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INTRODUCTION

WHY FIBRE LASERS?

* Small modal volume gives high gain & low threshold
* Longitudinal geometry gives minimal thermal effects
* Strong mode selection

* Low cost (potentially)

D.N. Payne, Proc. ACOFT’91, Sydney, Austrilia, pp. 201.
E. Snitzer, Proc. OFC’92, USA, pp. 417.

WHY LEAD SILICATE FIBRES?

Potential: high emission and absorption cross-sections,

and long fluorescent lifetime

Egorova et al. Opt. Spectr. 23 (1967) 148.
Weber et al. J. Non-cryst. Solids 74 (1985) 167.

Problem in past bulk lasers:

Thermal effects (principally)
St. John et al. J. Opt. Soc. Amer. B9 (1992) 610.

Okay for fibre lasers:

No thermal effect yet to be observed in single-mode fibres



2.  FABRICATION OF Nd*-DOPED LEAD SILICATE GLASSES
AND FIBRES

GLASSES:

For the ease of fibre production:

Commercial Schott (flint) lead-silicate optical glasses are used
F7 (core) : F2 (clad)

Compositional system: SiO, - PbO - K,O

Doping Nd,0; powder into F7:
(1) High viscous state stirring
(2) shortening time for low viscous stir

Stirrer: silica rod
FIBRES: Rod-in-tube Method

Thermally and optically matched pair:
F7: N, 1.625, Tg (Ts) 429°C (580°C), o« 98x107 /K
F2: N, 1.620, Tg (Ts) 432°C (593°C), o« 82x107 /K

Conventional soft glass drawing tower

Hot zone: 20 x 20 mm (diameter and length)

Fibre preform size: 10 x 700 mm

Pulling temp.: 700°C, Feed rate: 0.7 mm/min, pulling rate: 3m/min.
Typical size: Core 3-10 um, clad 125 pm

Fibre length: 50 to 100 meters
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SPECTROSCOPY
Absorption

Lightly doped fibres: conventional cut-back method

Heavily doped fibres: a proposed insertion technique
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Laser performance related parameters:

Background loss at the lasing wavelength:
1 to 1.5 dB/m

Absorption cross-section at the peak (807 nm) of the pump (‘L,, —
F,,, transition) band:

o, = 4.3 x 10% cm’

Pumping efficiency (p):

I o

- *p
p hvp

a

where I is the pump intensity and hv, is the pump photon.
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FLUORESCENCE

Nd* in lead silicate host shows narrower transition-Linewidth:
FWHW of 17 nm at 1.06 um measured
for Nd,O, concentration below 3 wt%

WHY ?

Cause 1. Strong covalent Pb-O bond induce a weak ligand field
around the Rare-earth (i.e. small Stark-splitting)

Cause 2. High ionicity induced between Nd** and ligand O* by
Pb?* brings on a high degree of Nd** site regularity

Peak emission cross-section (g,) for Nd** 1.06 pm ‘F,, - ‘I,

transition:

Ad
= A(«F:a/z"4 11/2)
8ncn2Al,,,

Op
where A, the peak wavelength, A) , the effective emission linewidth
given by:

Adgee = [T(R)/Z(2,)dA
and A(‘F,, — ‘I,,5,) is the radiative decay rate obtained by:
A(YFy 4T,y ,,) = BUF, 4T, 0) /7
where 3 is the branching ratio and 7 is the radiative lifetime.
o: 24x10* cm’ in lead-silicate F7

p
=~ 1.5 x 10 cm? in alkali-silicate

1-1.3 x 10 em? in silica
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LIFETIMES

Upper laser level Lifetime affects:
(1) population inversion, and (2) lasing threshold
Nd* “F,,, level lifetime in lead-silicate F7:
500 psec for Nd,O; concentration < 3wt.%
Thus:
Higher doping level attainable in this host
Only short length fibre required

Background loss at the lasing wavelength minimized

Quenching mechanism:

E(*F,,,~*T,,;) +(~1040cm™) = E(*I,,,~*I,; ;)

A non-resonant phonon-assisted quenching process
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FIBRE LASER CHARACTERISTICS

Properties of the fibre used:
0.5 wt.% Nd,0, doped, Numerical Aperture 0.13,
Fibre diameter 125 pm, Second mode cutoff 0.85 ym.
Pump source: Sharp LTO17MDO laser diode at 807nm
Fibre laser configuration: Fabry-perot
Optimum output mirror: 50 %
Typical fibre length: 14.5 cm
Laser threshold: 2.15 mW (when 50% coupler used)
Slope efficiency: 59.2 % (when 50% coupler used)

The best Nd** laser efficiency in oxide glasses to our knowledge

WHY SO GOOD ?

Small-signal gain coefficient:

g = 06°'AN < N, p-ot

 N,: the ground state population, AN: the population inversion,
p: the pumping efficiency, o: emission cross-section,

7: the radiative lifetime.

The o°7 value:
1.2 x 10 msec.cm®* for lead-silicate F7

0.6 x 10° msec.cm®> for silica

Pumping efficiency p is also better in lead silicate F7 because of a

factor of two improvement in absorption cross-section at the pump.



Doped fibre
Filter
Pump laser

X 5
\ / IR

High reflectivity mirrors

Detector



Output power (mW)

2.0

15

1 | 1 1 1 1 1 |

20 40 60 80
Reflectivity of output mirror (%)

100



Output Power (mW)

d i 1 A L n 1

2 4 6 8 10

Absorbed Pump Power (mW)

12



CONCLUSIONS

A method for doping RE into commercial optical glass presented

A technique for measuring heavily doped fibres introduced

The role of Pb* on spectral properties investigated

A highly efficient Nd** fibre laser demonstrated



