RARE-EARTH-DOPED FIBRE LASERS AND AMPLIFIERS

R.I.Laming, D.J.Richardson, G.J.Cowle

Optoelectronics Research Centre, The University, Southampton, Tel: +44 703 592693 Fax: +44 703 593142

Rare-earth doped fibre lasers¹ and amplifiers² are attractive for use in fibre optic sensor and fibre optic communication systems since they can be both compact and efficient. With choice of rare-earth dopant the operating wavelength of fibre lasers can be selected in the range $0.55\mu\text{m}^3$ to $2.9\mu\text{m}^4$, whilst operation of optical amplifiers has been demonstrated around the wavelengths, 0.85^5 , 1.3^6 , 1.55^2 and $2.7^7\mu\text{m}$.

The flexibility offered by the fibre-host allows the design of new laser configurations. Exploiting these advantages fibre lasers have been developed which operate either cw or pulsed and either narrow band or broadband. The Er^{3+} -doped fibre laser, operating at $1.55\mu m$, is of particular interest for use in communication systems. Erbium lasers have been designed to operate single frequency with a linewidth of <10KHz⁸, with a continuous tuning range of 40nm and quantum efficiency >93%. Whilst with an alternative configuration erbium fibre lasers can be made to passively mode-lock, generating pulses as short as 320fs with a corresponding bandwidth of 9nm⁹.

The erbium doped fibre amplifier (EDFA) is of enormous interest to the communication industry due to its wavelength of operation, namely $1.55\mu m$. In this case the simplicity of the fibre host is a major advantage. This allows compatibility with the transmission fibre removing troublesome Fresnel reflections. In addition the EDFA offers the advantages of high gain, high efficiency¹⁰, low-noise¹¹ and potential multichannel operation with low crosstalk¹².

This paper will review the design and performance of both fibre lasers and amplifiers.

REFERENCES

- 1. R.J.Mears et al,
 "Neodymium-doped silica single-mode fibre lasers"
 Electronics Letters, 21, pp. 738-740, 1985.
- 2. R.J.Mears et al, "Low-noise erbium-doped fibre amplifier operating at 1.54μ m. Electronics Letters, Vol.23, pp.1026, 1987.
- 3. J.Y.Allain et al,
 "Room temperature CW timetable green upconversion holmium fibre laser",
 Electronics Letters, 26, pp. 261-262, 1990.

4. L. Wetenkamp,

"Efficient cw operation of a 2.9 µm Ho3+-doped fluorozirconate fibre laser pumped

Electronics Letters, 26, pp. 883-884, 1990.

5. T.J.Whitley et al,

"23dB gain up-conversion pumped doped fibre amplifier operating at 850nm", Electronics Letters, Vol.27, pp. 184. 1991.

6. Y, Ohishi et al,

"Pr³⁺ doped fluoride fibre amplifier operating at $1.31\mu m$,

Proc OFC'91, postdeadline paper PD2, 1991.

D.Ronarch'h et al, 7.

"35dB optical gain at $2.716\mu m$ in erbium doped ZBLAN fibre pumped at $0.642\mu m$ ", Electronics Letters, Vol.27, pp. 511, 1991.

8. C.J.Cowle et al,

> "Single-frequency travelling-wave erbium-doped fibre loop laser", Electronics Letters, Vol.27, pp. 229, 1991.

D.J.Richardson et al, 9.

> "Self-starting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch",

Electronics Letters, Vol.27, pp. 542, 1991.

10. R.S. Vodhanel et al,

> "Highly efficient 978nm diode-pumped erbium-doped fibre amplifier with 24dB gain", Electronics Letters, Vol.25, pp. 1386, 1989.

11. R.I.Laming et al,

> "Noise characteristics of erbium-doped fibre amplifier pumped at 980nm" IEEE Photonics Technology Letters, Vol.2, pp.418, 1990.

R.I.Laming et al, 12.

"Multichannel crosstalk and pump noise characterisation of an Er3+-doped fibre amplifier pumped at 980nm",

Electronics Letters, Vol.25, pp.455, 1989.