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ABSTRACT

Laboratory prototypes of a novel pressure sensor have been produced using a hollow glass
microsphere, bonded, in an on-axis position, to the end of a monomode optical fibre. The sphere
surfaces form a low finesse Fabry-Perot interferometer. The construction of the probe is simple
in concept, yet the sensing element is intrinsically hermetically sealed. Experimental trials, under
the influence of hydraulic pressure have been carried out and show a good match with predicted
behaviour. The observed shift in wavelength with pressure was -0.93 nm/MPa, two orders of
magnitude higher than that we have measured with a in-fibre-grating sensor under similar
conditions. The ratio of the pressure sensitivity to the temperature sensitivity for our microsphere
sensor was more than two orders of magnitude better than the in-fibre-grating type, so therefore
less compensation is necessary to correct for temperature changes. This new form of sensing
probe has potential for many high-pressure sensing applications.

1. INTRODUCTION

Fabry-Perot (F-P) sensors have been reported for the measurement of strain, temperature,
pressure, vibration and acoustic waves!'?. Several methods of creating extrinsic fibre-optic F-P
interferometers have been described3-5. Fairly sophisticated separation methods are required in
the probe head to maintain the mirror spacing, yet allow the sensor to be sealed against ingress
of foreign material. In our method a hollow glass microsphere is bonded, in an on-axis position,
to the end of a monomode optical fibre. A low finesse F-P cavity is then formed between the
sphere surfaces. The main advantages of our new arrangement is that the probe is simple,
miniature and hermetically sealed. As with earlier F-P sensors>~5, the probe is conveniently
addressed by monitoring its reflection spectrum. The wavelength of each peak reflection and the
span between peaks are both dependent on the physical spacing between the reflective surfaces.

2. SENSOR CONSTRUCTION

A schematic of the sensor construction is shown in Fig.l. Light froma 1550 am f ibre-pigtailed
ELED is coupled into the sensor head via a directional fibre coupler. The sensing probe was
tested within a cavity in a high pressure vessel, hydraulic pressure being applied to compress the
sphere. The reflectance of the probe was monitored using a commercial optical spectrum analyser
(ANDO AQ-6310B), located to receive light from a return port of the coupler. Reflections from
the unused output port of the coupler were suppressed using index-matching oil. The hydraulic
pressure system consisted of a hydraulic pump, a commercial precision pressure transmitter
(Druck PDCR 960) and a purpose-designed pressure vessel capable of being used up to 70 MPa.



3. THEORY OF THE F-P SENSOR

The observed F-P interference occurs between light reflected from the spherical surfaces of the
glass bubble sensing element. Only the first reflections from each inner surface of the sphere
were significant in our sensor as, firstly, the reflection was low at each surface and, secondly, the
outer surfaces of the sphere were matched by bonding cement. Asa result, the interference can
be considered to be essentially two-wave interference only. The observed intensity, I, at the
optical spectrum analyser is then a result of coherent superposition of light arising from
reflections at each inner surface of the hollow glass sphere. Iy is given by:

I,=k[A? +A] ¢2AlA1cos(2T“2d)] )

where k is a constant, A, and A, represent the electric field amplitudes of the interfering light
from the two surfaces of the sphere, X is the wavelength of the source, and d is the spacing within
the F-P cavity (ie. d is the inner diameter of the sphere). The free spectral range (FSR) of the
F-P resonant cavity is given by:

FSR-% )

Where ¢ is the free-space velocity of the light. Maxima in the reflectance spectrum occur when:

1=2d (3)
m

where m is an integer. By differentiating equation (3), and substituting for m, the change in
wavelength of peak reflection, A}, resulting from a change in pressure, AP, is given by:
A 3d 4)

Al=——AP
dsp

The effect of isotropic pressure on a perfect hollow sphere would normally be to cause only a
compressive load on the material and reduce its diameter. A perfect sphere should therefore be
capable of withstanding enormous pressure. In practice, however, an imperfect sphere, or one
which is bonded to an external body on one side, as ours was, will suffer asymmetrical
compression and will hence collapse at high pressure. We shall assume, for the present, in our
analysis, that the sphere is perfect and that the pressure is isotropically applied. The induced

. .

strain, Ad, in a hollow sphere, exposed to a i1sotropic external pressure, P, can be expressed ash:

2

ad=-PLA) (5)
4Y1t

where t is the wall thickness of the sphere, and Y and v are the Young’s modulus and Poisson’s

ratio of the material of the sphere, respectively. From eqn. (4) and (5), we obtain the response of

the sensor in terms of the pressure-induced fringe shift:



A;.-}M AP (6)
4yt

This relationship shows that, as expected, the sensitivity to pressure can be increased by choosing
a larger diameter sphere, provided the wall thickness remains the same. The most suitable
wavelength to choose for monitoring of the fringe-shift will depend on the spectral response of
the source. The expected cross-sensitivity to a change in temperature, AT, is given by:

