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Optical waveguides have assumed major importance, not only in
optoelectronic applications but also, quite recently, in a study of
fundamental physical properties of materials. The propagation charac-
teristics of linear optical waveguides, and to a lesser extent those of
waveguides curved in a single plane, are well understood. However,
optical waveguides having three-dimensional curvature, for example the
helical waveguide, have been proposed and fabricated and an analysis of
its properties is essential.

In this paper the scalar wave equations for a three-dimensionally
curved optical fibre are solved analytically and boundary conditions are
applied to the curved core—cladding interface. An asymptotic formula for
computing the propagation constant is proposed and the effects of
curvilinearity on the characterization of the bound modes are discussed.
By using the equivalent fictitious electromagnetic current method, the
far radiative field is established and expressions for the radiation losses
for various modes are derived.

1. INTRODUCTION

The curvilinear optical waveguide has become increasingly important in fibre
optics, sensors, integrated optics, low-birefringence, high-birefringence and many
other special optical fibres. The method of analysis is therefore important also.
Waveguides having curvatures lying in a single plane have been extensively
analysed. The prevailing treatment is to form the scalar wave equation (SWE) in
a two-dimensional toroidal coordinate system and it is then possible to obtain
approximate expressions for certain selected waveguide parameters, including
field deformation, propagation constant correction, radiation loss and bend loss.

However, some recent and important waveguides, for example optical fibres
with helical or spiral cores, have curvature in three dimensions. Although the two-
dimensional toroidal SWE may be comprehensively modified for the analysis of
fibres exhibiting linear birefringence, it is usually necessary to treat circular
birefringence, or polarization rotation, by adopting the Tang coordinate system
(Lewin et al. 1977; Fang et al. 19854, b; Tsao 1985; Tang 1970). The SWE in the
three-dimensional Tang coordinate system is mathematically more rigorous and
physically more realistic. True, the variables in the SWE are not separable in either
curvilinear coordinate system, but nevertheless it can be assumed that, under
certain strict conditions, the electromagnetic wave remains guided; the mode,
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however loosely defined, still exists; and its characteristics can be deduced.
Despite the non-separation of variables we may still ask whether the rigorous swe
can be solved to obtain more accurate field analyses and radiation studies.

The primary object of this paper is to seek such a solution for the case of single-
mode optical fibres. In particular, the paper begins by suggesting an analytic
solution for the Tang swi from which the details of the modal field deformation,
together with its effects upon boundary continuities and dispersion, may be
studied. To establish the far-field radiation, the so-called equivalent fictitious
electromagnetic current (EFc) method is adopted, and the power dissipated by
pure bend loss, and other radiations losses, is investigated.

These more rigorous results are compared with those obtained by earlier
methods and the practical situations in which they might be applicable are
discussed.

2. MODAL FIELD IN A THREE-DIMENSIONAL CURVED WAVEGUIDE

Consider a segment of the three-dimensional curved fibre O'-0" with a core
radius a and surrounded by a cladding (figure 1). For any fibre length s (or
propagation distance) the fibre centre O must possess normal n, and binormal b,
vectors that, together with the tangential vector s, form a trio that evolves down
the fibre (Serret—Frenet frame) (Brand 1947; Moon et al. 1965). The coordinate
system defined by this S.—F. frame is unfortunately oblique because the transverse
axes n, and b, rotate about the longitudinal axis s, at a rate of torsion 7. An
orthogonal coordinate system is possible only if the transverse axes ny and b; are
chosen such that they rotate at a rate of —7 against n, and b, while remaining
stationary with regard to s, (Tang’s frame) as illustrated in figure 2 (Lewin et al.
1977; Fang et al. 1985b; Tsao 1985; Tang 1970). This is the artificial Tang
coordinate system, which coexists with the S.-F. coordinates and for which the
metric coefficients b, = 1, h, =7, by = 1 —yrcos§, and 6 = ¢+ apply. Here (r, ¢)
and (r,6) are the usual polar coordinates in the S.-F. and Tang’s frames,
respectively ; ¥ = [—7ds, s is the fibre length, x is the curvature and R = 1/y is
the curvature radius that need not be a constant.

