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Abstract: We show, both experimentally and
theoretically, that for single-mode fibres, the
(E)ESI and MFD methods are interrelated in a
self-consistent model with the theoretical cutoff
wavelength playing a pivotal role. Three indepén-
dent measurement approaches are examined:
mode-field diameter measurements, preform
profile measurements and fibre profile measure-
ments.

1 Introduction

Currently, there are two trends in characterising single-
mode fibres. They are:

(a) from refractive index profile measurements and

(b) from mode-field diameter (MFD) measurements.*

Between these two there exist equivalent step index (ESI)
methods. The two ESI parameters (equivalent core-radius
and equivalent numerical aperture) can be obtained from
either the refractive index profile or the MFD. Having
the ESI parameters and the MFD, we can predict most
of the essential characteristics of single-mode fibres, such
as bending loss, splice loss, microbending loss, waveguide
dispersion (and therefore total dispersion). However,
there is still confusion because there are several ESI defi-
nitions and measurement techniques, and several MFD
definitions and measurement techniques, which have
been proposed and none of them has been recognised as
a standard method for characterising single-mode fibres.

In this paper, we propose a theory, which links the
ESI parameters obtained from measurements of the ref-
ractive index profile to the same parameters derived from
measurements of the MFD. We can therefore, in prin-
ciple, unify both trends in characterising single-mode
fibres. Measurements of refractive index profile and
mode-field diameter are performed on MCVD fibres, to
provide experimental support for this theory.

1.1 Equivalent step index (ESI) techniques
In general, the refractive index profile of a single-mode
fibre deviates from the ideal step index as shown in Fig.

* Note: In addition to the term ‘mode field diameter MFD, we will use
the term ‘mode field radius’ w (i.e. MFD = 2w). w has also been referred
as ‘spot size’ in the literature.
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Fig. 1 Typical refractive index profile of a MCV D single-mode fibre
and a possible equivalent step index representation

a, is the equivalent core radius and h_ the equivalent index difference

actual refractive index profile

- ——— equivalent step-index profile

1. The problem is then to determine the propagation
characteristics of a single-mode fibre with an arbitrary
refractive index profile. Exact solutions are difficult to
implement, and good approximate methods are preferred.

It has been observed that the fields of all single-mode
fibres look similar. Since the analytical solutions for the
step-index fibre are already available and well known, it
is then very convenient to have a method which has as its
reference a step-index fibre. This gives rise to equivalent
step index methods.

The ESI fibre should have a second mode cutoff wave-
length, fundamental mode propagation constant, MFD,
and evanescent field as close as possible to the corre-
sponding parameters of the actual fibre. If this is the case,
the bending losses, microbending losses, and splice losses
can be predicted from the ESI fibre [1].

There exist, however, some problems including [2]:

{a) Several ESI techniques are available, each of which
gives different values for the two ESI parameters.

(b) The accuracy of the predicted propagation charac-
teristics is not always good, particularly with the predic-
tion of waveguide dispersion.

Referring to the latter problem, we have shown that
one particular ESI method can be readily enhanced from
the accurate prediction of waveguide dispersion [3], we
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call this the enhanced ESI, or (E)ESI model. This model
is based on the moments of the refractive index profile,
and it proposes the use of an additional third parameter
called the enhancement parameter. Unfortunately, per-
forming refractive index profile measurements on the
fibre is difficult and, occasionally, it is difficult to estimate
the core diameter (i.e. core-cladding boundary) from the
profile measurements. Because of these problems, the
alternative of characterising single-mode fibres from
MFD measurements has received a lot of attention.

1.2 Mode-field diameter measurement (MFD)
techniques

The MFD is the width of the fundamental mode, guided
by a single-mode fibre above its cutoff wavelength. MFD
is in principle a very useful parameter, as it allows the
prediction of splicing and microbending losses. In addi-
tion to that, the wavelength dependence of the MFD
allows us to predict the bending losses (through the ESI
parameters), and the waveguide dispersion.

However, quoting Reference 4, ‘MFD appears to be a
parameter in turmoil. Its importance is well understood,
but no consensus on its fundamental definition or mea-
surement method has yet emerged. Several measurement
techniques and definitions have been proposed during the
past few years. None of these methods is universally
accepted as a reference test method, nor is any method
more or less fundamentally correct than the others.’

