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Abstract

It is shown that single-step phase-matched parametric conversion, seeded with small
amounts of second harmonic (SH), can yield nonlinear pump phase-shifts, and that the

output state is extremely sensitive to the phase of the injected SH.
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Recently, the use of a cascaded second order nonlinearity has been proposed for all-optical
switching [1]. Standard coupled-wave theory of second-harmonic generation (SHG) shows
that the pump wave undergoes a nonlinear phase shift when the SHG process is phase-
mismatched. This has led to the proposal of a number of novel switching devices, including
a push-pull Mach-Zehnder switch [2|. Looking at the origins of linear and nonlinear
polarization, a common feature, if the refractive index is to change, is that a frequency
component in the driving fields should appear in the resulting nonlinear polarization. In
the case of the optical Kerr effect, PP) = x(3){w;w,w1, —w1}E, E‘,,1 E‘:1 . In a similar way,
phase changes also appear in the pump wave during degenerate parametric frequency down-
conversion: PP) = x(z){w; 2w, —w}Ey, E*, but none occur during frequency doubling, i.e.,
x(z){Zw;w,w}Eu E, contains no term of type P‘Sz). Added to the well-known fact that
both up- and down—conversion can occur under phase-matched conditions (the dominant
process depending on the relative phase, a balance occurring at the nonlinear eigen-mode
point[3]), it does not seem necessary to demand phase mis-matching to obtain a nonlinear

phase change in the pump light.

In the cascaded process, the SH is generated and gradually gets out of phase owing to
differences in phase velocity between pump and SH. This means (since the direction of
conversion depends on the relative phase) that down—conversion begins to appear increas-

ingly as the phase mis—match increases, which yields, according to the argument above, a
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Figure 1 Normalised pump, SH and pump phase evolution with distance for exact
phase-matching and 1% injected SH signal at k@ L = 37 for (a) ¥ = 0 and (b)
¥ = 0.497. In the absence of the 1% SH seed, the pump phase change is zero. Note
that, as expected, the rate of nonlinear phase change with distance is greatest when
the down-conversion process is dominant.
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nonlinear phase change in the pump wave. This also suggests that pump phase changes
may be induced at exact phase-matching if both pump and SH are launched together with
an appropriate relative phase. To illustrate this result, I draw upon the distributed feed-
forward results in a recent theoretical analysis of reconstruction in nonlinear holograms

[3]. Of particular interest are the conserved quantities:
I = 4@ /P, P, cosy — 9(P, — P,) (1)

and P, + P, = 1, which represents power conservation, P, and P, being the normalised
powers of the pump and SH. ¥ describes dephasing, % is the nonlinear coupling constant
(proportional to the square root of the incident power) and ¢ = ¢, — 2¢, is the relative
phase between SH and pump. From Equation (14) in [3], and using (1), the evolution of

the pump phase ¢, with distance z is easily shown to be described by:

9, 9
dz 2 4P,(z)’

(2)

The only varying quantity on the right hand side of this equation is the pump power P,
and T is set by the boundary conditions. If the incoming SH is zero (as in [1]) then inexact
phase matching is essential (|#| > 0) for a nonlinear change in pump phase. If it is not,
then even when ¥ = 0 it is possible to obtain a nonlinear phase change in the pump wave

provided the relative phase ¢ is not equal to 7/2.

Some solutions of (2) for exact phase-matching and only 1% injected SH are given in
Figure 1. Next, keeping the SH seed power at 1% (for # = 0) while its relative phase
is varied (Figure 2), the effects are dramatic: the output slews rapidly between 100%
pump (at 0.267) and 100% SH (at 0.57). This result may have applications in nonlinear
mode-locking of lasers and in clarifying the growth of self-organised x(2) gratings in optical

fibres.
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Figure 2 The pump and SH powers and pump phase at the output plane AL =
37 /2 of a SH generator, plotted as a function of the relative phase ¢ at the input
surface £ = O for an injected SH power of 1% of the pump. The output swings from
zero to complete SH conversion between ¢ = 0.267 and 0.57.
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