In this curved fibre the SWE may be expressed (Fang et al. 1985b; Tsao 1985;
Collin 1960) in equations (1.1) to (1.3).

{4,+ (k*n*— %) a*—p~*—2[%%0p cos G} e,
—(2p720/0¢p +0p~'sin O) e, + (2jfad cosB)e, =0, (1.1)
{4,+ (k*n*— f*) a*—p 2 —2f%a*dp cos b} e,
+(2p720/0p+8p 'sinf) e, — (2jfadsinB)e, =0, (1.2)
{4,+ (k*n?*— %) a*—2f%*dp cos O} e,
—(2jpad cos B) e, + (2jfadsinb) e, = 0, (1.3)
where 4, = 02/0p?+p~10/dp +p~2 0% /0P — &(cos §0/0p—p~' sin 60/0P) is the trans-

verse laplacian, p = r/a is the normalized radius, § = a/R is the ‘normalized’
curvature, k is the light wave number in free space, n is the refractive index (n,
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Fioure 1. A segment of fibre and its normal, binormal and tangential
vectors n,, b, and s, at any propagation length s.

Ficure 2. The Serret—Frenet coordinates (r,¢) or (£,%), and Tang’s torsionless coordinates
(r,6) or (x,y). Here the unit vectors n, and b, are attached to the S.—F. frame; and n, and
b, to the Tang frame.

for the core, n, for the cladding), § = g, +jf, is the propagation constant in which
B, is the phase factor and g, the loss factor. The quantities e,, e; and e, are
the radial, tangential and axial electric field components (F =eexpjfs). A
corresponding set of' equations can be written for the magnetic components
(H = hexpjps) in (1).

1-2
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Formidable as they may look at first glance, equations (1.1)—(1.3) are certainly
not intractable and several key features may be noted. First, the leading term with
the curling bracket in (1.1) and (1.2), and modifying e, and e, is the SWE often
quoted in two-dimensional toroidal coordinates. It is now followed by additional
terms representing couplings from the other two components. Secondly, this cross-
component coupling occurs in such a specific manner that there is symmetrical
coupling between the radial and tangential fields, both of which also couple to the
axial field. Thirdly, the laplacian is modified by a correction factor as a result of
the three-dimensional curvature and therefore comprises a further element of self-
coupling. These coupling components are important and should not be ignored.
This applies particularly to the cross-coupling components because ¢, and ¢, are
always dominant in comparison with e, (Snyder et al. 1983 ; Love et al. 1987; Calvo
etal. 1987; Fang et al. 1985a, b; Tsao 1985) so that, for instance, the last two terms
in (1.3) cannot be neglected without impairing the accuracy. To illustrate the
point, consider the following relations, equations (2.1) and (2.2), linking the axial
and transverse components in a curved fibre, which may be deduced from the
Maxwell equations in general curvilinear coordinates, as given in Appendix A.

e, = * (jBa/u’) (1 +24%%p cos 6/u) {Be,/2p + ko O,/ Bp O, (2.1)
ey = + (jfa/u’) [1+:28%%0p cos 6/u?)(Be,/p 3 — knoh,/BOp}.  (22)

Here 7, stands for the free space characteristic, or intrinsic impedance, v = U and
the plus sign is chosen in the core; and » = W and the minus sign is chosen in the
cladding, with U = a+/(k*n?— %) and W = a+/ (B2 —k*n?), which are often referred
to as the core and cladding phase parameters. Substitution of the transverse
laplacian and equations (2.1) and (2.2) into (1.3) yields a scalar wave equation
(swE) involving not only e, but also 4,. Physically, the term involving A, represents
the coupling effects of the magnetic field A, upon the electric field e,. This coupling
is negligible in most cases of practical interest and can be excluded from further
consideration (Tsao 1985). In comparison with the SWE of a straight waveguide,
the resultant swg derived here will, however, have additional terms from the
coupling between the transverse and axial components of the electrical field, which
turns out to be 8(1 F 28%?/u?){cos #0/0p—p~'sin §0/0¢}e,. This cross-component
coupling contrasts with the simplistic term for self-coupling (24%a%3p cos 6) e, when
cross-coupling is ignored. It can be shown (Tsao 1985) that the self-coupling effects
are indeed insignificant for numerous lower-order modes. So we obtain the
following for the swE:

