole-magnetic dipole coupling. This behavior arises directly from
the symmetry of the structure and the supported currents as illustrated in the inset of Fig. 8.6
for an idealized toroid which is much smaller than the wavelength. In the ideal case, the mode
with n = 2 nodes leads to strong electric and magnetic dipole moments, which have the same
direction, while n = 4 corresponds to a dominant quadrupole excitation of the structure, where
electric and magnetic dipole moments vanish. In a small ideal toroidal current this mode is
uncoupled to free-space and does not interact with external radiation. In practice however, it
is excited due to the finite size of the structure, which also leads to a strong dipole component.
On the other hand, the mode with n = 6 results in both strong dipole and quadrupole moments

and thus in a more complex response.

8.5 Toroidal Response and Gyrotropy

The toroidal moments were first introduced by Zeldovich in 1958 [1] and are intensively discussed
in the literature with only a few experiments claiming to having detected them [16]. It has been
suggested that the complete multipole expansion requires the inclusion of toroidal moments along
with the electric and magnetic ones [26]. While usually these moments can be neglected, this
is not true for structures comparable to the wavelength or structures of toroidal symmetry [26],
as the one considered here. Moreover, the toroidal moment is known to result in magneto-
electric coupling [27], since it enters the multipole expansion in exactly the same way as the
electric moments [26]. Therefore one might expect that coupling between toroidal and magnetic
moments would lead to optical activity and the question of a toroidal contribution to the observed
chirality arises. Indeed, the studied structure is topologically suitable for supporting magnetic
toroidal moments arising from a ring-like configuration of magnetic dipole moments as shown
in Fig. 8.7a, which in turn can be created by a poloidal current. Such a current distribution is
supported by a chiral toroidal solenoid in a quasistatic regime: it corresponds to the fundamental

current mode with n = 0, for which all electric multipole moments vanish, while strong magnetic
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Fig. 8.6: Gyrotropy and multipole response of the structure. Radiated power from the different multipole
moments of the (numerically simulated) current configuration on the wire windings, normalized
to the incident power. Insets: Idealized resonant currents modes on the toroidal solenoid and
leading terms of the multipole expansion for current configurations with two, four and six nodes
(from left to right). For n = 2 the leading terms are the electric, p and magnetic, m, dipole
moments, while for n = 4, the latter moments vanish and the electric quadrupole moment,
@, dominates the response of the structure. In the case n = 6, both dipole and quadrupole
moments are present. Dashed vertical lines show positions of gyrotropy resonances.

dipole m and magnetic toroidal 7 moments are supported (Fig. 8.7b). Here the sign of the
magnetic dipole depends on the chirality of the toroid and results from the component of the
current directed perpendicular to the plane of the winding’s loops.

In order to quantify the toroidal response of the metamaterial, we calculate its toroidal
moment by the formula, 7 = 5 [[(7- 7)7 — ™j|d3r and present in Fig. 8.6 the corresponding

wGMO
127cd

with the electric quadrupole moment, which suggests that the toroidal contribution to the meta-

radiated power Pr = |T|2 [25]. At most frequencies the toroidal moment is comparable

material response is in general non-negligible. However, as it can be seen from the radiated
powers, its contribution in the gyrotropy is at best secondary, since the electric and magnetic
dipole/electric quadrupole moments are much stronger at the dichroism resonances. Neverthe-
less, a much more pronounced toroidal response can be achieved by approaching a quasistatic
regime, where a constant current flows along the toroidal wire winding. Due to the symmetry
of the structure, such a current configuration has a much weaker electric dipole moment which
could lead to a clear manifestation of polarization effects depending on the (magnetic) toroidal

moment.

8.6 Conclusions

Molecules and biological structures shaped as tori are widely spread in nature, however specifics of
their interactions with electromagnetic radiation are still not comprehensively understood. The

first experimental investigation of polarization-sensitive electromagnetic interactions in artificial
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Fig. 8.7: Magnetic toroidal moment. A static poloidal current on a torus creates a ring-like configuration
of magnetic dipoles, which in turn leads to a magnetic toroidal dipole moment 7 (a). A constant
current flowing along the chiral toroidal coil results in a (magnetic) toroidal 7 and magnetic
dipole m moments. The latter depends on the chirality of the coil (b).

toroidal media is presented. The reported experiments revealed strong resonant optical activity
in a chiral toroidal metamaterial, while comparison with detailed numerical modelling of the
induced currents provided insights into the non-trivial nature of gyrotropy that is linked to the
excitation of multi-nodal standing waves on the wire coil. A multipole expansion of the supported

current configuration revealed a non-vanishing induced magnetic toroidal moment.
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9. CONCLUSION & FUTURE WORK

9.1 Summary

Two antipode classes of metamaterials were introduced. Coherent metamaterials exhibit col-
lective, coherent response available only in sufficiently large arrays, while in incoherent meta-
materials the respose reduces to a sum of the contributions from the individual elements. The
behaviour of both metamaterial types upon introducing random displacements was investigated
and it was shown that coherent metamaterials are extremely sensitive to disorder. On the other
hand, incoherent metamaterials appeared to be almost immune to positional disorder. It was
demonstrated numerically, that coherent metamaterials allow for efficient amplification in the
optical and mid-infrared part of the spectrum.

