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Fig 1. Schematic of the fibre grating pressure sensor
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Optical Fibre Sensor for High Pressure Measurement
Using an in-Fibre Grating

M. G. Xu. L. Reekie, Y. T. Chow and J. P. Dakin
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Fig.l Schematic of In-Fibre Grating Pressure Sensor
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A NOVEL HOLLOW-GLASS MICROSPHERE SENSOR FOR
MONITORING HIGH HYDROSTATIC PRESSURE

M. G. Xu and J. P. Dakin
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Intensity, I, received at optical spectrum m:m_v\mon is:
im +> +24,A oOmA w&u

Constants A represent field strengths, A is 2m<o_m=m:~ d=sphere
internal diameter. Formula assumes Fabry-Perot has low reflectivity
(ie. effectively only one reflection at each surfaces)

Spherical Fabry-Perot resonator:

A =24

m
Maxima in reflected spectrum occur when:

FSR =—-
2d



Reflected spectrum from microsphere with LED excitation
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Wavelength shift of maxima due to application of pressure:

A od
AA = AP
d OP
Diameter change due to pressure-induced strain in hollow sphere:
| Pd?(1- |
Ad = — d“(1-v)
4Yt

v=Poisson ratio, Y=Young’s modulus, t=sphere wall thickness.

Wavelength shift of maxima due to pressure and temperature:

ax=-2dUV) Ap
4Yt

Ap-rOd \T

d oT




Wavelength (nm)

15353

1552¢

1551¢

1550

1549

1548

1547

1546
0

Pressure response of the sensor

® Measurements

—— Linear fit

A (nm) = - 0.933 P (MPa) + 1552.44

1 2 3 4 5 6
Pressure (MPa)




Thermal response of the sensor (ie. Temperature cross-sensitivity)
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ADVANTAGES OF HOLLOW MICROSPHERE SENSOR
-Small size, compatible with fibre
-Hermetically sealed, low cost sensing element
-Wavelength-domain interrogation
-More compliant than solid-fibre sensors ( about 100 times greater
fractional shift in wavelength for a given pressure)
-Approx same temperature coefficient as solid fibre type of sensor
-Less temperature compensation necessary

-Expected to have a rapid response to pressure transients
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SCHEMATIC OF SMART SKINS CONCEPT FOR
MONITORING OUTER SURFACE STRUCTURES
OF AEROSPACE AND OTHER VEHICLES.
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FIBRES IN LAMINATES FOR SMART SKNS.

SCHEMATIC OF OPTICAL FIBRE IN
A LAMINATED STRUCTURE.

FIBRE BROKEN BY A CRACK IN THE LAMINATE.
(NOTE: IT IS NOT NORMALLY NECESSARY TO HAVE
SUCH A SEVERE FAULT, AND EXTERNALLY-INVISIBLE
DEFECTS IN THE LAMINATE MAY GIVE RISE TO FIBRE
BREAKAGE AT THE WEAKENED POINT
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Fig. 19.11 Schematic diagram of an optical fiber system showing the location of
impact damage i a composite structure.

THIS DRAWING IS REPRODUCED WITH THANKS FROM

"OPTICAL FIBER SENSORS™ PUBLISHED BY ARTECH HOUSE.
EDITORS:J P DAKIN, B CULSHAW.

DIAGRAM TAKEN FROM CHAPTER BY A J A BRUINSMA, T M J JONGELING




PROBLEMS WITH CRACK DETECTION IN CONCRETE BEAMS

(Fibre has less adhesion to concrete and can pull out)
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PHOTOREFRACTIVE FIBRE GRATING

Effect of temperature, T

A\, =peak grating reflection wavelength
o=thermooptic coefficient
£ =thermal expansion coefficient

Effect of axial strain, €

Alg 1 - P)
= - €
A. €

g

P,=effective photoelastic coefficient

Reference: WW. Morey, G. Meltz, W.H. Glenn Proc SPIE Vol. 1169 (1989) 98
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EDGE-EMITTING
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‘ > GRATINGS ON SINGLE FIBRE LENGTH

DETECTOR
INTEGRATED OPTIC MODULATOR
WITH VARIABLE MACH-ZEHNDER
INTERFEROMETER
SIGNAL -
PROCESSOR
I l l I l | peme- 1 (TIME-DIVISION-DEMULTIPEXER
S PLUS DECODING OF MODULATION
TIME } DUE TO 1-O MODULATOR)

TIME-DIVISION MULTIPLEXED SYSTEM FOR THE INTERROGATION’ OF GRATING WAVELENGTH
L ——
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ACTIVE SMART STRUCTURE CONCEPT

SCHEMATIC OF CONNECTED-STRUT STRUCTURE WITH ACTIVE
ACTUATOR (A) AND SENSOR (S) ELEMENTS IN CERTAIN STRUTS

ADVANTAGES:-

¢ Structure can adapt its shape in response to measured deformations
e Structure can be made effectively totally rigid

e Structure can be programmed to change to desired new shape.
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ADVANTAGES OF OPTICAL FIBRE SENSORS FOR STRUCTURAL MONITORING

e SILICA IS AN EXCELLENT ELASTIC MATERIAL, LARGELY FREE FROM CREEP AND FATIGUE
PROBLEMS

e TOTAL IMMUNITY TO ELECTROMAGNETIC INTERFERENCE AND LIGHTNING STIKE, etc.

® EXCELLENT CORROSION RESISTANCE, AS SILICA IS RESISTANT TO MOST CHEMICALS

¢ BEING NON-METALLIC, THE SENSOR CANNOT PROMOTE ELECTROLYTIC CORROSION

e A THIN FIBRE SENSOR HAS A SMALLER INFLUENCE ON MECHANICAL STRUCTURES

e A FIBRE SENSOR CAN BE PRODUCED AS A UNIFORM CYLINDER, FOR BOTH SENSING
AND TELEMETRY, AVOIDING STRESS CONCENTRATION POINTS AND FRAGILE CONNECTIONS.