{(aa; +p%p+pzaaz¢2iu) 6[( P )(coseéﬁ_smepggb)]} =08

Having established the proper sWE we are now at the position to solve it. The
major steps are outlined in Appendix B and the final results are:

e, = c*[1+ 8} F fa/u?) p cos 0] X (up)/X(u) f, @
hy = "[1+8GF Fa?/u) p cos 6] X (up) /X (u) g

Here f = cos v, ¢ = —sin v (X-polarization), f = sin vf, g = cos vl (Y-polarization)
and v is an integer; X(up) = J(Up) at the core, X(up) = K (Wp) at the cladding,
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Fioure 3. (a) The field in a bent fibre (dotted line) along the ‘normal’ axis is deformed in
comparison with that in a straight fibre (solid line), with the magnitude proportional to é.
Here n, and b, are unit vectors and O”"-O the curvature radius. (b} The field deformation
is also modified by cos@ (6 is the azimuthal angle). It is a maximum at 6 = 0,7, ‘and zero
at 0 = +in.

where J and K are Bessel and modified Bessel functions, and ¢® and c” are arbitrary

constants to be decided by boundary conditions. A detailed analysis of equation

(4), to examine all the features of the axial electromagnetic field would be tedious
! but the results can be summarized by saying that the curvilinearity ‘deforms’ the
} modal field and the amount of relative deformation is F (8%a?/u?) dp cos @ (because
| of f%a?/u® > 1), which is proportional to § and is a maximum when 6 = 0, & (figure
3a). As might be intuitively expected, the field in the core is weakened inside the
bend and strengthened outside ; although the trend is reversed at the cladding but
the field on the whole has been ‘shifted’. The function of the angular modifier
cos @ is to make this shift fall to zero as 6 moves towards the neutral plane of the
bend (6 = +ir, see figure 3b). The field deformation determines the curvilinear
fibre behaviour, and is bound to have some impact on the modal characterizations.

: 3. BOUNDARY CONTINUITY

The continuity condition governing the tangential electromagnetic field
‘ components at the core—cladding interface must hold even when the fibre axis
becomes curved (Stratton 1941). To apply these continuities we must handle the
| tangential, rather than the axial, field components because, for the reason
mentioned earlier, the latter are negligibly small. Failure to do so inevitably
results in fundamental errors in the discussion that follows.

Note that
Oes _ [uX(up)lf . o o[ X(up)
3 ° [ X(u) ]{1 o’ [upX'(up)H]cow}f’

Ohs _ n|uX(up)l| —o|_X(up)
% Ch[ X(u) ] {1 Fratu 2[upX'<up)“}c°s”} 9
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de, _ e[X(up)
% | X
oh, o [X(up)

2 = [ 300 (- pratp cos oy

The transverse field may now be formulated straight away by substitution of (5)
and (6) into (2) even without solving equations (1.1)—(1.2) (see table 1 for detail).
Having obtained e, and hy, it is simple to eliminate the coefficients c* and c¢*. This
gives rise to equation (7):

+ (U2 + f2a*U 45 cos 6+ W2 — f2a® W48 cos 0)
= (J'/UJ) (1 + ffa’U 28 cos 0) — f2a*U 4S8 cos 0
+(K'/WK)(1— f2a*W28 cos 0) + f2a* W48 cos 6. (7

] (1 —B%adpcosB/u?)g,
(6)

TaBLE 1. FIELD COMPONENTS AND BOUNDARY CONTINUITY CONDITIONS
ror HE/EH MoDES

(Boundary continuity condition is equation (8).)
e, UFAX,_,(up) +Batdp cos OX,(up)/u?}/uX, (u)
ey Ug (X, ,(up)+pB*a*Sp cos 0X (up)/u®}/uX (u)

e, Uf,X,(up){1 T fa*dp cos6/u?)/jfaX,(x)
h, —Ug, Y{X, (up)+ f*a*Sp cos 6X (up)/u?}/uX (u)
kg Uf, YiX, 1(up)+ B*a®dp cos 6X (up)/u}/uX (u)
h, —Ug, Y, X (up){1F f*a’dp cos 6/u’}/uX (u)

