Rare-Earth-Doped Glass Fibre Lasers and Amplifiers

David N Payne

Optoelectronics Research Centre The University of Southampton United Kingdom

Rare-Earth Dopants in Glass

Glass host affects:

- Shape of absorption and emission bands
- Line strengths
- Non-radiative multi-phonon decay rate
- Onset of concentration quenching

Glasses Investigated

Phosphates

Efficient Yb³⁺/Er³⁺ energy transfer $1.3\mu m \text{ Nd}^{3+}$ laser

Fluorophosphates

 $1.3\mu \text{m Nd}^{3+}$ amplifier

Lead germanates

Tm³⁺ host (intermediate phonon-energy)

Tellurohalides

Medium phonon-energy

Chalcogenides)Fluorides)

Low phonon-energy

Lead flints

Special fibre structures

TANDEM AND DIRECT (CLADDING) PUMPING OF HIGH-POWER Er³⁺ FIBRE LASERS AND AMPLIFIERS

DIODE ARRAY		INTERMEDIATE LASER	OUTPUT POWER AT ~ 1540nm
EDFAs 2 x 1W 3W 1W	807nm 807nm 962nm	Nd:YAG (x2) Nd:FIBRE DIRECT	145mW 130mW 55mW
Er ³⁺ Lasers 3W 1W	807nm 962nm	Nd:FIBRE DIRECT	270mW 96mW

GLASSES FOR FIBRE LASERS

DEVICE	DESIRED GLASS PROPERTY	POSSIBILITIES
Long A	Low phonon-energy	Fluorides/Chalco's
Upconvertors	Low phonon-energy + blue transmission	Fluorides
Transfer pumped	Tailored phonon energy	Oxides
Doubling/OPO's	High X ⁽²⁾	Poled glass

GLASSES FOR FIBRE/PLANAR DEVICES

DEVICE	DESIRED GLASS PROPERTY	POSSIBILITIES
Fibre switches	High X ⁽³⁾	Chalco's/Tellurites
Bragg gratings	Large photorefractivity	Germanate/Chalco's
UV-written planar waveguides	Large photorefractivity	Germanate/Chalco's
Modulators	High X ⁽²⁾ , X ⁽³⁾ Acousto-optic merit	Chalco's/Poled SiO ₂ Chalco's/Tellurites
Planar Amplifiers/ Lasers	High R.E. solubility	Fluorophosphate Processing?

GLASSES FOR FIBRE AMPLIFIERS

DEVICE	DESIRED GLASS PROPERTY	POSSIBILITIES
1.3µm Pr ³⁺	Low phonon-energy	Fluorides/Chalco's
1.3µm Nd ³⁺	Large branching ratio Shift to shorter λ	? Fluoro-berylate/ phosphate

CONCLUSIONS

- Telecommunications amplifiers well established
- Fibre lasers making an impact as single-frequency, widely-tunable, quiet sources
- Ultra-short-pulse soliton generators readily available
- Novel glass hosts important for the development of new laser and amplifier transition, fibre devices