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Unidirectional and hence single fre-
quency operation of a ring laser is gener-
ally achieved using an intracavity Faraday
isolator. An alternative technique, dem-
onstrated recently for Nd:YAG,' dye,” and
Ti:sapphire ring lasers,’ makes use of the
acousto-optic (AO) effect. This technique
offers significant advantages over the
Faraday isolator approach, particularly for
miniature solid-state lasers,”™ since only
one extra component is required. Also,
the technique does not rely on polariza-
tion discrimination and is therefore well
suited for use in lasers containing bire-
fringent elements, for example, laser
media and frequency doublers. Additio-
nally, an AO device offers the possibility
of Q-switching the laser output to obtain
higher peak powers. To the best of our
knowledge, an adequate explanation for
the non-reciprocal behavior of a traveling-
wave AO Q-switch has not yet been
reported. A knowledge of the mecha-
nism is nevertheless important if better
optimized devices yielding higher loss-
differences are to be made.

In this paper we offer an explanation
for the non-reciprocal behavior of a trav-
eling-wave AO Q-switch and provide
experimental evidence to support it. Our
explanation relies on the fact that when
light is reflected from a moving surface,
the angles of incidence and reflection are
no longer identical. This situation occurs
in a traveling-wave AO Q-switch. Laser
radiation incident on the Q-switch is
reflected from moving refractive-index
variations caused by the acoustic waves
traveling through the medium. When the
device is tilted so that all the reflected
contributions are in phase, the Bragg con-
dition is satisfied and the amount of
reflected light is at a maximum. A conse-
quence of the traveling grating, however,
is that the Bragg condition is now satis-
fied at different angles of incidence for
the counterpropagating beams, and as a
resuit the two beams generally experience
different diffraction losses. The differ-
ence A@ in the angles of incidence at the
Bragg condition, is given (in air) by A8 =
2n'v,/c, where v, is the velocity of sound
in the Q-switch material and n is its

.refractive index. In our case the Q-switch

was fabricated from lead molybdate, for
which the angular difference is calculated

to be 0.0076°. Although at first sight this
angle appears to be very small, it proves
to be large enough to cause counter-
propagating beams to experience signifi-
cantly different diffraction losses.
Indeed, under certain circumstances the
loss-difference achievable can be >10% of
the actual diffraction loss. The ratio of
the loss-difference to the diffraction loss
depends on the Q-switch design, its orien-
tation, and the laser beam dimensions.

To provide experimental proof of the
proposed mechanism, measurements of
the loss-difference in a diode-pumped
Nd:YAG ring laser and measurements of
the angular difference in a standing-wave
resonator have been made. In both cases
good agreement is found between mea-
sured and predicted values, confirming
the validity of the model.

One important feature of the model is
that it suggests that the requirements for
efficient unidirectional operation and
Q-switched operation are not necessarily
the same. This has implications for the
optimum Q-switch design and choice of
AO material. Now that a quantitative
understanding of the nonreciprocal
behavior of traveling-wave AO Q-
switches is available, optimized design of
AO Q-switches can be made to meet the
requirements for both enforcement of uni-
directional operation and Q-switching.
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