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ABSTRACT
A passive WDM channel equaliser using a twin-core EDFA is studied in detail. Gain
saturation limits the range of input signal powers from ~-20dBm to ~0dBm. Channel
equalisation rates as high as 0.35dB/dB are predicted.
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I. Introduction: Erbium-doped fibre amplifiers (EDFAs) show high gain and low noise over a wide
signal bandwidth. Depending on the host glass and pump wavelength, the 3dB gain bandwidth is
typically 3-8nm and can increased to about 30nm with suitable gain-shaping techniques [1]). Even in
the latter case, the gain profile is not flat, exhibiting a small ripple of about + 1dB. In wavelength-
division-multiplexed (WDM) systems, involving several amplifiers, such gain variations can result
in large differences in signal levels and, when combined with wavelength-dependent losses in the
transmission line, will eventually limit the number of EDFAs that can be cascaded. To overcome
these problems, various channel equalisation schemes have been proposed which provide active power
compensation for the individual WDM channels [2,3].

Recently, a passive, all-optical, channel equalising amplifier has been demonstrated using an
erbium-doped twin-core fibre which is able to provide equalisation up to 0.11dB per dB of channel
amplitude difference [4]. Obviously, a perfect channel-equalising amplifier would provide 1dB/dB
of channel amplitude difference. In this communication, an in-depth theoretical investigation of the
device is presented. The channel-equalising performance is affected by the twin-core fibre length and
numerical aperture, as well as the input power of the various channels. We consider those factors
in detail and propose optimum design criteria. The limitations imposed by the saturation of the device
are also discussed. It is shown that the twin-core EDFA can provide channel equalisation as high as
0.35dB/dB for two channels.

I1. Device description - Principle of operation: The gain spectrum of erbium ions in silica-based
optical fibres is predominantly homogeneously broadened and, consequently, the spectrum saturates
relatively uniformly even when only one WDM input channel increases significantly in comparison
with the other channels. Therefore, conventional EDFAs provide no significant passive channel
compensation. Alternatively, if the erbium ions were predominantly inhomogeneously broadened, the
gain saturation of wavelengths separated by more than the homogeneous linewidth would be
independent and the EDFA would provide some degree of passive channel equalisation, ie the
channels would emerge from the amplifier having less amplitude variation than at the input.

We have previously described a method [4] which enhances the effective inhomogeneous
broadening of the EDFA (regardless of its original degree of inherent inhomogeneous broadening)
and results in a degree of passive WDM channel equalisation. The method uses a twin-core EDFA
in which both cores are Er**-doped in order to spatially separate the amplifying regions available for
different wavelength channels.

All channels and pump are initially launched into one of the fibre cores. The signals are
periodically coupled between the two doped cores, with period roughly proportional to X3 [5]. Thus,
the cross-coupling for individual channels moves periodically in- and out-of-phase as the signals
propagate along the twin-core fibre and, therefore, the signals decouple spatially to some degree. As
a consequence, one channel (A;) accesses and predominantly saturates a subset of erbium ions, while
another channel (\,) predominantly saturates the complimentary subset of ions. In this way, the gain
of the two signal wavelengths is spatially (longitudinally) decoupled and in the case when one signal
increases with respect to the other, its gain can preferentially saturate resulting in spectral
equalisation. The technique can be regarded as a form of spatial hole-burning which is well known
to occur in laser resonators and which provides differential gain to the various oscillating



wavelengths.

III. Theoretical model: The performance of the twin-core amplifier was investigated by means of
a theoretical model in order to establish the effect on the degree of channel equalisation of various
parameters, such as input channel power and channel separation, fibre length and NA. The model
uses the coupled-mode theory formulation to describe the evolution and cross-coupling of the signal
and pump power in a twin core fibre with distributed gain/loss [6]. A standard EDFA model [7] is
used to analyse the distributed gain/loss and its variation along each fibre core. The model takes no
account of any coupling non-linearities caused by anomalous dispersion as the various E* transitions
are pumped/saturated. This assumption is fully justified, since the pump is at 980nm and the signals
around 1530nm (the first gain-spectrum peak) where the non-linear refractive index changes are
‘approximately zero [8). The EDFA model accounts for the homogeneous broadening only and,
therefore, any degree of equalisation is entirely due to spatial hole-burning. The various other
parameters are pertinent to GeO,-Al,05-Si0, and GeO,-SiO, fibres [9]. The dopant concentration
was taken to be 10% m'3, The forward and backward ASE has been neglected since the signal levels
we considered were relatively high.

IV. Theoretical & Experimental Results: The degree of channel equalisation [gain difference
(G#2-G#1)] was calculated and compared with experimental results for the case of two copropagating
WDM channels #1 and #2. The wavelength and input power of channel#1 was kept constant while
channel#2 was varied. The degree of channel equalisation of the passive channel-equalising amplifier
was also compared with the ideal in which the gain difference (in dB) is equal and opposite, ie is
linearly dependent with slope= -1, to the input channel power difference (in dB).
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FIGURE 1: Channel equalisation against channel power imbalance for fibre lengths of
10m, 20m and 30m and pump power of 30mW, 30mW and 300mW, respectively. The
input power of channel#1 is -5dBm. The fibre NA is 0.27 and the core separation is
4.5um. Dots correspond to experimental data obtained with 10m of twin core fibre [4].