The degree of consistency between the different tech-
niques is a direct result of the choice of a definition for
the MFD. The Gaussian approximation, as produced by
Marcuse {5, 6] and illustrated in Fig. 2, so widely used
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Fig. 2  Field amplitude distribution of the fundamental mode, in a step-
index single-mode fibre at V = 2.1, and its Gaussian approximation
MFD, is the Gaussian Mode-field diameter

actual field amplide distribution
------- gaussian approximation

for the first generation of single-mode fibres, is now
severely questioned. Small systematic errors result even
for quasistep index fibres when the Gaussian approx-
imation is used, especially at longer wavelengths [7].
Also, the second generation, single-mode fibres with
nonstep refractive indices for dispersion shifting and dis-
persion flattening do not exhibit Gaussian fields at any
wavelength.

An alternative definition of MFD based, on the
moments of the near-field, which is frequently called the
Petermann 2 definition, can, in principle, solve the
problem of consistency, and reduce the systematic errors
[8]. The primary difference with respect to the Gaussian
definition is that the Petermann definition uses the mea-
sured field directly, making no assumption about the

IEE PROCEEDINGS, Vol. 135, Pt. J, No. 3, JUNE 1988

shape of the field. Because of this, the Petermann 2 defini-
tion is becoming more widely accepted.

Cutoff wavelength is also essential in characterising
single-mode fibres, but some problems arise because the
second-mode becomes highly attenuated at wavelengths
lower than the theoretical cutoff wavelength. This effec-
tive cutoff is dependent on the length and the bending of
the fibre. There is some agreement on the effective cutoff
definition and measurement techniques [9], but the rela-
tion between the effective and theoretical cutoff is pre-
sumably very difficult to determine. This suggests that
one has to be careful when using the measured cutoff
wavelength, as an input in the determination of the ESI
parameters from the spectral variation of MFD, for
example.

2 - Unifying ESI and MFD methods in single-mode
fibres

Millar’s method is perhaps the most standard technique
for determining the two ESI parameters and the second-
mode cutoff wavelength for single-mode fibres. One basic
assumption in the Millar method is that the MFD for
arbitrary profiles behaves simply as a scaled version of
the step-index MFD [10]. While this is true for most
fibres used for telecommunications, it is not true in
general, and in particular the method breaks down when
applied to the triangular-type profile fibres and dual
shape profile fibres [11] which are receiving a lot of
attention for dispersion shifting.

In its simplest form, the Millar method measures the
cutoff wavelength, together with the MFD. Unfor-
tunately it is at the cutoff wavelength where the MFD is
most sensitive (over the single-mode regime) to vagaries
in the refractive index profile. Moreover, the Millar
method has no built-in alarm to show that it breaks
down for a specific fibre under measurement.

Here we show how the Millar method can be adapted
to cater for a more complex MFD structure. Our
approach uses the Petermann MFD [12, 13] (or far-field
RMS width) to find the two parameters for the ESI or
the three parameters necessary to specify the enhanced
ESI (or (E)ESI). Having determined the three parameters,
we can then decide whether to use all three parameters in
the (E)ESI, or only two in the simple ESI approximation,
but now we have a greater appreciation of the errors
involved, if we choose the latter.

The implementation of our approach is aided by our
analytic approximation to the Petermann MFD, which is
outlined in Appendix 8.

2.2 Petermann MFD and (E)ESI approximation
The (E)ESI approximation is outlined in Appendix 8, and
is specified by three parameters. For our purpose we will
find it convenient to use the parameters ¥, a,, and | AQ, |,
where ¥V = (2n/A)a, NA, = ,/2Q,)V, a,=a/2Q,, and
NA,= NA,/Q,/Q,; a is the core radius, NA is the
numerical aperture, Q, is the guidance factor and Q, is
the moment of profile. We can see from Appendix 7 that
AQ, is the enhancement parameter; its magnitude gives
an indication of the deviation of the refractive index from
the step index (for which AQ, = 0). From Table 6, for
example, we find that for the parabolic profile fibre, the
enhancement parameter is 0.125, for the triangular profile
fibre it is 0.190, and for cusp-like profiles, its value can
approach 0.3.

