Photo-induced Refractive Index change in Germanosilicate Optical Fibres:
Electronic Change or Physical Change?

L. Dong, J.L. Archambault, L. Reekie, P.St.J. Russell and D.N. Payne

Optoelectronics Research Centre,
The University of Southampton,
Southampton SO17 1BJ.
These gratings can be used:

I. as Bandstop filters
II. to construct bandpass filters
III. as WDM demultiplexers
IV. as reflectors for single frequency fibre lasers
Writing of in-core fibre gratings
Colour Centre Model

old color centres \((n_o/cm^3) \) \(\Rightarrow \) old colour centres \((n_i/cm^3<n_o) \)
new colour centres \((m_1/cm^3) \)

state I \(\Rightarrow \) state II

state II has a different absorption spectrum therefore a different index

In germanosilicate glass

State I = germanium-related oxygen deficient centres (GeO defects or Ge-Ge wrong bonds) (GODC) with an absorption band at 242nm

state II = reduced number of GODC and new bands at 195nm (possibly Ge-related), weak bands at 224nm, 256nm, 183nm and 175nm

To explain the \(10^{-4} \) index change in IR, it requires several hundred dB/mm change in absorption in UV
Compaction Theory

a) fast injection (20ns) of energy causes local heating
b) local annealing leads to local compaction

UV intensity

Fibre Core
Kramers-Kronig Relation

\[n(\omega) - 1 = \frac{2}{\pi} \int_{0}^{\infty} d\tilde{\omega} \frac{K(\omega) \tilde{\omega}}{\tilde{\omega}^2 - \omega^2} \]

\[k(\omega) = \frac{2}{\pi} \int_{0}^{\infty} d\tilde{\omega} \frac{n(\omega) \omega}{\omega^2 - \tilde{\omega}^2} \]

where

\[\varepsilon(\omega) = (n(\omega) + iK(\omega))^2 \]
\[\Delta n(\omega) = \frac{c}{\pi} \int_0^\infty d\tilde{\omega} \frac{\Delta \alpha(\tilde{\omega})}{\tilde{\omega}^2 - \omega^2} \]

where

\(\Delta n: \) change in refractive index

\(\Delta \alpha: \) change in absorption coefficient

\(c: \) speed of light in vacuum
Modified Chemical Vapour Deposition

\[\text{SiCl}_4 + \text{GeCl}_4 + \text{O}_2 \]

burner

substrate tube
UV-induced absorption change

main features: reduction in 242nm band, increase in 195nm band

other features: weak bands at 224nm, 256nm, 183nm, and 175nm
Dynamics of Absorption Change

NA=0.18 (8.3mol% GeO₂), 0.9mJ/mm²/pulse.
Effect of Thermal Annealing

NA=0.2, heating rate=10°C/min, dwell=10mins

![Graph showing the effect of thermal annealing on refractive index change with temperature. The graph depicts the ratio of Δn/Δn_{max} and Δα/Δα_{max} against temperature. The graph includes symbols for different wavelength bands and calculated Δn at 1.5μm and Δn in gratings.]
GeO$_2$ Concentration Dependence

0.6mJ/mm2/pulse, 20mins

- Change in the 242nm band
- Change in the 195nm band
- Change in the refractive index

Change in absorption (dB/mm) vs. Germania concentration (mol%)
Conclusions

I. The Strong UV-induced absorption change in germanosilicate preforms has been resolved with a simple and accurate method.

II. The UV-induced absorption change can account for the 10^{-4} index change in fibre gratings.

III. Thermal annealing characteristics of the absorption change is also similar to that of the index change in fibre gratings.