Here, J = J(U),K = K (W), the prime attached to J and K denoting the
derivative; the symbol ‘+’ may be ‘+’ or ‘—’ depending on which mode is
referred to. For HE, and EH, modes, the obvious relations J, =J,_,—vJ,/U;
K =-—K, ,—vK,/WandJ,=—J,,,+vJ,/U; K, = —K,_, +vK, /W may be adopted
to deduce (8):

(/,21/UJ,) (1 + f%a*U~*8 cos ) F fra*U~*d cos 6
=+ (K,,/WK,)(1—fa*W 28 cos 0) F fPa’*W*dcos 6. (8)

In (8) and throughout the remainder of the paper the argument of J, is always U
and of K, is always W. Equations (7) and (8) are the equivalent of the ordinary
eigenvalue equation (EVE). The term is not applied to them here because of the
inclusion of the explicit §-dependence, but equations (7) and (8) still depict exactly
how the propagation constant should be ‘readjusted’ so as to maintain the
deformed modal field. This is known as the phase factor correction problem
(Chang et al. 1976), which can now be solved, for the first time, for arbitrarily
curved core—cladding boundary continuities, provided (7) and (8) can be solved.

4. ASYMPTOTIC FORMULA FOR THE U-PARAMETER

Equations (8) are in transcendental form, for which the solutions can only be
sought numerically. An analytic solution would, of course, be attractive in
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allowing an easy assessment of a range of waveguide parameters, including phase
factor correction, linear birefringence, group velocity and dispersion. An
approximate expression can be obtained which is valid asymptotically. To this
end we shall now consider the cases V> 1, U<V, and W V. The symbol V
denotes the normalized frequency of a cylindrical optical fibre and is given by
V2= U+ W? = a’k*(ni—n?) = 24a%k’n?, where 4 = (n¥—nl)/2n® = (n,—n,)/n, is
the relative core/cladding index difference (in practice 4 ~ 0.01).

For sufficiently large values of V, the fibre becomes multimoded, the cut-off
condition V, for the second-order modes depending on the type of waveguide and
its configuration. Thus V, =24 in a straight optical fibre with a constant
refractive index in the core and a uniform cladding. However, if the fibre axis is
curved the radiation loss of the second-order modes near cut-off rises rapidly and
the effective cut-off value is greatly increased. Thus, in a typical fibre having a
helical core, of the kind considered in this paper, the effective V, is increased by
more than an order of magnitude. Thus in a curved fibre, single-mode operation
can be obtained at relatively large V values, but nevertheless the formulae derived
in the remainder of this section are approximate when V is small. This point is
discussed further in §9. With the above assumptions, some terms in (8) become
insignificant and it can therefore be rewritten as

(31/UJ)(1+pV?/U?) = £ [K, /WK, +pV? /U, (9)
where p = (6/24) cos 6. Differentiating both sides of (9), with the help of
WdW =VdvV-UdU,

o Jm)' (E)(&u)'_—l( Py
(15 )( 5) 2wk, =o't

J K., pV?\(. pW*
d vil _ vF¥1l —
an UJ, (iWK,i U‘)( m)’

results in the expression

v ~ [—(1 —_ fol )VKV¢2$2PVKV:F1

av "~ KK, ,) WK, UWK,
2V 2 L(( PV 2PVK 5, 41)‘”]
7 ]/[+U(1+ U2)+ WK, © 0P
or AU/AV ~ (U/V¥)[1 +pVE(1—2V/U?)/U?. (10)

Use has also been made of the following asymptotic approximations:
K, _,/ WK, ~K, ,/[WK,~1/V,
1-K? /KK, ,~1/V.

Equation (10) is the differentiation relation relating the U-parameter to the V-
value of a fibre and is, of course, helpful for estimating dispersive parameters, as
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will be made clear shortly. A more useful U-parameter formula is given by (11)
which is the integration of (10).