In terms of our three parameters, the normalised near-
field Petermann mode-field radius for fibres of arbitrary
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profile can be expressed as [14]

1 ~ [ S | Vb
= — AQ = 1
{Mm+"{@m+ 4 .
where b (V) = (1.1428V — 0.996)%/? is the Rudolph-
Neumann approximation,

7(7) = 0.0313 — 0.01372 e
{from Appendix 8.2), and
@, = 0.65 + 1.619V 32 4 2879V "¢
—(0.016 + 1.561777) 3)

(from Appendix 8.1).

Since the first term in eqn. 1 represents the simple ESI,
the full form of this equation illustrates dramatically the
limitations of any procedure which arbitrarily attempts
to fit a measured mode-field diameter with that of some
step-index fibre. Additionally, the term in square brackets
in eqn. 1 is a monotonically increasing function of V, so
that by measuring the mode-field diameter at cutoff, we
are choosing the worst sampling point for fitting the
simple step-index mode field diameter for fibres which
have a large enhancement parameter. These points are
also illustrated in Fig. 3, where we plot @ as a function of
¥ for the triangular-profile fibre.
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’ Fig. 3  Mode-field radius & against V for the triangular profile fibre
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It is convenient to rewrite eqn. 1 as follows:

aZ

= 4
p+14Q,1q

where

(PP
=17+ LLOPAT)

The quantities p and g are specified once V is known.
Similarly, the far-field mode radius can be expressed as

2 2 _
wif=E=Z§(P+|AQ4|Q) (5)
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2.3 Adapted Millar procedure
The starting point of the Millar method [10] is the fact
that the theoretical normalised cutoff frequency V,, is
unlike any other fibre characteristic, because it is
extremely insensitive to profile shape. The cutoff wave-
length 4, should therefore, in principle, be a fixed refer-
ence point for all single-mode fibre measurements.
Millar’s method determines 4., from observation of
the near-field MFD behaviour. Further refinements have
produced more accurate determinations of 4., [15]. The
possibility of using the far-field MFD behaviour in deter-
mining A, has also been suggested [16]. Such a tech-
nique could depend critically on the detector sensitivity.
By combining such a determination of the cutoff wave-
length, with the measurement of the Petermann MFD at
two different wavelengths (4, and 4,) in the single-mode
region, i.e. A, ¥ 4, = 4, the three necessary parameters
for specifying the (E)ESI are obtained as follows:

7, , = 2405 2 (6a)
‘1.2
~ p1 — Rp,
[AQ, | = —0———= (6b)
4 Rq, — q,
ae% = w%(Pl + |AQA|‘11)
= w%(Pz + |AQ4|‘12) (6¢)

where R is the ratio of the two mode field radius mea-
surements, (w3/w?), p, , and q,_, are the values of p and
g of eqn. 2 evaluated at ¥, ,, and w,_, are the measured
values of the near-field mode field radius at 4, ,.

If we use the far-field RMS width measurements at the
two different wavelengths, then the parameters ¥, , and
| AQ, | are still given by eqns. 6a and b, while the equiva-
lent core radius is now:

a, = 3
Wyry

Py +|AQ4|‘11)

2 _
= (P2 + 1AQ,1q,) (6d)
Wi,
while R in eqn. 6b is now defined as (w},,/w?).

The two-parameter ESI can be obtained from mea-
surements of the Petermann MFD at one wavelength,
together with the cutoff wavelength. Neglecting the
enhancement parameter (ie. |AQ,| =0 in eqn. 6¢, then
the two parameters are given by:

V. = 2.405 A)— 7
and
w;
a4, = —= (8)
o (V)

and @,(V)) can be given by eqn. 3. The subscript i now
corresponds to any wavelength about the cutoff wave-
length.

The equivalent numerical aperture NA, is now
obtained simply from N4, = 2.4054,,/2na,.

3 Measurements

In this paper we implement and critically assess our
approach using three independent measurement pro-
cedures. The (E)ESI parameters as obtained from MFD
measurements, preform profile measurements, and fibre
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profile measurements, are compared for a nominally step
index fibre fabricated by the MCVD process.

A statistical approach is adopted in analysing the
measurement data, thereby reducing the influence of
measurement error and other inherent uncertainties.
Results show that while the preform and the fibre profile
measurements produce essentially the same equivalent
core radius and the same equivalent numerical aperture
(with allowance for diffusion effects), the ESI parameters
produced by the MFD are substantially different.

