

OPERATION OF YTTERBIUM-DOPED SILICA FIBRE LASERS AT SPECIFIC WAVELENGTHS USING FIBRE GRATINGS

H.M. Pask, J.L. Archambault, R. J. Carman, D.C. Hanna,
C.J. Mackechnie, L. Reekie, J.E. Townsend and A.C. Tropper
Optoelectronics Research Centre,
University of Southampton,
Highfield, Southampton, SO9 5NH, United Kingdom.

Yb-doped fibre lasers have been previously reported as versatile, efficient laser sources in the $1 \mu\text{m}$ spectral region. The very broad Stark splitting of Yb energy levels in silica results in wide pump (830 - 1064 nm) and emission (975 - 1160 nm) bands [1,2]. The emission band includes a number of wavelengths of interest for specific uses; examples include 1020 nm, the optimum pump wavelength for the Pr:ZBLAN amplifier and upconversion laser [3], and 1128 nm, which has been utilised to pump a Tm:ZBLAN upconversion laser [2].

An attractive approach to achieve efficient laser operation at any wavelength within the emission band is to incorporate fibre gratings into the laser cavity [4]. In this work we report the performance of Yb-doped silica lasers operating at 1020 nm and 1128 nm. Gratings having reflectivities up to 99% at 1020 nm and 1128 nm were fabricated in silica fibre using a technique described elsewhere [5]. These gratings were fusion-spliced to silica fibre doped with 700 ppm of Yb. Laser performance has been compared to predictions from a small-signal computer model which predicts laser thresholds, and the amount of selectivity required to suppress oscillation at free-running wavelengths.

Laser action occurred at 1020 nm when pumped at 840 nm using a Titanium Sapphire laser. For a 10 m length of fibre, gratings having reflectivities of 95% and 30% at 1020 nm were spliced to the input and output ends of the Yb:SiO₂ respectively to suppress the free-running wavelength of 1050 nm. The output consisted of 260 mW at 1020 nm, and 50 mW of unabsorbed pump light for 660 mW launched pump. Angle-polishing of the fibre input end was found to be beneficial in suppressing the free-running wavelength. The relative output at the two wavelengths could be varied by changing the length of doped fibre.

Laser action has also been demonstrated at 1128 nm in Yb:SiO₂, pumped at 1064 nm by a pulsed NdYAG laser (5ms pulse duration). Due to very weak absorption of the pump, a fibre length of ~ 100 m was used, and the laser cavity consisted of a mirror (99% reflectivity at 1128 nm) butted to the input end of the doped fibre and a grating (50% reflectivity at 1128 nm) spliced at the output end. This configuration suppressed the free-running wavelength (1115 nm) and constrained laser oscillation to 1128 nm. 1.4 W peak power was achieved for an incident power of 10.6 W, and this output was then employed to obtain upconversion laser action at 480 nm from a Tm-doped ZBLAN fibre laser.

REFERENCES

1. Hanna D.C., Percival R.M., Perry I.R., Smart R.G., Suni P.J. and Tropper A.C., *J. Mod. Opt.*, 37(4), 517-525, 1990.
2. Mackechnie C.J., Barnes W.L., Hanna D.C. and Townsend J.E., *Electron. Lett.*, 29(1), 52-53, 1993.
3. Smart R.G., Hanna D.C., Tropper A.C., Davet S.T., Carter S.F. and Szebesta D., *Electron. Lett.*, 27(14), 1307-1309, 1991.
4. Allain J.Y., Bayon J.F., Monerie M., Bernage P. and Niay P., *Electron. Lett.*, 29(3), 309-310, 1993.
5. Archambault J.L., Reekie L. and Russell P.St.J., *Electron. Lett.*, 29(1), 28-29, 1993.