

2.8 μ m emission of Er-doped CaF₂ planar waveguides fabricated by molecular beam epitaxy

E. Daran

LAAS-CNRS, 7 Av. du Colonel Roche, 31077 Toulouse cedex 7, France
tel. : (33) 5 61 33 64 62 fax : (33) 5 61 33 62 08

D.P. Shepherd and T. Schweizer

ORC, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.

We report the fabrication of erbium doped calcium fluoride thin film optical waveguides by molecular beam epitaxy and the luminescence study of the 2.8 μ m emission from a guide with an erbium concentration of 13 at. % under pumping at 980nm.

2.8 μ m emission of Er-doped CaF₂ planar waveguides fabricated by molecular beam epitaxy

E. Daran

LAAS-CNRS, 7 Av. du Colonel Roche, 31077 Toulouse cedex 7, France

tel. : (33) 5 61 33 64 62 fax : (33) 5 61 33 62 08

D.P. Shepherd and T. Schweizer

ORC, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.

The wavelength range near 3 μ m has many applications in medical processes due to an overlap with the absorption spectrum of water. Emission of the Er³⁺ ion near 2.8 μ m, which operates on the transition from $^4I_{11/2}$ to $^4I_{13/2}$ is especially promising as it can be pumped by either 800nm GaAlAs or 980nm InGaAlAs diodes, paving the way for a compact device with low electrical energy consumption.

Optical waveguides of laser gain media are highly desirable because large inversion densities can be obtained for relatively low pump powers due to the confinement of light to small dimension over longer lengths as compared to bulk materials. Molecular beam epitaxy (MBE) provides the ability to grow high quality material with a very high thickness precision, to make controlled (abrupt or gradual) composition changes, to grow multilayer stacks, and to control separately the concentration of the doping impurities, which could facilitate an optimized waveguide structure. Recently, we have shown that molecular beam epitaxy is very suitable for the growth of rare-earth doped CaF₂ active waveguides on CaF₂ substrates¹. The thermodynamical conditions imposed during MBE growth (low temperature and growth rate) favorably modify the incorporation of rare-earth ions compared to other high-temperature growth techniques used for insulating bulk materials. As a consequence, it is possible to significantly increasing the doping level of an active impurity without any degradation of the crystal quality of the layers. Moreover, the incorporation of rare-earth ions in CaF₂ favorably modifies the index of refraction of the layer giving rise to the formation of a planar optical waveguide with a step-like refractive index profile.

The CaF₂ matrix is a good candidate for efficient 2.8 μ m emission : a high doping level of Er³⁺ ions can be obtained and, owing to a small phonon energy, the ratio of upper-state to lower-state lifetime is very favorable compared to an oxide matrix. Here we report 2.8 μ m room temperature guided luminescence of CaF₂ waveguides doped with 13 at % of Erbium. Besides this emission, three others were also observed : the well-known 1.5 μ m emission, and two emissions peaking at 1.7 μ m and 2 μ m due to upconversion processes. We have measured the lifetime of the initial ($^4I_{11/2}$) and terminal ($^4I_{13/2}$) laser states of the 2.8 μ m transition at room temperature. The values obtained are promising compared to bulk fluoride materials like LiYF₄ or BaY₂F₈ where laser emission has already been demonstrated².

Results dealing with the waveguiding properties of our layers, such as refractive index characterization and loss measurements, will also be reported.

1- E. Daran and al., J. Appl. Phys. **81** (2), 1997

2- T. Jensen and al. , Optics Letters **21** (8), 1996