The discrepancy arises from the use of the effective
cutoff wavelength, as derived from the MFD measure-
ments, instead of the theoretical cutoff wavelength
(corresponding to a V value of 2.405) in the evaluation of
the ESI parameters.

However, it is found that if the theoretical cutoff wave-
length, as derived from the profile measurements, is used
in the interpretation of the MFD data, then the three
measurement approaches predict very similar ESI para-
meters. While only one fibre-preform is reported here,
one other nominally step-index fibre-preform exhibited
similar trends.

3.1 Profile measurements

Figs. 4a and 4b show the refractive index profiles of the
preform and the fibre, respectively, as measured using
commercial equipment (spatial filtering technique and
refracted near-field technique, respectively). The (E)ESI
parameters were derived from the moment analysis of the
refractive index profile for the preform and the fibre.
Problems in implementing this procedure arise because
both the core radius and the refractive index levels of the
core and the cladding are not well defined. Because of
this, six limits were proposed, as sketched in the insets of
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Fig. 4  Refractive index profile of (a) preform and (b) fibre

The insets show the six different core sizes and cladding levels used
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Fig. 4. When using the preform data, the same measured
core radii as used for points 1, 2, 3, 4, 5 and 6 in Fig. 4b
were assigned for the corresponding points in Fig. 4a.
Assuming circular symmetry only, the right hand half of
each profile has been used.

The (E)ESI parameters resulting from the profile mea-
surements also differ slightly from one choice of profile to
another. Table 1 shows the average (E)ESI parameters

Table 1: Average (E)ESI parameters as obtained from ref-
ractive index profile measurements and moments theory

Parameter Profile measurements

Fibre Preform
Ago(NmM) 1226 £ 25 1217 + 11
a (um) 286+0.12 271201
NA, 0.164 = 0.005 0.1722 + 0.0007
|AQ, | 0.08 £0.02 0.03£0.01

(Average theoretical cutoff is A_.,=1222 nm). The uncertainty
quoted is the standard deviation

resulting from the six profiles, both for the fibre and the
preform.

3.2 Mode-field diameter measurements
The near-field Petermann’s MFD was obtained from the
inverse of the RMS far-field width measured by the vari-
able aperture method using commercial equipment. The
cutoff wavelength was measured using two techniques:
(a) the Millar procedure from the variation of MFD as
a function of wavelength
(b) the transmitted power technique (as recommended
by CCITT) [17].

Table 2 shows the values measured for the Peter-
mann’s MFD at four wavelengths. In theory, for the
determination of the (E)ESI parameters, the cutoff wave-
length together with the MFD at any other two wave-
lengths are sufficient. In practice, if we try different

Table 2: Near-field Petermann’s MFD at four wavelengths
for the fibre used in the comparative analysis

A (nm) Petermann’s MFD (um)
1300 6.47 1%
1350 6.64+1%
1400 6.85+1%
1450 7.07x1%

wavelength pairs we obtain ditferent results. Our
approach is to take the average value of the (E)ESI
parameters predicted from different pairs of the four
wavelengths in Table 2. Table 3 shows the average value

Table 3: Average (E)ESI parameters as obtained from MFD
measurements

Parameter A_,, =1275+25 (nm) A_,,=1295+25 (nm)

a,(um) 316+0.12 322014
NA, 0.155 + 0.006 0.154 +£0.007
|80, 0.13+0.08 0.14+0.09

Ac01 Was measured using the transmitted power technique. A_,, was
measured using the variation of MFD as a function of wavelength

of these (E)ESI parameters for the two different measured
cutoff wavelengths.

If we choose to ignore the enhancement parameter in
determining the two parameters of the simple ESI, we
require the cutoff wavelength and the MFD at only one
wavelength. We again determine the average values from
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Table 4: Average (E)ESI parameters derived from MFD mea-
surements assuming |AQ,|=0

Parameter A_,, =1276+25 (nm) A_,,=12952 25 (nm)

a,(um)  2.94+0.005 2.97 + 0.008
NA, 0.1662 + 0.0003 0.1668 + 0.0004

Aoy and A_,, as in Table 3

the measurements in Table 1. These are shown in Table 4
for the two different measured cutoff wavelengths.

