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Abstract:

Rare earth doped fiber DFB-lasers are interesting devices
both as sensors and as CW-sources for telecommunication
applications. We are interested in a sensor configuration where
the birefringence of a fiber laser is determined by measuring the
beat frequency between two polarization modes. This requires
a stable two-polarization laser operation. Other applications
require single polarization laser. Both for the single and the dual
polarization laser design a proper understanding of the
polarization mode competition is required.

We use a transfer-matrix model based on the coupled mode
equations to describe the light-propagation in Bragg-gratings
with birefringence, twist and gain. Effects of saturation and non-
uniformity effects are included in the model. A cavity round trip
gain and phase approach is used to find the lasing conditions,
like mode frequencies, output intensities and field distribution in

the laser cavity.

Both chirp, polarization dependent phase shifts, and
polarization dependent coupling strength is shown to cause
different thresholds for the polarization modes. Four saturation
effects are identified that may influence the mode competition:
1) spatial holeburning related to the overall intensity distribution
of the lasing modes,

2) spatial holeburning caused by the difference in phase of the
modal standing wave patterns,

3) polarization holeburning caused by the anisotropy of the
dopant ions,

4) gain distribution effects related to intensity dependence of
pump power absorption.

Effects caused polarization dependence of the pump power
absorption will be discussed only briefly.
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Conclusions:

We have calculated the regimes of single and dual polarization
operation of DFB-lasers for various polarization imperfections.

Polarization dependence of the coupling strength and the central
phaseshift seem to be useful parameters for controlling single or
dual polarization operation.

Dual polarization operation in high reflectivity (kL) gratings is
much more tolerant to polarization imperfections.

Both spatial holeburning mechanisms and polarization holeburning
mechanisms are important for the understanding of polarization
mode competition.
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Maximum phaseshift error of y-mode A¢, for 2-mode operation at Ip-eo.
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Pump thresholds at KL=g
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_Pump thresholds at xL=6
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_Roundtrip gain contributions at I[p=20mW, kL.=6
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. Roundtrip gain contributions at [p=20mW, KL.=6
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_eft and right propagating SOP’s vs. position. rL=1. [p=20mW
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Left and right propagating SOP’s vs. position. rL.=3, I[p=20mW
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