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1. Introduction

Coupled wave theory is commonly used in numerical simulations of reflection from nonlinear grating struc-
tures. By contrast, the complementary photonic Bloch wave (PBW) approach has rarely been adopted,
perhaps the only example being recent work on gap solitons®'2. Bloch wave theory®4 offers an alternative
physical intuitive picture that encourages one to think in terms of field microstructure, leading to a range
of simple explanations for the behaviour of light in linear gratings. In this paper the dispersion relation and
field microstructure of nonlinear Bloch waves are found, and used to clarify the physical mechanisms that
lead to regions of bistability, instability and oscillation for incidence of a monochromatic plane wave on a

nonlinear grating half-space.

2. General nonlinear dispersion relation
The nonlinear Bloch waves are the grating’s normal modes. In the two-wave approximation they are modelled

by a pair of superimposed plane waves of constant amplitude:
1 ) . .
E(z,t) = —2-(Vf exp{—7k; -1} + Vyexp{—sks - T}) exp(jwt) + c.c. (1)

whose k-vectors are related by Floquet’s theorem k; = ky, + K where |K| = 2x/A is the grating vector and
A its period. V;, and V; are the field amplitudes and f and b are forward and backward labels. This pair of

waves propagates through the grating with a fixed group velocity or decay rate. Putting (1) into Maxwell’s

equation, assuming a linear grating described by x1 = xi,l) +X£rt) cos(K z), xs,l,) > 0, and making standard

approximations, it is straightforward to show that the field amplitudes obey:
—6, + A(lelz + lVblz) K+ AV;V! Vf 0

K+ AV[,V; & + A(’Vflz + |Vb[2) Vs 0
where & = xg)ko/‘ing, and the nonlinear dephasing parameter A is

A = [3x®wns,/8(1+ X)) . (3)

where S, is the incident Poynting vector. §; and §, are the corrections to the mean linear wavevector &,
needed to yield k; and ks, i.e.,

kle = (ko + 6n)2'

Solutions of (2) are easily found algebraically for a given boundary condition, yielding up to three different
(67, 6, Vy/V) sets and hence three different nonlinear Bloch waves.

For a purely distributed feed-back (DFB) structure (Figure 1), ks and k; are anti-parallel, and we write

v =6 = (6 — 9) o (4)
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Figure 1: Boundary condition at DFB half-space.

where ¢ = 2k, — K = 2n,(w —wp)/c m 4mn,(Ap — A)/A% and Ap is the vacuum Bragg wavelength. The
parameter v is the perturbation to k, that appears in the vicinity of a Bragg condition, i.e., ky = k, + 7.

As written, the matrix equation (2) illustrates succinctly the various regions of behaviour. At A =0, the
standard linear dispersion relation is obtained, as illustrated in Figure 1 for Bloch waves with group velocities
pointing into the grating. Floquet’s theorem forces the field microstructure (created by interference) to
mimic the grating structure. Fast and slow PBW’s exist, for which the optical power is partially or fully
redistributed by interference into, respectively, the low and high refractive index regions of the grating. For
linear gratings, the ramifications of this picture are fully explored in a separate article?.

As the nonlinearity rises, the mean wavevectors in the grating are increased by A(|V;|? +|V;|?) (on-diagonal
matrix elements) and the effective grating strength by AV,V; (off-diagonal matrix elements). The fringe
microstructure of the Bloch wave, having the same periodicity as the grating, acts either to enhance or reduce
the grating strength. A fast PBW in a grating with a positive A will experience a gradual diminution in
grating strength, leading to modulational instability when the induced nonlinear grating cancels the linear
one at

k = —AVSV,. | ()

The siow PBW’s, on the other hand, will experience a nonlinear enhancement in grating strength as the
power is raised. Concurrently with these effects, the average refractive index of the material rises. The full
picture is thus of a complex interplay of Bragg condition dephasing and grating enhancement/depletion.

3. Dispersion diagrams
This behaviour may be summarised graphically on a k;—9 diagram, as depicted on Figure 2 for the special case