4 Discussion of results

Taking the results for the profile measurements in Table
1, it is found that the two parameters a, and N4, are in
good agreement between the fibre and the preform.
However, there is a slight increase in a, and a slight
decrease in NA, in the transition from preform to fibre,
this is consistent with the occurrence of diffusion during
fibre drawing. The fact that there is only a slight varia-
tion in these parameters from preform to fibre is inter-
esting, since these two parameters are derived from the
first two even moments of the profile shape function, and
as such they rely on the average properties of the refrac-
tive index profile which are not expected to change very
much in the fibre draw. It should be pointed out that the
poor resolution in the fibre profile measurement will also
appear as diffusion, however, even within the error bound
there is an overall true diffusion effect. In addition, the
theoretical cutoff wavelengths, as derived from:

A, = 2na, NA,/2.405 ©)

are in good agreement between fibre and preform.

The enhancement parameter |AQ,| is small in both
cases of preform and fibre profile measurements. The
average value of the enhancement parameter of the
preform is | AQ, | = 0.03, and according to Table 6, it cor-

Table 5: Average (E)ES| parameters as obtained from MFD
measurements, but using now the average theoretical
cutoff wavelength (A, = 1222 nm) derived from the refrac-
tive index profile and moments theory

Parameter (E)ESI ESI

a,(um) 3.0+0.07 2.84 +0.01

NA, 0.156 £ 0.003 0.1649 + 0.0004
1AQ, | 0.09 +£0.05 —

Table 6: Data for the first two moments (2, and Q,) and for
the enhancement parameter AQ, for several values of the
exponent a of the power-law profiles

a Q, Q, A,

0.500 0.500 0.000
0.444 0450 0.010
0.400 0.417 0.029
0.333 0.375 0.067
0.260 0.333 0.125
0.167 0.300 0.190
0.136 0.289 0.215
0.100 0.278 0.246
0.056 0.265 0.285

—
Aenka = N DO O 8

responds approximately to a power-law profile with
a = 8, which is very step-like. The enhancement para-
meter in the fibre (JAQ,| = 0.08) again, according to
Table 6, corresponds approximately to a power-law
profile with a«~4 which is also very step-like. The
enhancement parameter is therefore small enough to be
neglected, because its effect on the dispersion parameters
b, b, and b, is small (see Appendix 8), and therefore its
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influence on the behaviour of the MFD is also very small.
It is also interesting to note that |AQ,| in the fibre is
slightly larger than in the preform. This gives a measure-
ment of the slight diffusion that occurs in the profile of a
single-mode fibre when it is drawn from the preform. The
comparatively larger standard deviation in the determi-
nation of the (E)ESI parameters for the fibre is an indica-
tion of the intrinsic difficulty when working with the
small dimensions involved.

On examining the results from the MFD measure-
ments in Table 3, it is found that the results are com-
pletely at odds with those from the profiles. The
discrepancy is due to the use of the measured cutoff
wavelength (4,,) in determining the fibre parameters
from eqn. 9. On substituting the average theoretical
cutoff value A, deduced from the profiles (ie. i, =
1222 nm) into the MFD analysis, the parameter values as
shown in Table 5 are obtained. These parameters are
now in good agreement with those derived from the fibre
profile.

From Table 5 we can conclude, as we have done for
the profiles, that the simple two parameter ESI should be
adequate for this fibre. Indeed the simple two parameter
ESI results in this Table are found to be in remarkably
good agreement with those in Table 1, once we use the
theoretical cutoff wavelength in the analysis.

5 Conclusions

We show that the theoretical cutoff wavelength, as
defined by eqn. 9, is the key to obtaining a self-consistent
model for characterising single-mode fibres which unites
both the ESI and MFD models. The measured cutoff
wavelength, which for a given fibre remains consistent
between different reference measurement techniques, does
not have a definite relationship to the theoretical cutoff
wavelength when comparing different fibres. As such, the
measured cutoff wavelength can lead only to confusion
when used as a reference wavelength in determining the
ESI parameters. This conclusion is drawn not only from
the results from a single fibre as presented here, but also
from other experimental results in our laboratory, and
from results quoted by other workers (such as in Refer-
ences 18 and 19).