U= UMexp{——[l—sz(l—V/sz,,i)/Uf,,i]/V}. (11)

Here U, is the ith zero of J,, and v = 0,1,2,3 for HE,, TE,/TM,/HE,, EH, and
EH, modes, respectively. The virtue of this asymptotic U-parameter formula is
that with a given fibre design specified by its V-value, and a curved geometry, it
always enables one to work out the correction for U and therefore g,, which is very
convenient. We shall take dispersive parameters (group velocity and dispersion)
as examples to show how this is done.

5. GROUP VELOCITY AND DISPERSION OF A CURVED FIBRE

For a curved fibre, the group (normalized) velocities V;(Vy,), and the dispersion,
are dependent on the differential relation between U and V in (10). Thus, the
group velocities and the dispersion will immediately become defined as soon as
dU/dV = F(V) is known, as will be shown.

The group velocity is defined through 1/v, = df/dw. Here w is the light
circular frequency, dw = —wdA/A, A is the light wavelength in free space;
dg = (kn}dk+k*n,dn,—UdU/%)/p and dk/k = —dA/A. Putting all these together
we find

1 (1 - av -, ,Adn,

It is emphasized that every term in the above curling bracket has a clear
physical meaning. For example, the last term is zero in non-dispersive materials
and its contribution is known as the material dispersion. The first term, however,
is present even for non-dispersive materials because it is proportional to the
index squared. The second term is associated with the waveguide mechanism
that may be further clarified through dV/dk = V{1/k+dIn (n2—n2)/2dk}, or
dV/dA = V{—1/A+dIn (n3—n2)/2dA}. Thus, equation (12) may be written

1 _ (km UF(V)A][d(n,—ny)]_Adn
”_g-(ﬁco){1+[ Vn, ][ da 2] nld/{}’ (12.1)

where c, is the velocity of light in a vacuum and
F(V) = (U/V*)[1+pV*(1-2V/U?)/ U7,

which is close enough to unity for most cases of practical interest. This is the group
velocity formula from which the normalized group velocity vy, and the dispersion
d?f/dw® may be formulated; and the curvilinearity effects may be identified.
Thus;

L[k UFA %_%)_/\dnl}

ng_(ﬂ){H(an)(d,\ ) marnf (12.2)
d®8 (A \[Ad%n, (AUF dznl_d%)_(%_i’fz)w} (12.3)
dw? we,) | dA? vV a2 axe TR m ] )

It is readily seen from (12) that the curved geometry slightly modifies the
waveguide dispersion.
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6. LINEAR BIREFRINGENCE

The phase factor correction and the asymptotic U formula fail to predict the
phase difference between the two polarizations (linear birefringence). This is
because the phase factor corrections are accurate to the order of § while the
polarization phase difference correction is proportional to é2. Nevertheless, the
linear birefringence can be directly determined from the detailed field deformation,
as illustrated in Appendix C.

7. LOSSES AND EQUIVALENT FICTITIOUS CURRENTS (EFC)

A curvilinear waveguide is lossy and the modal propagation constant must
therefore be complex. Several factors may contribute to losses, including a finite
cladding, mode conversion from one segment to the next resulting from the
variations of curvature, and radiation (Gambling et al. 1976, 1977, 19784, b, 1979;
Merecatili 1969 ; Shevchenko 1971; Gloge 1972; Arnaud 1974 ; Miyagi et al. 1976).
This paper is concerned with the additional radiation effects caused by three-
dimensional curvature.

To investigate radiation conditions we need to establish the radiation field in a
curved fibre, which may be written

VxE=J, +jn,kH, (13.1)
VxH=J,—jY, kn'E. (13.2)

Here, Y, is the characteristic admittance of vacuum (1/7,), and J,, and J, are the
equivalent fictitious magnetic and electric currents (EFc) resulting from the
difference of the rot operator V in three-dimensional curved and straight
coordinates (C. Y. H. Tsao, unpublished work ; Collin 1960 ; Stratton 1941). These
currents do not exist in practice, but they are convenient for demonstrating and
computing the equivalent radiation field. Term —jY, k(r?—n2)E in (13.2) is
normally taken to be the source of ‘pure’ bend loss (Lewin 1974 ; Marcuse 1976a,
b; Marcuse 1972 ; Snyder et al. 1983 ; Love et al. 1987 ; Calvo et al. 1987). However,
equations (13.1) and (13.2) indicate that there are in addition the equivalent
currents, J,, and J,, which also radiate and add to the radiation loss.

