The University of Southampton
University of Southampton Institutional Repository

Interferometric fibre grating characterisation

Interferometric fibre grating characterisation
Interferometric fibre grating characterisation
One of the most important fibre-optic devices to have emerged in the recent years is the fibre grating. It finds applications in DFB and DBR fibre lasers, dispersion compensation and fibre sensors. Full and accurate amplitude and phase (dispersion) characterization of this device is therefore needed. We have demonstrated such a system based on an interferometric technique (figure 1). The signal arm of a fibre Michelson interferometer is phase-modulated with a saw-tooth function to generate an electric signal at the photodetector which carries the optical phase and amplitude information of the reflective fibre device under test (DUT). The amplitude response of the interferometer is directly proportional to the field reflection coefficient, whereas the measured relative phase is related to the time delay response of the device. The set-up is fully automated and uses a Hewlett Packard tunable laser source (1470-1560nm) with wavelength accuracy are high resonance piezoelectric ceramic cylinders which are wrapped round with some turns of fibre.
Barcelos, S.
210653b9-7166-403d-8883-818598ef090f
Zervas, M.N.
1840a474-dd50-4a55-ab74-6f086aa3f701
Laming, R.I.
c86f359b-9145-4148-bc7d-ae4f3d272ca2
Payne, D.N.
4f592b24-707f-456e-b2c6-8a6f750e296d
Barcelos, S.
210653b9-7166-403d-8883-818598ef090f
Zervas, M.N.
1840a474-dd50-4a55-ab74-6f086aa3f701
Laming, R.I.
c86f359b-9145-4148-bc7d-ae4f3d272ca2
Payne, D.N.
4f592b24-707f-456e-b2c6-8a6f750e296d

Barcelos, S., Zervas, M.N., Laming, R.I. and Payne, D.N. (1995) Interferometric fibre grating characterisation. IEE Colloquium/Electronics Division on Optical Fibre Grating and their Applications. 30 Jan 1995. 7 pp .

Record type: Conference or Workshop Item (Paper)

Abstract

One of the most important fibre-optic devices to have emerged in the recent years is the fibre grating. It finds applications in DFB and DBR fibre lasers, dispersion compensation and fibre sensors. Full and accurate amplitude and phase (dispersion) characterization of this device is therefore needed. We have demonstrated such a system based on an interferometric technique (figure 1). The signal arm of a fibre Michelson interferometer is phase-modulated with a saw-tooth function to generate an electric signal at the photodetector which carries the optical phase and amplitude information of the reflective fibre device under test (DUT). The amplitude response of the interferometer is directly proportional to the field reflection coefficient, whereas the measured relative phase is related to the time delay response of the device. The set-up is fully automated and uses a Hewlett Packard tunable laser source (1470-1560nm) with wavelength accuracy are high resonance piezoelectric ceramic cylinders which are wrapped round with some turns of fibre.

PDF
990.pdf - Other
Download (305kB)

More information

Published date: January 1995
Venue - Dates: IEE Colloquium/Electronics Division on Optical Fibre Grating and their Applications, 1995-01-30 - 1995-01-30

Identifiers

Local EPrints ID: 77029
URI: https://eprints.soton.ac.uk/id/eprint/77029
PURE UUID: 01ad58e5-1bda-4f1d-8e05-b4eec6cf3564
ORCID for M.N. Zervas: ORCID iD orcid.org/0000-0002-0651-4059

Catalogue record

Date deposited: 11 Mar 2010
Last modified: 02 Oct 2018 00:37

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×