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Abstract

An optical fibre sensor system to interrogate point sensors (Bragg gratings) and optical path length between point
sensors is discussed. The paper describes interrogation schemes capable of measurement resolutions better than
100 microstrain based on simple optics, telecommunications electronics and sophisticated signal processing.

1 INTRODUCTION

Sensor systems are an essential component of smart structures in order to provide information to the control
system.' To control smart structures effectively, the sensor provides information (strain, temperature etc) in both
a localised and a spatially-averaged manner. The ideal optical fibre sensor would be a distributed sensor,? but
this is still difficult to achieve with a realistic level of hardware. We present an approach combining both point
sensors and long gauge-length sensors in a multiplexed sensor system, providing information almost as valuable
as a distributed sensor system.

Our sensing system (Fig 1)
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Development of this system has concentrated on two aspects: a system (o monitor the wavelength of multiple
gratings (short gauge-length sensor) and a precision OTDR to monitor the optical path length between these
sensors (long gauge-length sensor).

2 SHORT GAUGE-LENGTH SENSOR

Various schemes to detect small wavelength shifts of Bragg gratings have been developed. These include the
filter-edge demodulation method where the edge of a filter or a wavelength-division coupler is used to convert
wavelength changes to amplitude variations,*® interferometric approaches,”® the use of frequency-locked
grating pairs,’ and laser-sensor concepts where the grating sensor determines the lasing frequency.'®

However, all above methods have limitations when it is desired to interrogate the wavelength of many gratings
in a frequency-agile manner. In this paper we present advances on our method of constructing an interrogating
system for fibre Bragg grating sensors using an acousto-optic tunable filter (AOTF)."

2.1 Grating Interrogation Scheme
Operation of our dedicated
interrogation system (Fig 2) is
similar to the system we pro-
posed earlier'': A grating is
illuminated with a broadband
source, thereby filtering the light
at the Bragg wavelength A,.. This
band-filtered light is then
coupled through the acousto-
optic tunable filter onto a
suitable photodiode.

An AOTF is a narrow-band IR
optical bandpass filter whose
centre wavelength A, depends
on an applied RF frequency.'> By sweeping the RF frequency, the detector records the spectrum of the source
filtered at A,. This is similar to the function of an optical spectrum analyser.

. data scquisition card
Fig 2: Grating interrogation system, here for one grating in transverse mode

The PC generates a square wave with DC offset, toggling a voltage-controlled oscillator (VCO) between two RF
frequencies. The VCO then toggles the AOTF between two optical wavelengths.'> When the modulating square
wave is mixed with the resulting AC signal from the detector, an error signal occurs if the mean AOTF
wavelength does not correspond to A,. The sign of the error signal indicates whether the mean wavelength is
above or below A,. If the error signal is integrated and added to the square wave, the mean AOTF wavelength
is locked to A,. The mean RF frequency measured by the counter hence indicates the Bragg wavelength.

2.2 Modes of Operation

The circuit can operate in two different modes:

1)  scan mode: Here the feedback circuitry is not connected and hence the PC can scan the AOTF. From the
detector signal the PC can identify the VCO voltage corresponding to the grating wavelength A,.

2) lock-in mode: In this mode the PC sets the DC offset of the VCO voltage so that the AOTF wavelength is
within the grating bandwidth. Then the feedback is closed and the circuit locks onto the Bragg wavelength
and tracks it.
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The system has scope for interrogating multiple gratings at different wavelengths either (i) simultancously using
the scan mode or (ii) in time-division multiplexing using the lock-in mode. The AOTF can also be driven by the
VCOs of multiple feedback circuits in lock-in mode to track multiple gratings simultaneously.

The VCO and the frequency counter have been built and tested in scan mode with a quartz filter simulating the
optical system. The software interface for the scan mode has also been developed. Computed results based on
earlier measurements'! predict a scale factor of -98 Hz/ue'.

3 LONG GAUGE-LENGTH SENSOR

Our precision Optical Time Domain Reflectometry (OTDR) system uses hardware already developed for
telecommunications. Such an OTDR should form a suitable basis for practical sensing systems. It allows
monitoring the range of reflective markers on optical fibres,'*'S which can then be related to strain or
temperature of the fibre.'®

To enhance the range resolution of conventional OTDR, our system design uses a modified electrically coherent
receivert (correlator) to detect the reflections from the fibre. Conventional OTDR uses a delay in the correlator
that can only be switched in discrete steps, usually in multiples of the pulse duration. We report a method to
improve range resolution by sweeping the delay continuously. We use the triangular shape of the autocorrelation
function of a pulse to measure the time delay (ie optical range) of reflected signals more accurately.

3.1 Theoretical Background

An OTDR measures the reflections from an optical fibre'” to characterise attenuation and reflective points along
the fibre. Optical pulses of length T and periodicity T (Fig 3, top left) are sent into the fibre and the returned
power is monitored by an electrically coherent receiver. The output of the coherent receiver is the crosscorre-
lation between transmitted pulse and received signal.

If there is only one reflective point on the fibre, g
the output of the coherent receiver is approximate- i - s —L__I—L_'—
ly proportional to the autocorrelation of the trans- b (
mitted signal (Fig 3, bottom left). If two or more t T
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lation (Fig 3, bottom right) between the two upper ,
traces in Fig 3. /

For many sensor systems a typical OTDR spatial A

resolution of 1-10 m is sufficient, but there is a bl 1 day
need to monitor each reflective point with a range | Fig 3: Correlation of a pulse of length t with itself (autocorrelation)
accuracy below 1 mm. Qur current technique and with two similar pulses (crosscorrelation)

overcomes this problem by interrogating the slopes

of the correlation peak." These slopes (bottom of Fig 3) are normally not used because receivers of OTDRs
do not allow a continuous sweep of the output.
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3.2 OTDR Interrogation Scheme
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peaks) need to be acquired.

The PC varies the delay over the region of interest whilst acquiring the receiver output. Then it detects the peaks
in the receiver output and curve-fits a line to either slope of every received peak. The delay corresponding to the
intercept of each peak’s slopes is the time delay from that particular reflection.

Use of a pseudo-random binary sequence (PRBS) improves the duty cycle and hence the signal-to-noise ratio."’
Because the technique relies solely on delay information, it is insensitive to both amplitude and polarisation
changes. In other approaches, amplitude changes may either limit the performance® or force the use of more
complex coding schemes.”* Radial strain in the optical fibre could cause problems in polarisation-based
systems.

This system shows, as an example, a reflection from 12.183685 m range with a standard deviation of 440 pm
(= 36 ppm) within a measurement time of 1 sec.

4 CONCLUSIONS

We have presented a general concept combining point sensors with long-gauge length sensors to produce a
versatile monitoring system for short and long gauge lengths.

As a short gauge-length sensor we discussed a Bragg grating interrogation scheme capable of addressing multiple
gratings. The long gauge-length sensor described is a precision OTDR system monitoring the difference between
multiple reflective points.

Both schemes have demonstrated high accuracy and should be suitable for monitoring both static and dynamic
signals. Each approach uses a simple optical setup and sophisticated signal processing to achieve a robust sensor
system.
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