Adopting the notations J,, = j expjfs and J, = j expjfs and neglecting the
insignificant axial component we may write

Jm=1p0pcost (rye,—Bye,), (14.1)
je = ]ﬂap 0080 (’o h¢_00 hr)’ (142)

where r; and 6, are unit radial and tangential vectors in the Tang’s coordinate ;
and e, h,, e, and hy are the relevant electromagnetic fields in the curved
waveguide. We are particularly keen on ‘visualizing’ these currents for a typical
X- or Y-polarization. With a little mathematical manipulation one can easily verify
equations (15) and (16).

X-polarization : o = —iB8pT cos By, (15.1)
Jze = ]P0pI'Y, cos Ox;; (15.2)
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Y-polarization: Jym = B0pI cos Oxy, (16.1)

Jye = 180pT’Y, cos Oy;. (16.2)

Here, ¥, = n, ¥, x, and y, are the normal and binormal vectors, and I' is taken as
Jy(Up}/J,(U) because the deformation correction is not essential in this problem.
Figure 4a, b qualitatively shows the orientations of the EFc distributions for the
two orthogonal polarizations, from which it can be seen that —j¥, k(n?—n})e and
the EFcs could be characterized as ‘monopole’ and ‘dipole’ currents (Kraus 1950).

(a)
R
o
(®)
—_————F
o

Ficure 4. Equivalent fictitious magnetic and electric currents j,, and j, (solid lines) together
with the electric e or magnetic h fields (dotted lines) (a) for x-polarization and (b) for
y-polarization.

8. RADIATION FROM ELECTROMAGNETIC EFCS

Radiation from EFcs are perfectly symmetric for both the X- and Y-
polarizations. The X-polarization will be taken as an example to illustrate the
radiation condition and consequent losses arising from electromagnetic Ercs. We
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.| POo®)

(b)

Fieure 5. (a) The spherical coordinates of a short segment of fibre (s',6’,¢') and ‘target’

coordinate (s, 6, ¢). (b) The EFcs j,, and j, are modelled by the dipole line current source with
a separation 2d.

ignore additional effects of the finite core cross section (see p. 480 of Snyder ef al.
1983) and model these EFcs as line dipoles carrying a total current of

4pa®

e S 1

om»

Iy = ff/)’&p]" cosOrdrdf =

with a dipole separation

2d=2ffr2dr/J.Frdrz§a.
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A segment of this line current source is placed in a spherical coordinate system so
that its binormal coincides with z,; and

L(P) = Imexp (RAY) 26(8(S — (R +d)]— 3’ — (R —d)] 8(6' —4m)/S) for ¢’ < &

or zero otherwise (figure 5a, b). The magnetic vector potential 4, is well known

as
J” P)dv, (17)

where G(P, P’) = exp [jkn,(S—8’ cosk)]/4nS is the Green function, cosx = cos
cos ' +sin @sin ¢’ cos (¢ —¢’); and dv’ = (8")%sin 6" dS" d6’ d¢’. (Here all spherical
‘source’ coordinates (8,6, ¢’), and ‘target’ coordinates (S, 6,¢) should not be
confused with the same symbols for the polar coordinates used in earlier sections.)
Note (Whittaker et al. 1935)

0

exp[—j6] = f exp [jg(—bn+6)] /() dg (18.1)

—ao

and the d-function property (Jones 1966)
o fix)] = 8()/|f (). (18.2)
By using these identities, the integration in (17) may be easily carried out to
give
= [exp (jkSn,)/4m8] 2, 2nl,, R exp [JAR($ —im)]
{(d/R)[1+2(g°—2")"*/3¢") ]} J(2).  (19)