One of the limitations of the MFD measurements pre-
sented here is the restricted set of data. Ideally, a larger
number of measurements would improve the results for
the average and the standard deviation of the (E)ESI
parameters. This, however, would increase the time spent
performing the measurements.
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8 Appendix

8.1 Approximate analytical forms for the propagation
characteristics of the single-mode fibres

We present an approximate analytic form for the Peter-

mann mode field radius, as required in the paper. The

new equation adds two extra terms to the old Marcuse

mode field radius expression [7].

8.1.1 Mode field radius and eigenvalue: The exact
analytical formula for the normalised Petermann 2 mode
field radius, @,, (y/2/W)J,(U)/Jo(U)) can be expressed
approximately as [20]:

®, = iy — (0.016 + 1.561V 7) (10)

where @,, is the Marcuse formula for the normalised
mode field radius of an optimally exciting Gaussian
beam, and which we repeat here for convenience [5]:

@y = 0.650 + 1.619V 732 + 2.879y ~° (1)

For our purposes we have optimised eqn. 10 to be accu-
rate to within 1% in the region 1.5 < V < 2.5, since this
is the range of most practical interest in single-mode fibre
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transmission. Like the Marcuse formula, eqn. 10 was
determined empirically. Increased accuracy over a more
extended range would require additional terms, and
would be of questionable advantage.

Fig. 5 shows @,,, and both the exact and approximate
curves for @,. The very good accuracy of eqn. 10 for
larger V values (V >25), and the good qualitative

30+
13 P
o
2
©
o
D201
14
-
@
O
£
el 2%
v 10t T e e —
n
©
£
15}
[w
0 1 i 1 —
10 1.5 20 25 3.0
normalised frequency V
Fig. 5  Petermann mode-field radius &, and Marcuse mode-field radius

Wy plotted as a function of normalised frequency V

-----  Petermann {exact)
Petermann (approximate)
- - - Marcuse

behaviour for small V values (V < 1.5) are additional
bonuses.

For completeness and easy reference we also include
here the Rudolph-Neumann approximation for the
modal eigenvalue, which is given by (see reference 21):

W =1.1428V — 0996 15<V <25 (12)

This is accurate to within 0.1% for our chosen range.

8.1.2 Other propagation characteristics: The dispersion
parameters b, b,, and b, and the fraction of power propa-
gation in the core, 5, have been shown to be intimately
related to the normalized Petermann mode field radius
@, [13], namely

d 1
=4 — | == 1
b2=4 v (V’-@ﬁ) (13a)
4
b, = 72—_—5 +b (13b)
2
n=133 +b (13¢)

We propose to use eqns. 10 and 12 in eqgns. (13a-c),
thereby eliminating the need for numerical methods in
evaluating eigenvalue or Bessel function terms.

The accuracy of this approach is illustrated in Fig. 6
for our parameters b, by, b,, and 5. The curve for b is
simply the well-known Rudolph-Neumann approx-
imation. The curves for b, and n are of remarkable accu-
racy: they are within 1% for our chosen range, and do
not deteriorate appreciably beyond this range. For low V
values, we are clearly obtaining a compensating effect of
a poor eigenvalue combined with a poor mode field
radius to give good results. The parameter b, has always
been the severest test of any approximation, since it relies
on derivatives for its determination. In this case, however,
the result is clearly impressive; the accuracy at V = 1.5 is
1.6%, and is well within this over the most of the range
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(1.5 < V < 2.5). The percentage accuracy at large V
values becomes meaningless, since the function is
approaching zero; however, a good indication of its
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1.0

normalised mode-field radius, @

1 i ‘
0 1.5 2.0 25 3.0
normalised frequency V
Fig. 6 Approximate and exact dispersion and core power curves
plotted as functions of normalised frequency V

——— exact = ccicce approximate

validity is that the approximation predicts the zero dis-
persion point (¥, = 3) to within 2%.

8.2 ESI and (E)ESI based on the moments of the
refractive index profile

The model we use is based on the moments of the refrac-

tive index shape function, and is much easier to use than

a similar model proposed in Reference 22.

8.2.1 Moments definition: The profile moments are
defined as

1
Qu =f S(R)RM*1 4R (14)
0
where s(R) is the profile shape function
ni(r) — n2
SRy = =" (1)
ng — Ny
which can be rewritten as
S(R) ~ nr) — ny (16)
L

Since the fibres are weakly guiding, R = r/p (r is the usual
radial variable), p is the core radius, n(r) is the refractive
index distribution, n, and n, are the maximum core and
uniform cladding refractive indices, respectively.

