5344

SJBMITTED TO CLEO 91

High gain Nd:YLF amplifier end-pumped by a beam-shaped broad-stripe diode laser.

G. J. Friel, W. A. Clarkson and D. C. Hanna

Optoelectronics Research Centre

University of Southampton

Southampton, SO17 1BJ

United Kingdom.

TEL: +44 1703 593143

FAX: +44 1703 593142

E-mail: gjf@orc.soton.ac.uk

ABSTRACT

The output from a 4W broad-stripe diode, reshaped by a two-mirror beam-shaper, is used to end-pump a Nd:YLF amplifier. In a double-pass configuration a small-signal gain of 240 has been obtained.

High gain Nd:YLF amplifier end-pumped by a beam-shaped broad-stripe diode laser.

G. J. Friel, W. A. Clarkson and D. C. Hanna

Optoelectronics Research Centre

University of Southampton

Southampton, SO17 1BJ

United Kingdom.

TEL: +44 1703 593143

FAX: +44 1703 593142

E-mail: gjf@orc.soton.ac.uk

SUMMARY

A two-mirror beam shaping technique, applied to the output of diode bars has produced the

near circular beams ideally suited to end pumping¹. Here we show that the same technique can

be successfully applied to a broad-stripe diode, having a much smaller elongation of the

emitter region than a diode bar. In fact a typical broad-stripe diode such as the one we have

used (4 W cw output, 500 μ m x 1 μ m emitter) with M² values of ~100 and 1 in the junction

plane and perpendicular to the plane respectively, has a brightness ~4 times greater than that

of a diode bar. So the broad-stripe diode, with its beam shaped to be circular, would be an

attractive source for end-pumping, particularly for low gain lasers and also for cladding-

pumped fibre lasers.

1

G. J. Friel, W. A. Clarkson and D. C. Hanna High gain Nd: YLF amplifier

We report here the results of beam shaping applied to a broad-stripe diode and, as a demonstration of its effectiveness we describe a Nd:YLF amplifier pumped by the shaped beam. The pumping arrangement, shown in Fig. 1, consists of a 4 W cw broad-stripe diode operating at 797 nm. The first lens, f=6.5 mm collimates the beam in the vertical plane. The role of the f=150 mm and f=12 mm cylindrical lenses is to reduce the vertical plane collimated beam size to ~200 μ m $1/e^2$ radius at the beam shaper mirrors. The f=300 mm cylindrical lens collimates the beam in the horizontal plane to ~ 12 mm $1/e^2$ radius at the beam shaper. After the two-mirror beam shaper a spherical lens, f=38 mm produces a nearly circular spot with 1/e² radius of 50 µm and equal M² values, measured to be 14 for both orthogonal planes. With reference to its use for launching into a fibre we note that this corresponds to a 100 μm 1/e² diameter and NA of 0.07. The Nd:YLF amplifier, shown in Fig. 2, uses a simple double-pass geometry and is end-pumped by the reshaped and focused output from the 4W diode. With 3.5 W of available pump power at the focus in the 10 mm long Nd:YLF rod we have measured a cw small signal gain of 50 for a cw input power of 200 µW at 1047 nm. However, by chopping the pump at a low duty cycle we obtained a significantly higher gain of 240. The origin of this reduction in gain for higher average pump power is thought to be thermally-induced broadening of the gain bandwidth and strong thermal lensing causing significant expansion of the signal beam over the double pass through the gain region. For the π -polarisation and in the plane parallel to the c-axis we have measured a thermal lens focal length of stronger than -30 mm. With an appropriate scheme for thermal lens compensation and by increasing the pump power by polarization coupling an additional

G. J. Friel, W. A. Clarkson and D. C. Hanna High gain Nd:YLF amplifier

diode prior to the beam-shaper, we expect to achieve significantly higher cw gains.

REFERENCES

 W. A. Clarkson, A. B. Neilson, D. C. Hanna, in Conference on Lasers and Electrooptics, 1994 Technical Digest Series, Vol. 8 (Optical Society of America, Washington, D.C., 1994), p.360.

G. J. Friel, W. A. Clarkson and D. C. Hanna High gain Nd:YLF amplifier

FIGURE CAPTIONS

- Fig.1. Broad-stripe diode focusing scheme.
- Fig. 2. Broad-stripe diode-pumped Nd: YLF double-pass amplifier.

4W diode laser (SDL-2382-P1)

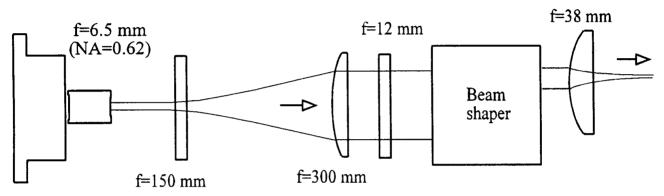


Fig. 1

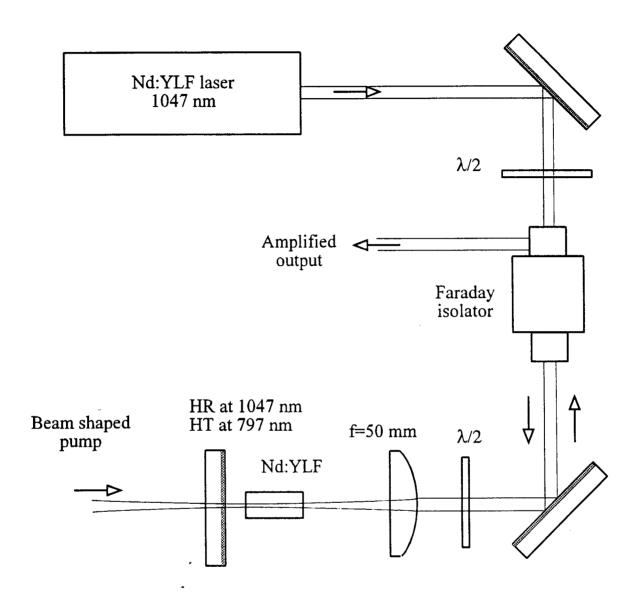


Fig. 2