Here ¢ = R and 2 = kn,Rsinf. The radiation field is associated with A,
the manner e, = Vx A4, and b, = —jkn2 Y, {4, +V(V - A4,)/k*nl}, from whlch the
Poynting vector, together with the power dissipation, may be computed. The
electric potential vector A, may be treated in much the same way so that the total
power loss may be calculated. The power attenuation coefficient 24; is then given
b

Y 20, = {Z(0/nA)* (6 +44W?/3V3* +-b} o (20)

and a = [(vV (W) V?)/(2+/ (aR) U?)] exp (— 44 W3/36V?). (21)

—
<
3
1

|

ratio of additional radiation
loss to pure bend loss
)
o
1

—
=}

0 01 02
8=a/R

FicURE 6. The ratio of the additional dipole radiation to the pure bend loss as a function of
3, for a typical single-mode fibre in which V=24, ¢ =5pum, and 4 = 5.5 x 1074,
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In the above equations a is the bend loss factor caused by the monopole radiation,
and b = 1, or 0.5, for the Y- or X-, polarizations, respectively. Existing theories
give the power attenuation coefficient as 2f; = ba. The remaining term in (20)
represents the additional dipole radiation predicted by the more comprehensive
theory described here. The magnitude of the effect is illustrated in figure 6, where
the ratio of the additional loss to the pure bend loss is plotted as a function of the
relative bend radius. It can be seen that, in practice, the additional radiation loss
is small compared with the pure bend loss, except when § > 4.

9. CONCLUDING REMARKS

The sWE has been solved analytically for a general three-dimensional curvilinear
Tang’s coordinate system. The method used in this paper is stringent and accurate
yet the complication usually associated with mathematical rigour seems bearable.
From this solution the electromagnetic waves are characterized, the boundary
continuities on a general curved core—cladding interface are applied, an asymptotic
formula for calculating the U-parameter is proposed ; and the curvilinearity effects
upon propagation constant, waveguide group velocity or dispersion, linear
birefringence, etc. are derived. In addition, the far-field radiation field has also
been investigated by the EFc method. It is found that in addition to the usual pure
bend loss there is an additional source of radiation which originates from the
peculiar form of the rot operator in the Tang’s coordinate. This added power loss
appears to be insignificant for most practical cases but it could become important
for waveguides when they are strongly curved.

The above analysis indicates that some refinements are necessary to the
conventional analyses of optical fibre properties. However, it is also important to
estimate the magnitude of the corresponding corrections in practical situations.
For example, single-mode fibres are operated with V < 2.4 whereas the analysis in
§4 assumes V = 1. However, the error in cases where V = 2.4 is small, and is only
8% even when V is as low (Snyder ef al. 1983) as 1.4.

For a typical helical fibre made in our laboratory, for which V = 2.4, a = 5 pm,
4 =55x%x10"* with a core offset of 80 pm and a pitch length of 0.5 mm, the
additional radiation loss predicted by the theory given above is a few per cent of
the normal bend loss. As with other types of bend loss the effect increases rapidly
at high rates of curvature so that for a core offset and a pitch length of 32 pm, and
0.2 mm, respectively the additional loss becomes comparable with the other bend
losses. Such a tight helix is unlikely to be of practical importance, however.

Similarly, a straight single-mode fibre with V' =2.4,a = 1.2 ym and 4 = 0.01 at
A = 0.633 um has a value of F(V) = U/V? = 0.28. If such a fibre is drawn as a helix
with an offset of 80 um and a pitch length of 1.5 mm then F(V) is changed to 0.24,
so that the dispersion given by equation (12) is not altered significantly.

It would appear, therefore, that in most cases of practical importance the
required corrections are small and existing analyses are sufficiently accurate.

This work has been done under the auspices of the Science and Engineering
Research Council and this support is sincerely acknowledged. The authors also

thank C. D. Hussey, P. St-J. Russell, M. C. Farries, P. Harris and P. Morkel for
many useful discussions.
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APPENDIX A. RELATION BETWEEN TRANSVERSE AND AXIAL FIELDS
IN A GENERAL CURVILINEAR COORDINATE

e, = J{fVie,—V (1/€y) ks, x V, b}/ (k*n — %),
hy = {B'Vih+/ (6/ ) sy x Vi e}/ (K*n® — %),

where ' = f(1+6p cos8); and p and ¢, are free space magnetic permeability and
electric permittivity, respectively.