Mimicking the quantum phenomenon of electromagnetically induced transparency (EIT), it
was shown experimentally that the resonant response of planar metamaterials can be engineered
in order to provide sharp resonances and long pulse delays. Based on destructive interference
between the metamaterial unit cell constituents, this approach allows for pulse delays exceeding
1/3 of the transmitted pulse width in structures as thin as A/35 along the propagation direction.
Bandwidth enhancement of the slow light effect was demonstrated by cascading the metamaterial
with little effect on the achievable pulse delay. Normal incidence and polarization restrictions
were aleviated by introducing an isotropic, incoherent metamaterial with EIT-like response.

A different type of interference was investigated in chiral metamaterials of toroidal symmetry
consisting of wire windings on the surface of a torus. The polarization-sensitive behaviour of
such a metamaterial was studied experimentally and numerically in the microwave part of the
spectrum revealing the presence of strong resonant circular dichroism. Looking into the current
configuration and its multipole expansion, it was possile to relate the circular dichroism reso-
nances to the eigenmodes of the toroidal winding and quantify the contributions arising from
coupling between different multipole moments. A non-negligile toroidal response was also ob-
served, where the associated dipole moment was found comparable to the electric quadrupole in
scattering efficiency.

Finally, the study of collective effects was extended to lattices of non-resonant inclusions
leading to an experimental demonstration of surface-plasmon free extraordinary transmission in
a quasiperiodic hole array. Scaled versions of such a structure were characterized both in the
microwave and optical domain and a close relation between the long-range order of quasicrystals

and the observed lattices resonances was established.
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9.2 Future Work

The new types of metamaterials studied here pave the way towards enhanced control of the meta-
material response by appropriate engineering of the unit cell resonator. Future work can focus
on transferring the reported effects to the optics domain: an immediate application of coherent
metamaterials would be the realization of the lasing spaser. Such a planar light-emitting device
can be a valuable asset especially in the optical domain due its compactness and efficiency. More-
over, moving into the so-called THz gap is also of great interest, since the availability of efficient
light sources is limited at these frequencies. In addition, the strong surface waves supported
by coherent metamaterials can become especially important when the wavelength approaches
the position where the so-called Wood’s anomalies occur. At these wavelengths, new resonances
should appear associated with these surface waves in ways very similar to extraordinary transmis-
sion. Of special interest is the case where these resonances will coincide with the meta-molecule
resonance. This combination can provide an extremely powerful feedback mechanism, which
in the presence of gain media will allow to increase further the efficiency of amplification. In
addition, since the energy would be stored in the form of oscillating magnetic dipoles, such a
metamaterial would have an extremely strong magnetic response, uncoupled to the incident mag-
netic field, which can prove useful in the field of artificial magnetism. Incoherent metamaterials
on the other hand are expected not only to facilitate self-assembly fabrication methods due to the
independence from disorder, but also to enable even more compact metamaterial-based devices.
In incoherent metamaterials, functionalities can manifest in a small number of unit cells, essen-
tially due to the vanishing scattering losses and weak interactions between the meta-molecules.
This could possibly allow the realization of delay lines and sensors consisting of a few, or even a
single, sub-wavelength meta-molecule.

Finally, toroidal metamaterials provide a unique opportunity to observe the elusive effects
associated with the so-called toroidal family of multipole moments. In particular, it is expected
that by moving to a low frequency regime, the toroidal response of toroidal metamaterials can
be enhanced, while the electric multipole response will diminish. Intriguingly, the magnetic
multipole of the system can be controlled by considering either non-connected or connected
loops along the meridians of the torus. The first structure allows to isolate the toroidal response
by suppressing electric and magnetic multipoles, while the latter will result in a strong magnetic
dipole moment co-linear with the toroidal magnetic dipole moment. Noting that the toroidal
magnetic dipole moment is very similar to the electric dipole moment, it can be argued that
coupling of the former moment with magnetic dipole can lead to a new type of gyrotropy of
toroidal origin, similar to the gyrotropy arising due to electric dipole-magnetic dipole coupling.
Such effects are of great interest not only in terms of new physics but also in respect with the

vast number of macro-molecules that possess toroidal symmetry.
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