Photorefractivity of indium oxide (InO_x) using 193nm excimer laser radiation

S. Pissadakis, S. Mailis, L. Reekie, R. W. Eason Optoelectronics Research Centre (ORC), University of Southampton, Southampton, SO17 1BJ, , UK

N. A. Vainos

Laser and applications division, Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), P.O Box 1527 71 110, Heraklion, Crete Greece.

K. Moschovis, G. Kiriakidis

Materials Group, Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), P.O Box 1527 71 110, Heraklion, Crete Greece.

Indium Oxide (InO_x) is being extensively used in microelectronic technology due to its important optical and electrical properties. Dymanic photorefractive behaviour of InO_x exposed in the near UV region (325nm) at low intensity ($\sim 0.25 \, \text{W/cm}^2$) has been demonstrated for films grown by DC magnetron sputtering [1] and Pulsed Laser Deposition [2].

In this paper the investigation of photorefractive effects of InO_x in the deep UV region (193 nm) is presented. Polycrystalline InO_x films were grown by DC magnetron sputtering, in O_2 /Ar atmosphere, in a variety of thicknesses (0.5 μ m- 4 μ m).

Photorefractive gratings were recorded in InO_x films using a typical "in contact" phase mask configuration. An ArF excimer laser delivering 20 nsec pulses (FWHM) @ 193 nm was used for the phase mask illumination at an intensity of 0.9MW/cm^2 (energy density of $1.8 \times 10^{-2} \text{ J/cm}^2$). Single and multi-pulse exposures were performed at low repetition rates. The recorded gratings were detected using a He-Ne laser at normal incidence and the refractive index changes produced were calculated from the measured diffraction efficiency. Refractive index changes up to 5.0×10^{-3} were observed. The stability of the photoinduced index changes were investigated by monitoring the diffraction efficiency dynamics. The monitored diffraction efficiency decays reaching a platau approximately 50% of its initial peak.

The photorefractivity of InO_x using high power c.w. 244nm and pulsed 248nm laser radiation has also been investigated. Possible applications of InO_x films include high refractive index waveguide overlays for sensor and telecommunication purposes.

Phase mask arrangement for grating recording

[1] S. Mailis, L. Boutsikaris, N.A. Vainos, C. Xirouchaki, G. Vasiliou, N. Garawal, G. Kiriakidis, and H. Fritzsche, Appl. Phys. Lett. **69**, 2459-2461, (1996).

[2] C. Grivas, D.S. Gill, S. Mailis, L. Boutsikaris, N.A. Vainos, Appl. Phys. A 65, 1-4, (1997)

Photorefractivity of indium oxide (InO_x) using 193nm excimer laser radiation

S. Pissadakis, S. Mailis, L. Reekie, R. W. Eason

Optoelectronics Research Centre (ORC), University of Southampton,

Highfield, SO17 1BJ, Southampton, UK

Tel: +44 (1703) 593954 Fax: +44 (1703) 593149 sp1@orc.soton.ac.uk

N.A. Vainos

Laser and applications division, Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), P.O Box 1527, 71 110, Heraklion, Greece.

K. Moschovis, G. Kiriakidis

Materials Group, Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FO.R.T.H), P.O Box 1527 71 110, Heraklion, Greece.

Abstract

Photorefractive gratings structures have been formed in Indium Oxide films using a 193nm excimer laser illuminating a phase mask. Refractive index changes up to 5×10^{-3} were measured and the dynamic behaviour of the effect studied.