APPENDIX B. SOLUTION OF EQUATION (3)

Letting e, = Y+ 0Y¢ and reorganizing terms of power ¢ of equation (3), we may
have
{02/0p2+pt0/0p+p 202 /0PE Lt YE = 0, (B1)

R . 2,6’2 0 ¢
{ap +pap+ 50 +u}Y1—{( )cos@(a—ﬁ—tanﬁm)}lf (B2)

Equation (B 1) is the straight fibre swi for which the solution is well known:
Ye = c?X (up)f,, with c® being a constant, f, = cosvf or sinv@ (an integer v),
and X, (up) being Bessel and modified Bessel functions. The solution of (B 2) is
Y = c!(3F fPa®/u,) pcos 6X (up)f,, of which the validity may be authenticated
by a straightforward substitution.

By combining these two terms the solutions summarized in equations (4) are
easily envisaged.

APPENDIX C. LINEAR BIREFRINGENCE CAUSED BY A
THREE-DIMENSIONAL CURVED GEOMETRY

It is now convenient to refer to the sSwe of a cartesian Tang’s coordinate and re-
express them in (C 1) and (C 2) (Fang et al. 1985):
(4, + k*n*— fB}) e, = — x*sin i cos e, [ h?
—{jf2x cosyr/h*+ x* cot osinyy /h® + y® cot o cos yr Z/h3te,, (C1)

(4, +k*n*—fr) e, = — x*siny cos yre,/h*
+{jA2xsinyy/h*—xEcotocosyy/h*+ P cot osinyyE/h%e, (C2)
where
B = B2/ B+ x* cos® Y /h* — jfx* cot o E/R3,
Br = B2/ + x*sin® Y /k? — jBx® cot o E/ R,
Z={fsiny+ncosy, cota =7/x, h=hy,
and (£, 7) are the S.—F. frame normal and binormal axes. The birefringence we are

looking for is defined as the propagation constant difference between two
orthogonal polarizations which may make sense only in Tang’s axes (x,y) (see
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figure 2). We note, however, that (z, y) may overlap with (£, 7) at § = imn (m = 4n,
m and n are integers), and this gives rise to (C 3) and (C 4).

(4, + k2n2— B2) €2 = — (2% /1 + x°r cot o sin 8/ k%) %, (C3)
(d,+Kn?— ) e = — (x* cot o /h*) ). (C4)

Here superscripts ‘z’ and ‘y’ denote polarization axes, and

e2 = e¥ = U{X,(up) + X}(up) f*a*dp cos O/u®}/uX,(u), (C5)
e* = UX, (up){1 — B2a*p cos 0/u*} cos 6/[jfaX, (u)], (C6)
et = UX, (up){1 — Ba*3p cos 0/u?) sin 6/ [ X, (v)] €7

(see table 1). To get (85— f%), the integral

0 (2
J [e¥(d,+ k*n® — B2) e — (A, + k*n® — £7) ef] d4
0

0

may be carried out, where d4 = a’pdpdf. In view of

Jf[eyA e;—ezd, ¢} —§ (¥ V,ez—ez Vi ef]ndl = (for p— o0),

and ffeje}’x* cotodd/h =0

J‘J—egeg‘xarcotasin 6dA/R =

we arrive at

- [[eyesaa = - [[zigxegeraa ©3)

It can be shown that
erieidfl = na®V?/W?, (C9)

1 1 JyJ, K, K
— 9 Y oz —_ 2 2 02 02
Jf 2jfx ey ez dA = 0.56°F% Uz{< i 4)——( “Jf—ll" f)} (C 10)

and, therefore, the birefringence takes the following form:

WE—U? UK, K, JoJy
Aﬂyz = (ﬂy_ﬂz) = 02562:3{(W)+V2( W2K2 W[;zJ‘z )} (C11)

The amount of birefringence predicted by (C 11) is insignificant in most practical
interest, in particular in presence of stress in bent fibres.
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