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During the last three years the potential of
mode-locked rare-earth-doped fiber lasers
for ultrashort pulse generation has been ex-
plored and both passive and active mode-
locking schemes have been demonstrated.
Systems which use nonlinear polarization
evolution in conjunction with an intracavity
polarizer to provide the passive mode-lock-
ing mechanism have so far been demon-
strated in ring (self-starting) and
Fabry-Perot” (self-sustaining) configura-
tions, the latter of which employed an in-
tracavity bulk polarizer and modulator.
Following the work published by Davey et
al.” we report a self-starting Fabry-Perot sys-
tem capable of producing 1.6ps bandwidth-
limited soliton pulses. We also show that the
soliton pulsewidth in any of these configura-
tions is ultimately limited by the dispersion-
length product of the svstem, hence by
careful choice of the fiber dispersion and fiber
length the system should also be able to op-
erate in the femtosecond regime.” The re-
placement of the two mirrors with fiber
reflection gratings would make this configu-
ration a truly all-fiber device.

The experimental configuration is de-
picted in Fig. 1. The system comprised 40 m
of Lo-Bi spun fiber (NA = 0.12, & = 1250 nm,
D=17ps/nm/km, Apgge = 124 pm? and beat
length > 10 m), 3 m of Er’"-doped fiber (dop-
ant concentration = 800 ppm, NA = 0.15, A, =
960 nm), a fiber polarizer (FP), and a polariza-
tion controller (PC) situated just before the
fiber polarizer. Pumping was provided by a
Ti:Sapphire laser operating at 980 nm. A
980/1550 nm fiber wavelength division mul-
tiplexer (WDM) was used to couple the pump
light into the Er-doped fiber and the laser
cavity was formed by butting the end of port
#2 of the WDM against a 1550 nm 99% reflect-
ing mirror (Ml) and the fiber polarizer end
against an 85% reflecting output mirror (M2)-

With the PC adjusted so as to minimize
the intracavity loss, the laser had a CW
threshold of 25 mW launched pump power.
The onset of mode-locked operation was
marked by an abrupt change in the optical
spectrum and output power at a particular
value of the launched pump power {450
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JWB1 Fig 1. Experimental configuration.
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pump power required for self-starting mode-
locked operation in Fig-8 and ring configura-
tions, but is in general agreement with the
predictions of Zehetner et al 4 Once initiated,
however, mode-locked operation in our laser
could be sustained to powers within a few
mW of the CW threshold (25 mW).

Soliton and square pulse regimes were
observed as was also reported in Fig-8 and
ring lasers. In the soliton regime, autocorrela-
tion measurements showed a full width at
half maximum of 2.5 ps, corresponding to a
pulse duration of 1.6 ps. The spectral width
was 1.5 nm, yielding a time-bandwidth prod-
uct of 0.32, as expected for transform limited
sech’ pulses (see Fig. 2).

The two sidebands on either side of the
central frequency in the optical spectrum of
Fig. 2 isa well-known feature of soliton lasers.
By making the assumption that for stable
soliton propagation the first sideband should
not fall inside the main soliton spectrum, i.e.
Avg 2 Avpwpwm (or, equivalently, L/Z;<3.5,a
result borne out by computer simulations) we
obtain the following limiting expression for
the soliton pulsewidth t*:
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where Avy is the frequency separation of the
first sideband from the central frequency of
the soliton, Avpwp is the full width at half
maximum of the soliton spectrum, L is the
length period of the perturbation (L = L for
Fig-8 and ring lasers, L. = 2L for Fabry-Perot),
Z, is the soliton period, A is the wavelength,
c the speed of light, and D the fiber dispersion
parameter. As Fig. 3 shows, the above expres-
sion is in good agreement with experimental
results that have so far been obtained in Fig-8,
ring and Fabry-Perot lasers by various re-
search groups.
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JWB1 Fig 2. Optical spectrum and autocorre-
lation trace of pulses in the soliton regime.
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JWB1 Fig 3. Soliton pulsewidth versus dis-
persion-length product (log scale); solid line,
Eq. (1); boxes, experimental points from Fig-
ure-8 lasers; diamonds, experimental points
from ring lasers; triangle, this work.




