The University of Southampton
University of Southampton Institutional Repository

Contact electrode method for bulk periodically poled LiNbO3

Contact electrode method for bulk periodically poled LiNbO3
Contact electrode method for bulk periodically poled LiNbO3
Over the past few years, there has been increasing interest in the use of quasi-phase-matched (QPM) nonlinear crystals, which permit noncritical-phase-matching for any wavelengths in the transparency range of the crystal, and have the advantage of using the largest component of the nonlinear susceptibility tensor, one that is not available in birefringent phase matching without walk-off problems. QPM can be achieved by an appropriate periodic modulation of the nonlinear coefficient, which corresponds to periodic domain reversal in ferroelectric materials. In particular, the application of QPM to bulk nonlinear optics has been revolutionised by the emergence of electric field poling techniques for patterning the domain structure of ferroelectric and polar crystals. In all the reported fabrication processes the periodic electrode (consisting of resist and/or metal layers) has been fabricated on the surface of the crystal substrates by conventional photolithography.

We report here a new fabrication process for PPLN - the contact electrode method (CEM) - in which the periodic electrode is pressed onto one of the substrate surfaces with a uniform electrode on the other. CEM does not need any photolithographic processes on the substrate surface which may lead to greatly reduced fabrication cost. Furthermore, CEM would be applicable for fabrications of periodically poled glass fiber.
Sato, M.
24cec4c2-58d0-4176-b472-335d9328d70b
Smith, P.G.R.
8979668a-8b7a-4838-9a74-1a7cfc6665f6
Hanna, D.C.
3da5a5b4-71c2-4441-bb67-21f0d28a187d
Sato, M.
24cec4c2-58d0-4176-b472-335d9328d70b
Smith, P.G.R.
8979668a-8b7a-4838-9a74-1a7cfc6665f6
Hanna, D.C.
3da5a5b4-71c2-4441-bb67-21f0d28a187d

Sato, M., Smith, P.G.R. and Hanna, D.C. (1997) Contact electrode method for bulk periodically poled LiNbO3. Lasers & Electro-Optics Society (LEOS '97), , San Francisco, United States. 10 - 13 Nov 1997.

Record type: Conference or Workshop Item (Paper)

Abstract

Over the past few years, there has been increasing interest in the use of quasi-phase-matched (QPM) nonlinear crystals, which permit noncritical-phase-matching for any wavelengths in the transparency range of the crystal, and have the advantage of using the largest component of the nonlinear susceptibility tensor, one that is not available in birefringent phase matching without walk-off problems. QPM can be achieved by an appropriate periodic modulation of the nonlinear coefficient, which corresponds to periodic domain reversal in ferroelectric materials. In particular, the application of QPM to bulk nonlinear optics has been revolutionised by the emergence of electric field poling techniques for patterning the domain structure of ferroelectric and polar crystals. In all the reported fabrication processes the periodic electrode (consisting of resist and/or metal layers) has been fabricated on the surface of the crystal substrates by conventional photolithography.

We report here a new fabrication process for PPLN - the contact electrode method (CEM) - in which the periodic electrode is pressed onto one of the substrate surfaces with a uniform electrode on the other. CEM does not need any photolithographic processes on the substrate surface which may lead to greatly reduced fabrication cost. Furthermore, CEM would be applicable for fabrications of periodically poled glass fiber.

Text
1564.pdf - Other
Download (313kB)

More information

Published date: 1997
Venue - Dates: Lasers & Electro-Optics Society (LEOS '97), , San Francisco, United States, 1997-11-10 - 1997-11-13

Identifiers

Local EPrints ID: 76710
URI: http://eprints.soton.ac.uk/id/eprint/76710
PURE UUID: ec4a6bad-8114-4f27-8090-10a0719973b9
ORCID for P.G.R. Smith: ORCID iD orcid.org/0000-0003-0319-718X

Catalogue record

Date deposited: 11 Mar 2010
Last modified: 14 Mar 2024 02:38

Export record

Contributors

Author: M. Sato
Author: P.G.R. Smith ORCID iD
Author: D.C. Hanna

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×