Ar=A23d ,r 7)

daT

4. RESULTS AND DISCUSSION

Figure 2 shows the reflected spectrum, observed in the wavelength domain, with a sensing probe
fitted with a 120 ym diameter sphere of approximately 0.8 um wall thickness. This spectrum shows
a fringe spacing of 10 nm, as expected from eqn. (2). The maximum intensity contrast of the
fringes between peaks and minima of the reflected spectrum was 3.8 dB. The pressure response
of the sensor is shown in Fig. 3. This shows the variation of the wavelength of a particular
reflection maximum (chosen to be 1552.47 nm at zero pressure) with pressure. The mechanical
compliance of a hollow sphere is much higher than that of a solid body, such as a fibre or an in-
fibre grating, so the fractional shift in wavelength with pressure is naturally much higher. From
eqn.(6), we would have expected a pressure response of -0.83 nm/MPa, whereas our measured
gradient was -0.93 nm/MPa. Uncertainties in the wall thickness of the sphere and our lack of
knowledge of the precise value for Young's modulus for the material of our sphere are the most
likely reason for the discrepancy.

The hollow-glass spheres used in our experiment are made from C-glass (soda-lime-borosilicate).
We were unfortunately unable to obtain precise information on the material used, so we have
assumed a typical Young's modulus value of 7x10'® N/m? and a Poisson’s ratio value of 0.2,
typical for C-glass, in order to perform our sensitivity calculation. As we mentioned earlier, a
perfect sphere should withstand enormous isotropic pressure. Our sphere is bonded on one side
to the optical fibre, so we expected it to implode eventually. In our first trials we deliberately
tested the sensor up to the implosion point. The observed implosion pressure for spheres in our
experiment was typically above 7 MPa. This should be adequate for many applications. For higher
pressure measurement, a smaller or thicker-walled sphere could be used. A particular advantage
of this new sensor is that the wavelength shift observed in our experiment was two orders of
magnitude higher than that we have recently measured with a in-fibre-grating pressure sensor’.
Of course, the pressure sensitivity could be increased further by choosing a larger sphere of the
same wall thickness, but this would be likely to lead to a lower implosion limit.

Measurements of the cross-sensitivity to temperature of our sensing probe, shown in Fig.4,
indicate that the errors due to temperature changes are relatively small. The measured
temperature coefficient of wavelength variation was 0.0077 nm/°C. In particular, the ratio of the
responses of the glass bubble to pressure and temperature were over two orders of magnitude
better than we observed for the in-f ibre-grating sensor.



5. CONCLUSIONS
A novel fibre optic sensor for monitoring hydrostatic pressure has been constructed. The sensor
head is extremely small, the construction is simple and the sensing element has intrinsic hermetic
sealing. A fringe displacement of 5.8 nm at 6.3 MPa pressure was observed. The sensitivity is two

orders of magnitude higher than we have measured with a in-fibre-grating pressure sensor, and
the relative effects of cross-sensitivity to temperature are much less.
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Signal Beturns from_Backscatter Systems jo Qutical Fibre
{Return signal variation with time, for energy E. launched into the measurement fibra)

Cooventionsl QTRB System:-

rd
P(f) - Pl2) - 05.E.S.a,(2). exp(-[ a(2)a2]
[}

whaere (P(t) is the varation af return signal with time, P(2) is the eq [ with
2 {zwv.t., where v is the velocity of light in tibrel. $ is the fraction of scattered light which is
coupled into backward-guided modes in the tibre, a,(z) is the scattering loss coefficient of the
fibre. ofz) is the total attenuation coefficient of the tibre. The factor of 0.5 is inciuded 1o sliow
for the 3dB loss for return light in the dwectional coupler.
Raman QTDR Syatem:-

rJ

[PUD]ys = [P ey = E. S. 0, ai2) . oxp]-[ «(2)d2}
(]

g
[P(O), = {P@)), = E. S.n, a(2) . op|-[ a(z)az!)
]
Ratio, A(D, = n, 00, = (A13,)* . exp(-hevikT)

whete n is the quantum efficiency of the Aaman process in terms of the ratio of Raman scattered

P 10 d p his Plank’s c isthe y of light in vacuo, k s the
g g, A is the gth of the Raman light and v is the frequency shift from the
i light 9 The 83 and s cosrespond 10 anti-Stokes and Stokes

Raman hght, respectively
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ATTENUATION IN THE FIBRE WILL GENURALLY PREVENT OPERATION OVER VERY
LONG LENGTHS.

SPECIAL FLUORESCENT FIBRE IS REQUIRED.
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FIGURE 9 . 'C' SCAN INVESTIGATION - OPTICAL FIBRES IN GLASS PANEL

SOUTHAMPTON UNIVERSITY / EUROPEAN SPACE AGENCY PROGRAMME

SURFACE-MOUNTED FIBRE OPTIC SENSORS FOR COMPOSITE MATERIALS

{i) To develop a muitiplexed system to sense strain and temperature
on the surface of composite space antennse

(i) To derive surtace deformations either from measurements of in-plane
strain/temperature or from independen’t optical measurements

#ﬁ_

OPTICAL FIBER SENSORS
JOHN DAKIN & BRIAN CULSHAW

ARTEC HOUSE =
ISBN 0~89006-317-6
L ISBN 0-89006-376-1
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