ENHANCED OPTICAL PROPERTIES OF Tm$^{3+}$ IN F CO-DOPED LEAD GERMANATE GLASSES FOR FIBER DEVICE APPLICATIONS
J. WANG, J. HECTOR1, W.S. BROCKLESBY, D.J. BRINCK AND D.N. PAYNE, OPTOELECTRONICS RESEARCH CENTRE AND DEPT. OF PHYSICS1, THE UNIVERSITY, SOUTHAMPTON SO17 1BJ, UK

The effect on structure and property of adding fluoride into Tm$^{3+}$ doped lead-germanate glass was established and verified experimentally. It was found that up to 10 mol% of fluoride could be introduced into our original lead-germanate composition while retaining the high thermal stability ideal for fibre fabrication. Much improved spectroscopic features, namely increased fluorescent lifetimes from 3H_4 and 3F_4 levels in Tm$^{3+}$ with increasing fluorine content, were observed. At the same time it was found that the radiative properties of Tm$^{3+}$ were left unchanged by fluoride addition, indicating that reduced multiphonon relaxation was responsible for the increased fluorescent lifetimes. This was well explained and foreseen by our established structure-property relation in terms of adding fluorine to the glass. In conclusion, fluoro-germanate glass shows advantages over germanate glass in optical properties and over fluoride glass in chemical and mechanical properties for practical fiber device applications.
Enhanced Optical Properties of Tm$^{3+}$ In F Co-Doped Lead Germanate Glasses For Fibre Device Application

J. Wang, J.H. Hector1, W.S. Brocklesby,
D.J. Brinck and D.N. Payne

Optoelectronics Research Centre and Department of Physics1
The University, Southampton SO17 1BJ, England
INTRODUCTION

Structure of the Glass
- Glass-forming network
- Local structure of Rare-earth

Properties of the Glass
- Optical (rare-earth & host)
- Chemical & Mechanical

Fibre Optic Devices
- Performance
- Reliability
GLASS FABRICATION

Thermally stable composition:

\[55\text{GeO}_2 - 20\text{PbO} - 10\text{BaO} - 10\text{ZnO} - 5\text{K}_2\text{O} \]

Fluoride Introduction:

\[\text{PbF}_2 \rightarrow \text{PbO} \]
\[\text{BaF}_2 \rightarrow \text{BaO} \]
\[\text{ZnF}_2 \rightarrow \text{ZnO} \]

Active element: \(\text{Tm}_2\text{O}_3 \)

Processing condition:

Melting temperature: \(1100 - 1150 \, ^\circ\text{C} \)
Annealing temperature: \(400 - 450 \, ^\circ\text{C} \)
Thermal Properties of the Glasses

The thermal stability after F co-doing is well kept in all glasses with fluoride concentration up to 10 mol% measured by Differential Thermal Analysis.
Viscosity of lead germanate glass
Local Structure of Tm\(^{3+}\) Ions

Based on ‘*modified random network*’ model in glass structure (see the figure below) and using ‘*crystal chemistry principles*’, it is suggested that the Tm\(^{3+}\) will be at a F rich environment with F both in the modifier-rich region of the glass.

Raman Spectra of Glasses in the System of

55GeO₂(20-X)PbOXPbF₂10ZnO10BaO5K₂O

Scattered Intensity (a.u.)

Raman Shift (cm⁻¹)
Absorption Spectra of Tm³⁺

Absorption Coefficient (cm⁻¹)

Wavelength (nm)
Refractive Indices and FTIR Spectra of Glasses in
$55\text{GeO}_2(20-X)\text{PbOX}\text{PbF}_2\text{10ZnO10BaO5K}_2\text{O}$ System

![Graph of refractive index (N_{1.06}) vs. PbF$_2$ (mol%)](image1)

![Graph of transmission (x100%) vs. wavenumber (cm$^{-1}$)](image2)
Non-radiative Multiphonon Relaxation Rate

\[W_{nr} = C \cdot \exp(-\alpha \cdot \Delta E) \]

and \[\alpha = -\ln(\varepsilon) / \hbar \omega \]

Stronger electron-phonon coupling ⇔ Smaller \(\alpha \)

<table>
<thead>
<tr>
<th>Host</th>
<th>(C) ((s^{-1}))</th>
<th>(\alpha) ((10^{-3} \text{ cm}))</th>
<th>(\hbar \omega) ((\text{cm}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borate</td>
<td>(2.9 \times 10^{12})</td>
<td>3.8</td>
<td>1400</td>
</tr>
<tr>
<td>Phosphate</td>
<td>(5.4 \times 10^{12})</td>
<td>4.7</td>
<td>1200</td>
</tr>
<tr>
<td>Silicate</td>
<td>(1.4 \times 10^{12})</td>
<td>4.7</td>
<td>1100</td>
</tr>
<tr>
<td>Germanate</td>
<td>(3.4 \times 10^{10})</td>
<td>4.9</td>
<td>900</td>
</tr>
<tr>
<td>Tellurite</td>
<td>(6.3 \times 10^{10})</td>
<td>4.7</td>
<td>700</td>
</tr>
<tr>
<td>Fluorozirconate</td>
<td>(1.59 \times 10^{10})</td>
<td>5.77</td>
<td>500</td>
</tr>
<tr>
<td>LaF(_3) (cryst)</td>
<td>(6.6 \times 10^8)</td>
<td>5.6</td>
<td>350</td>
</tr>
<tr>
<td>Sulfide</td>
<td>(10^6)</td>
<td>2.9</td>
<td>350</td>
</tr>
</tbody>
</table>
Multiphonon Emission Rate Via Energy Gap

![Graph showing multiphonon emission rate vs. energy gap for different materials such as Borate, Phosphate, Silicate, Germanate, Tellurite, ZrF₄ glass, LaF₃ crystal, and Sulfdie. The y-axis represents the multiphonon emission rate in s⁻¹, and the x-axis represents the energy gap in cm⁻¹.](image-url)
Energy Levels of Tm$^{3+}$ Ion

RESULTS SUMMARY

1. Radiative Properties

After co-doping F, radiative property of the glasses maintains virtually the same as the pure lead-germanate glass.

2. Non-Radiative Properties

F co-doping induces lower multiphonon relaxation rate due to reduced phonon-electron coupling strength although the maximum phonon-energy stays the same.

3. Quantum Yield

Radiative quantum yield from the metastable 3F_4 and 3H_4 levels increases as F is introduced.
CONCLUSION

1. Successfully introduced F into lead-germanate glass while retaining the thermal stability ideal for fibre fabrication.

2. Established structure-property relationship in terms of adding F and confirmed with experimental results.

3. Fluoro-germanate glass has advantages over germanate in optical properties and over fluoride in chemical and mechanical properties in practical fibre device applications.