of plane-wave incidence on a DFB half-space (Figure 1). Under these circumstances the boundary condition
at z = 0 is very simple: V; = 1 (the normalised amplitude of the incident plane wave) and Vy = +/5
where 0 < n < 1 is the reflection efficiency. For each value of ¥, the matrix equation is then solved for
permitted values of v and V, and the results plotted on the ky~¢ diagram. A succession of different cases
is now explored: (a) In the absence of a grating, the solution is the straight line (v+8)/c=-A/c—9/2c
expected of a monochromatic plane wave travelling into the grating half-space. It is the sloping {=.--..) line
on the diagrams. (b) Introducing a linear grating, the usual stop-band opens up at the Bragg condition.
The branches with negative group velocities (3ky /39 < 0) are suppressed — they play no role in the grating
half-space. On its red-shifted branch, the k-vector is longer than predicted in (a), i.e., the PBW is a slow
one. The opposite is true on the blue-shifted branch. As mentioned above, this behaviour is the result of
the periodic PBW field microstructure; power is redistributed into low/high index regions. (c) Increasing
the optical nonlinearity or the input power level, two effects are seen: i) as expected from very simple
considerations, the Bragg condition shifts to lower frequencies owing to the nonlinear increase in the average
propagation constant; ii) the stop-band branches gradually develop distortions owing to the appearance
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of a nonlinear grating through interference of the backward and forward waves in the Bloch wave. These
distortions are most severe where the nonlinear grating is strongest, i.e., close to the band edges where the

fringe visibility is greatest.

4. Refractive indez profiles

The linear, nonlinear and nett refractive index profiles across the grating planes are plotted in Figure 2 for
ten different Bloch waves. In cases 1 and 3, the nett grating strength is zero, meaning that the forward and
backward waves are no longer bound together — this will cause modulational instability. In cases 1,3 and
5 the nonlinear grating strength actually ezceeds the linear, reversing the sign of its grating ripple: a fast
Bloch wave turns into a slow. In all these cases the Bloch waves are likely to be unstable since the nonlinear
grating equals or dominates over the linear.

On the slow stop-band side at intermediate levels of nonlinearity, parameter regimes exist where the nonlinear
PBW is “evanescent”, whereas the linear PBW is propagating. This occurs at ¥/2x = —2.5 for A/k = 1 in
Figure 2. The analysis here is not valid in these regions, since evanescence is not compatible with stability
for nonlinear waves, for the level of optical nonlinearity will fall off as the PBW amplitude decays; at some
point inside the DFB structure the PBW will start to propagate, causing light to leak through and violating
the evanescent condition. It is likely that instability and oscillation will occur in this range.

For high levels of nonlinearity, the stop-band ceases to exist, although the region of modulational instability
(approximately between points 3 and 5) widens. On the red-shifted stop-band branch, however, bistability
arises where two or more travelling-wave solutions exist, with high and low reflection states.

5, General discussion and conclusions

To observe the effects described here, the nonlinear index change must be comparable to the index modulation
depth of the linear grating. The two waves bound together by the grating forms an entity insensitive against
weak perturbations. Slight changes in refractive index (A/x < 1) will slow down or speed up the Bloch
wave without disturbing its field microstructure or group velocity dispersion. This occurs for example on the
edge of the blue-shifted stop-band, where the negative GVD of the linear Bloch waves is undisturbed by the
nonlinear index changes needed for gap soliton formation. A quite different situation occurs when A/x ~ 1,
for now the nonlinear index perturbation is comparable to the grating index modulation and the Bloch
wave entity is susceptible to gross distortions in its normal mode shape. This is reflected in the stop-band
distortions seen in Figure 2. An interesting aspect of this regime is that the optical path length does not
determine whether strong nonlinear effects are seen or not; they are caused by modal shape distortions and
not cumulative phase delays between co-propagating waves.

For a grating of modulation depth 107% at Ag = lum in an optical fibre with ny ~ 3 x 10™8 um?/Watt and
a core area of 1 um?, a power level of a few 100 Watts would result in the behaviour depicted in F iguré 2.
In order not to straddle the whole stop-band at once, the incident bandwidth would need to be of the order
of 1078 of the optical base frequency, i.e., some 0.3 GHz.

In conclusion, the nonlinear PBW approach leads to an easily solvable algebraic dispersion relation, a clear
field-microstructural explanation for PBW behaviour, and may be used to delineate regions of stability and
instability for incidence on a grating half-space.
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Figure 2. Stop-bands and refractive index profiles for several different cases. The slanting (-..-..) lines on
the stop-band diagrams are the solutions for a plane wave in an isotropic nonlinear medium. The loci of
forward travelling Bloch waves alone are included (the backward travelling waves do not appear in a half-
space). The refractive index profiles show the original grating (-.-.), the nonlinear index change (-..-..) and
the nett index profile (—). Cancellation of the linear grating occurs at points 1 and 3, where modulational
instability is expected. All the nonlinear distortions in the stop-band shape can be understood from these
index modulation patterns. The branches (terminating at 4 and 5, and 1 and 2) are algebraically asymptotic
to the dashed lines (y +¢/2) = —A - ¥/6.
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