

13B2-1 (Invited)

Prospects for 1.3 μ m amplifiers

Richard I. Laming
 Optoelectronics Research Centre
 The University, Southampton SO9 5NH, UK

Abstract

Current status and future prospects for a practical 1.3 μ m fibre amplifier are reviewed.

Summary

The optical amplifier became a realistic prospect for telecommunications after the demonstration of the erbium doped fibre amplifier (EDFA), operating at 1.5 μ m, in 1987 [1]. Subsequent demonstrations of the diode-pumped device [2] led to the first commercial products in 1990 and installation of optically amplified systems followed in 1993. However much of the installed base of fibre is designed for 1.3 μ m operation and thus the early success of the EDFA spurred the search for a 1.3 μ m fibre amplifier. First efforts focused on neodymium (Nd³⁺) and a diode pumped device exhibiting 10dB gain for 50mW of pump power was demonstrated in a ZBLAN fibre in 1991 [3]. However the performance of Nd³⁺ is limited in several respects, the most important of which, signal excited state absorption (ESA) limits the operating wavelength to more than 1.32 μ m, longer than ideal for zero dispersion in telecoms systems. Further the performance is fundamentally limited by the low branching ratio of the 1.3 μ m transition relative to competing transitions such as the 1.06 μ m emission. Techniques to completely suppress the build up of amplified spontaneous emission at 1.06 μ m have been proposed [4] but, as yet none have been demonstrated.

An alternative 1.3 μ m system has been demonstrated more recently [5] and gain of 23dB for 124mW of pump power has been achieved from a Pr³⁺ doped ZBLAN-based fibre amplifier (PDFA) module pumped by a single laser diode [6]. Unfortunately the Pr³⁺ system also suffers a major drawback, the gain achieved at 1.3 μ m is limited due to a high non-radiative decay rate from the metastable level to an intermediate which dominates over the 1.3 μ m emission even in a low phonon energy system such as those based on fluorides. Nevertheless many would argue that the level of performance already achieved, particularly for the Nd:YLF pumped power amplifier, is adequate with the 250mW (24dBm) output obtained for 1.8W of pump (an 18% slope efficiency) [7] approaching the performance of commercial erbium:ytterbium 1.5 μ m power amplifiers.

Despite the acceptable power amplifier performance barriers to widespread application remain. Efficiency of line amplifiers, longevity of fibre and compatibility with installed fibre remain in question. In particular the fibre is not robust to water, mechanically weak and the long term power handling capability is in doubt. At the installation level fusion splicing between ZBLAN and silica fibre remains a major drawback.

The problem of efficiency is being addressed with the identification and development of new host glasses, namely mixed halides such as CdF₂:CdCl₂ [8,9] and sulphides such as Ga₂S₃:La₂S₃ [10,11] and GeS₂. The lattice vibration (phonon) energy of these glasses is significantly lower than that of ZBLAN (~400cm⁻¹ cf 580cm⁻¹) reducing nonradiative effects. As a result, spectroscopic analysis of Pr³⁺ in these glasses has revealed increased lifetimes of 325 μ s for the mixed halide and 290 μ s for GLS compared with 110 μ s for ZBLAN. In addition the radiative quantum efficiency was correspondingly increased to 12%

and 53% in the new glasses from ~4% in ZBLAN.

Unfortunately the improved efficiency of the mixed halide has been achieved at the expense of stability, being highly hygroscopic and with a melting point of only 305°C. Unless the composition can be modified or a technique for hermetically sealing the fibre developed this structure does not present a viable alternative.

Alternatively the Ga₂S₃:La₂S₃ system is a much more promising host. The glass has a higher melting point than ZBLAN (~455°C cf ~860°C) and is not hygroscopic. In addition defined compositions are less prone to crystallization than ZBLAN. A potential drawback with Ga₂S₃:La₂S₃ based glasses is their longer wavelength Urbach edge and thus subsequently increased loss at the pump wavelength. This is potentially a serious problem for Pr³⁺ in which the maximum concentration for efficient operation is limited to ~500ppm. However, intrinsic losses of <0.1dB/m at the pump wavelengths are predicted for the latest glasses and since single-mode chalcogenide fibres with losses less than 1dB/m at 1.5 μ m have already been drawn [12], a 1.3 μ m GLS amplifier appears a realistic possibility. Unfortunately the Pr³⁺ amplifier will only work in a non-silica glass thus the amplifier fibre is always going to be incompatible with the transmission fibre and techniques for connecting will have to be employed. Mode matching and reflections are an additional problem for GLS due to the high refractive index (~2.5), but are not considered unsolvable.

In conclusion many opportunities exist for the development of a practical 1.3 μ m amplifier however many obstacles remain to be overcome before the device will find widespread application. Unfortunately, unlike the EDFA, which was based on established silica fabrication technology, the 1.3 μ m amplifier is based on new materials technology and thus development is likely to be slower.

References

1. Mears et al, Electron. Lett., 23, 1987, p. 1026.
2. Nakazawa et al, Appl. Phys. Lett., 54, 1989, p. 295.
3. Miyajima et al, Proc. Opt. Amp. and their Appl., Snowmass, 1991, p. 16.
4. Pedersen et al, Proc. Opt. Amp. and their Appl., Santa Fe, 1992, p. 16.
5. Ohishi et al, Proc. OFC'91, San Diego, 1991, PD 2.
6. Yamada et al, Proc. Opt. Amp. and their Appl., Yokohama, 1993, p. 240.
7. Whitley et al, BT Technol. J., 11 (2), 1993.
8. Newhouse et al, Proc. Opt. Amp. and their Appl., Santa Fe, 12, PD 16.
9. Samson et al, Proc. Opt. and their Appl., Yokohama, 1993, p. 240.
10. Becker et al, Proc. Opt. Amp. and their Appl., Santa Fe, 1992, PD 5.
11. Hewak et al, Electron. Lett., 29, 1993, p. 237.
12. Asobe et al, Electron. Lett., 29, 1993, p. 1966.