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Abstract

This paper reports on progress with the coherence-domain method for interrogation of Bragg
grating pairs, presenting for the first time a simple theoretical analysis of the interrogation proce-
dure and describing the first measurements of useful engineering parameters (strain, pressure)
with the system.

Introduction
We have recently reported a new coherence-domain multiplexing method for interrogating an
array of matched Bragg grating pairs in a single fiber network [1]. Many previous methods have
been devised for monitoring in-fiber Bragg gratings, including scanned filters (e.g., Fabry-Perot
[2], acousto-optic [3], and stretched-fiber grating [4] passive filters using wavelength selective
couplers [5], readout spectrometers [6,7] and stretched-fiber interferometers [8]). The passive
wavelength-selective filters and the acousto-optic tunable filters promise the fastest response, but
the stretched-fiber interferometer has demonstrated the greatest measurement precision. The lat-
ter can also be used in principle to read arrays of gratings using Fourier transform spectrometry
[9], but this usually requires significant processing time and, in order to avoid distortions, a good
quality signal, free of polarization fading. Unlike our present method, it requires all the gratings
to have different wavelengths, limiting the number possible within the source linewidth.
Coherence multiplexing [10] has been used to muliplex sensors. When illuminated by a
broadband source of short coherence length, each interferometric sensor in a chain shows visible
fringes only when interrogated with-an interferometer having an optical path difference (OPD)
closely matching that of the sensor. Our recently-reported method [1] uses a coherence multi-
plexing scheme, which allows a linear array of grating pairs to be interrogated by a scanned re-
ceiving interferometer. We report on progress with the latest version of our system, shown sche-
matically below.
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20020) and a superluminescent diode (SLD) with a smoother spectral output is used. As before,
the sensing array consists of in-line matched grating pairs, with different spacings between each
pair. As the table is scanned at constant velocity, a number of groups (bursts) of visible interfer-
ence fringes are observed sequentially at points whenever the OPD of the scanned interferometer
is close to the OPD of each grating pair (for simulated characteristic, see Fig. 2). A time-gated
electronic counter measures the fringe-crossing rate during periods of high fringe contrast and a
PC then determines, in turn, the centroid wavelength of each grating pair from this frequency.
The greater travel of the new precision translator now enables all grating pairs to be interrogated
in one sweep, unlike the earlier system, which used a much simpler push-pull solenoid translator.
Using a simple low-finesse Fabry-Perot model, with mirror reflections matching that of the
gratings, we have calculated the reflective spectrum of the grating pair. Then, with Mathcad 6.0,
we have modelled the reflective spectrum to derive Fig. 2. As expected, this is a comb filter, with
a peak reflection envelope of similar shape to that expected from just one of the initial gratings,
Fig. 2. We are currently developing a more rigorous coupled-mode model, which we hope to
publish is a future paper.

The Michelson interferometer acts as a second “raised
cosine” filter. Maximum fringe amplitudes are ob-
served when the period of the Michelson interferome-
ter matches that of the Fabry-Perot formed by one of
the grating pairs. A Mathcad simulation of the com-
bined response of the scanned interrogation system is
shown in Fig. 3
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decoherence length.
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Fig. 1, using a 1290nm fiber-pigtailed
SLD (Superlum SLD561) and a 0.7MQ
transimpedance receiver PRM56/4. The
new SLD used in this latest work had a smooth intensity spectrum, essentially free of undesirable
Fabry-Perot modes, which extended the coherence during earlier work. For our series of tests, the
Bragg grating strain sensor array consisted of two fiber grating pairs P, and P, , each grating of
4mm length, ~ 4.5 % reflectivity, mean wavelength A,;=1304nm, half-power spectral width
dA=0.5nm. The L, of light from a Bragg grating of bandwidth 6A=0.5nm, was expected to be
4-05%/8) , i.e., approx. 14mm. This condition was full-filled by choosing the spacing between
the P, grating pair to be L,=51mm and, for P,, the value of L,=71mm. The fiber section between
the grating pairs was set to be much longer, in our case to 0.7m.

The Michelson readout interferometer had a fixed-path fiber arm, with a silver-coated endface.
The fiber endface in the variable path was angle polished, at 8° to avoid reflection and the lens-
collimated light output was retro-reflected using a ball lens made from glass of refractive index
n=2.0, with gold back coating. The spacing in the retro-reflecting arm was varied by the linear
translation table, driven, under computer control, in alternating directions with a p-p amplitude
Ly up to 120mm.

The mean velocity of the moving mirror was adjusted to vy=L,,/6t= 0.1 m/s. The resulting mean
frequency of interference signal was typically f,,=2v,/Ay, =153kHz. When applying mechanical
strain or pressure to a grating pair, small deviations 8\ occur from the initial value Ay, leading
to incremental frequency changes &f,=-(8Az/Ag,) fyy. For noise reduction, the detected signal at
frequency f,, was passed through a 150kHz filter of 20kHz pass-band and then to a counter. The
frequency changes, 8f,, were determined by gating the counter during the mirror positions of
maximum interference visibility.
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reasonable agreement with that of 1.17nm/N from direct spectral measurement [7]. By calcula-
tion, the equivalent temperature sensor would show a frequency shift of -1.2Hz-K™.

When one of the sensor pairs was reconfigured as a bare-fiber-grating pressure sensor [11],
within a hydraulic pipe pressurized with oil, the measured scale factor was 0.6Hz/Mpa (see Fig.
5). It should be noted that pressure sensing using a bare grating is a particularly severe test of a
wavelength interrogation scheme, because of the very small changes that occur even with high
hydraulic pressures.

Conclusions ,
Significant improvements to our coherence-domain multiplexing scheme have been made and
the new system has been experimentally tested. The scanning Michelson interferometer has been
improved using a precision translator capable of scanning through all the grating pairs under
computer control. The previously-reported problems of extended source coherence have been
removed using an SLD device, with a spectral output free of mode-ripple. The system has been
used for measuring strain as well as pressure influences of two multiplexed grating pairs.

The advantage of this coherence domain multiplexing scheme is that it needs no optical filters or
fast pulsed optoelectronics, and can be combined with known wavelength and time domain mul-
tiplexing methods in order to increase the number of sensors possible in the network. No prob-
lems of polarization fading were observed in the laboratory system, but it is expected that if these
occurred in a more severe environment, they could be alleviated using polarization scramblers in
front of the interferometer [12] or Faraday mirrors in the Michelson interferometer [13].
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