DIODE-BAR-PUMPED PLANAR WAVEGUIDE LASERS: DOUBLE-CLAD STRUCTURES AND PROXIMITY COUPLING

T. Bhutta, C.L. Bonner, D.P. Shepherd*, and A.C. Tropper
Optoelectronics Research Centre
University of Southampton, U.K.
*email dps@orc.soton.ac.uk

H.E. Meissner
Maxios Laser Corporation
6551 Sierra Lane, Dublin, California 94568, USA

Summary
The emission aperture of high-average-power diode-bars is inherently compatible with the geometry of thin-film waveguides. This, together with the power-handling capability of thin slabs, has lead to the possibility of very compact, high-power planar waveguide lasers1,2. Here we report on novel waveguide structures and coupling techniques used to realise such devices in both Nd3+ and Yb3+ doped YAG.

The guides are side-pumped by simply proximity coupling a diode-bar to the waveguide. Very efficient coupling, for waveguides with core-sizes down to 8\textmu{}m, is achieved through the use of the high-numerical aperture, YAG on Sapphire, guides fabricated by direct bonding2.

The main drawback for simple, monolithic lasers made in this way is the poor output mode quality. Here we will present the first results on diode-pumping of double-clad planar guides such as the one shown aside. Multi-watt, single-guided mode outputs are obtained with both Nd3+ and Yb3+ doped YAG. The high core to cladding size ratio, imposed by the need to keep the effective absorption length small, leads to a new regime of operation where the spatial mode selection is due to the doping profile rather than the refractive index profile. Control of the output mode in the non-guided plane will also be discussed.

The authors wish to acknowledge Raymond J. Beach for useful discussions. The ORC is an EPSRC (UK) interdisciplinary research centre.