The shape function s(R) has a maximum of 1, ie.
0<s(R)< 1, in the region 0 < R <1 and s(R) =0 for
R>1.

The normalised moments are defined by

Q, =-M a7

and it has been established that only the even moments
Qo, Q,, Q,, ...) are required to specify any refractive
index distribution [22].

The ESI requires that the first two even moments (€,
Q,) of both the actual profile and the equivalent step
profile are equal. This condition renders an equivalent
step with a core radius of:

Pe = \/(2(22)
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(18a)

and a profile height of:
(18b)
The average waveguide parameter, V, is related to the
usual waveguide parameter V by

V = JQQo)V (19)

Using the average waveguide parameter and the ESI,
defined by eqn. 18, the dispersion expressions take the
following forms:

b(V) = 2 <Q—2> b (V) (20a)
d(Vb Q
n) =202 < (32) buuih (200)
Vd(b Q _
bs9) = Z500 < (82) 0,7 (200)

where b (V) is evaluated for the step index fibre at V =
V.

Any error introduced in using this ESI, is caused by
neglecting the difference between the higher moments of
the profile Q,, and the higher moments of ESI, Q,,,,. We
define the normalised difference as follows:

A, = Ot = Qo)

QMsr

where M > 4.
M is even and
I ve B
Ms ™ M2+ 1
In enhancing the simple ESI model, we introduce the
effects of adding only one extra parameter, this is the
enhancement parameter AQ, .
Using eqns. 21 and 22, AQ, can be expressed more
specifically as:
(3/4Q, — Q3
0
We have, therefore adopted the following functional form
for the dispersion parameter b(V):

(21

(22)

AQ, = (23)

Q = -
b(v) = (h‘°> bu(V)[1 + 180, 1/(7)] (24)
2

This is an enhancement of the simpler expression of eqn.
20a where f(V) is our enhancement function. We will
refer to eqn. 24 as the Enhanced ESI, or (E)ESI approx-
imation for H(V).

Table 6 shows AQ, for several a values of the power
law profiles. AQ, decreases as we approach the step-index
fibre; the correction term in eqn. 24 decreases accord-
ingly. The size of AQ, can be used to decide whether or
not the function f(¥) is required.

822 The (E)ESI and its prediction of disper-
sion: From the exact calculation of b(V) for a range of
profiles, we found the lowest-order polynomial approx-
imated for f(¥) to be the quadratic

f(¥) = 0313V — 0.0137 (25)

The power law profiles with exponent a have been used
for testing the (E)ESI model, and the main results are
described as follows:
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(a) Profiles with a > 2. For profiles which range from
the clad parabola (a = 2) to the step index (az = o0), the
error in predicting the dlspcrswn parameters is negligible
in the single-mode region. Figs. 7 and 8 show the exact
ESI and (E)ESI dispersion curves for « = 8 and o =
respectively.

Fig. 9 shows the ESI, (E)ESI and exact total dispersion
curves for the clad parabolic core profile (x = 2). The
curves were obtained using the equation of the com-
ponents of total dispersion, and data of Reference 23, and
the ESI and (E)ESI dispersion parameters b, b,, and b, .
It is seen that the total dispersion curve predicted by the
EESI and the exact curve are, for all practical purposes,
the same. The wavelength of zero total dispersion ().OT,,)
is predicted exactly by the (E)ESI, while the Ay is in
error by 5.4% for the simple ESI.

(b) Profiles with o < 2. For these extreme profiles it
has been found that the (E)ESI provides the bulk of the
correction term for waveguide dispersion in the range of
V-values for which the simple ESI breaks down. Fig. 10
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illustrates the triangular profile (« = 1) case. For the tri-
angular profile, the (E)ESI provides an estimate of the
waveguide dispersion paramater, b,(V), of 92% of its
exact value at the cutoff of the second mode, and
improves rapidly for smaller V-values. In this case, the
estimate of b and b, are accurate.

210

Fig. 11 shows the ESI, (E)ESI, and exact total disper-
sion curves for the triangular core profile fibre. The
(E)ESI total dispersion curve is in good agreement with
the exact calculation, and A4;p is the same for both the
exact and (E)ESI curves. The ESI approximation predicts
the zero of total dispersion with an error of 6.7%.
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