Figure 1 shows the effect of the twin-core fibre length on the channel equalisation which is
given by the slope of the curve. The wavelength and input power of channel#1 is 1532nm and
-5dBm, respectively, while the wavelength of channel#2 is 1531nm and its input power varies between
-20dBm and +5dBm. The NA and radius of each core is 0.27 and 1.35um, respectively, and the
core separation is 4.5um. The input pump power is 30mW (10m, 20m) and 300mW (30m). The
dots correspond to experimental data [4] obtained with a 10m long twin-core GeO,-Al,05-SiO, fibre
having parameters similar to the ones used in the computation and show very good agreement. It is
also clear that, under the same pumping conditions, increasing the fibre length from 10m to 20m,
results in an quasi-proportional increase of the degree in channel equalisation. However, by
increasing the length and pump power still further, the effect is enhanced dramatically, resulting in



a channel equalisation of ~0.35dB per dB of input signal level difference.

In Figure 2, the effect of the fibre NA on the degree of channel equalisation is investigated.
The fibre parameters refer to GeO,-SiO, host [9]. The wavelength and input power of channel#1 is
1530nm and -5dBm, respectively. The wavelength of channel#2 is 1531nm and its input power varies
between -15dBm and +5dBm. The input pump power is 30mW, the fibre length is 10m and the core
separation 4.5um. For very low NAs, the gain equalisation is negligible, since the degree of gain
saturation is very small. However, at higher fibre NAs the gain saturation is stronger and this results
in an increased degree of channel equalisation (~0.15dB/dB).

The dependence of channel equalisation on the saturation of the device is also evident for each
fibre NA as the input power of channel#2 is increased. In all cases, the gain equalisation curves
exhibit two distinct slopes. For input signal level differences less than ~-5dB, the slope is close to
zero and the corresponding rate of equalisation is negligible (~0.06dB/dB). However, for signal
differences greater than ~-5dB, the curve slope increases, corresponding to a substantial (threefold)
increase of the equalisation (~0.15dB/dB).
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FIGURE 2: Channel equalisation against channel power imbalance for fibre NAs of 0.1
to 0.4. The fibre length is 10m, the pump power is 30mW and the channel#1 input
power is -5dBm. The channel separation is 1nm and the core separation 4.5um.

The effect of gain saturation on the degree of channel equalisation was further investigated
by also varying the input power of channel#1. Here, the fibre characteristics are fixed so that the
spatial (longitudinal) wavelength decoupling is constant and any difference in the response is entirely
due to the different degrees of saturation. The results are summarised in Figure 3 for which the fibre
NA is 0.3 and the core separation 9.5um. The rest of the parameters are the same as in Figure 2.
At channel#1 input powers less than ~-30dBm, the device provides no equalisation owing to
negligible gain saturation. The gain remains constant to ~ 12.4dB for both signals over the entire
dynamic range. Increasing the input power of channel#1 from -20dBm to OdBm results in a
considerable increase in channel equalisation (~0.15dB/dB) as the gain saturation increases
progressively. An interesting effect occurs if the input power of channel#1 is further increased to
+5dBm. Although the channel equalisation further improves in the case where channel#2 is smaller
than channel#1, the response of the device degrades considerably as channel#2 exceeds channel#1.
This is due to the heavy saturation of the gain medium. In this case, gain#1 and gain#2 drop to
~4.5dB-1.8dB and 6dB-1dB, respectively. It is evident from the results that the twin-core EDFA
provides substantial channel equalisation for input channel powers in the range of -20dBm to 0dBm.
However, the operation of the device can be extended into lower input channel powers by combining
it with an optical pre-amplifier to increase the power and drive the channel-equalising amplifier well
into saturation [4].

V. Discussion - Conclusions: An iphomogeneously broadened amplifying medium can provide
some degree of passive channel equalisation. However, in a conventional EDFA the channel spacing



should be greater than the homogeneous linewidth, which varies between ~4nm and ~ 12nm [10).
However, with the twin-core EDFA, the channel equalisation relies on the longitudinal dephasing and
separation of the two signal wavelengths and relies on the spatial hole-burning effect which can be
achieved even in totally homogeneously-broadened media and for very small channel separation. We
have found that for a given fibre geometry, the signal decoupling and channel equalisation increases
rapidly with the channel separation and oscillates slightly around a constant value which depends
mainly on the geometry. For a fibre NA of 0.27, length of 10m and core separation of 4.5um, the
maximum decoupling and, hence, channel equalisation is achieved for channel separation of 5.8GHz
(~0.15dB/dB) and oscillates around ~0.13dB/dB for channel spacings up to 10nm.
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FIGURE 3: Channel equalisation against channel power imbalance for channel#1 input
powers of -30dBm to +5dBm. The fibre length and NA are 10m and 0.3, respectively,
pump power is 30mW and the channel separation 1nm. The core separation is 9.5um.

In conclusion, the performance of an twin-core fibre passive channel-equalising amplifier has
been studied in detail. The channel equalisation depends predominantly on the fibre geometry and
saturation characteristics. A value as high as 0.35dB of differential (compensating) gain per dB of
channel amplitude imbalance can be achieved, which will substantially correct and minimise the build
up of channel amplitude errors in WDM systems.
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