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Summary

Starting with concepts of polarisation inherited
from bulk optics, the lecture will introduce the concepts
of "modal polarisations" in weakly-guiding optical fibres.
Thereby certain limitations in measurement systems which
employ plane polarisation, as opposed to modal polari-

sation are considered.

The need for highly-birefringent fibres is outlined.
Recent research on fibres, having large levels of bire-
fringence, for polarisation dependent applications is
reviewed. Particular emphasis will be placed on some
recent techniques, developed at Southampton, for incorpo-
rating large levels of circular birefringence into optical

fibres.

Some speculative ideas about possible geometries for

future polarisation-dependent applications are introduced.



1. Introduction

In most applications, an optical fibre is a means
for transmitting signals in the form of optical power with
pulse code or intensity modulation; the signal is detected
by a photodiode that is insensitive to optical polari-
sation or phase. Recently, however, attention has been
directed to applications which do depend upon the optical
polarisation of the wave within a fibre or at its output.
Yet nominally-circular fibres do not maintain the input
state of polarisation for more than a few metres? so that
fibres must be specially designed to maintain

polarisation.

As in bulk media, the evolution of the polarisation
state in an optical fibre can be described in terms of a
"modal birefringence", i.e. the difference in effective
indices for the orthogonally-polarised normal modes. It
is our purpose to review the experimental progress in
maximising the modal birefringence as required for variops
applications; we will put special emphasis on the recent
achievements of high circular birefringence in optical
fibres. We will be concerned with those fibres which

support only one mode in each polarisation.



Before moving on to these topics, however we will
briefly review the concepts of polarisation which we have

inherited from bulk optics2.

2. Polarisation

Light when travelling in free space or in a medium
of constant refractive index may be treated as a
transverse electromagnetic (TEM) wave. Linearly-polarised
or plane-polarised light, is light for which the
orientation of the electrc field is constant although its
magnitude varies in time (Figure 1). The electric field
or optical disturbance therefore resides in what is known
as the plane of vibration. That fixed plane contains both
E and k, the electric field vector and the propagation
vector in the direction of motion. Imagine now that we
have two harmonic, linearly-polarised light waves of the
same frequency, moving through the same region of space,
in the same direction. 1If their electric field vectors
are co-linear, the superimposing disturbances will simply
combine to form a resultant linearly-polarised wave. Its
amplitude and phase give rise to the phenomenon of
interference. In contradistinction, if the two light
waves are such that their respective electric field

directions are mutually perpendicular, the resultant wave



may or may not be linearly polarised. Exactly what form
the light will take (i.e. its state-of-polarisation) is

what concerns us in this section.

2.1 Linear Polarisation

We can represent the two orthogonal optical
disturbances which were considered above in the form.

Ex(z,t) = 1 Eox cos (kz - ut) (1)

Ey(x,y) = l Eoy cos (kz - wt + ¢) (2)
where k is the wave number (= 2mn/A) and w the frequency
of the light. ¢ is the relative pPhase difference between
the waves both of which are travelling in the z-direction.
The resultant optical disturbance is then simply

E(z,t) = Ex(z,t) + Ey(z,t) (3)
If ¢ is zero or an integral multiple of t 27 then the
waves are said to be in phase and

E = (2 Eox + 1 Egy)cos(kz - wt) (4)
the resultant wave therefore has a fixed amplitude equal
to (Eox2 + Egy2)% i.e. it too is linearly polarised as
shown in Figure 1. This process can equally well be

carried out in reverse, that is, we can resolve any plane

polarised wave into two orthogonal components.

If ¢ is an odd multiple of tm, we again have
linearly polarised light but now with the plane of

polarisation rotated from that of the previous condition.



Figure 1 Linearly-Polarised Light



2.2 Circular Polarisation

Another special case of particular interest arises
when both constituent waves have equal amplitudes i.e.

Eox = Egy = Eg and in addition their relative phase

difference ¢ -n/2 + 2mwr where m = 0, 1, t2, ...

Accordingly
Ex(z,t) = i Eq cos (kz - wt) (5)
Ey(z,t) = j Ep sin (kz - wt) (6)

The consequent wave is given by

E = E [2 cos(kz - wt) + j sin(kz - wt)] (7)
(Figure 2). Notice that the scalar amplitude of E which
is equal to E,, is a constant. But the direction of E is
time varying and it is not restricted as before to a
single plane. The resultant electric field vector E is
rotating clockwise at an angular frequency w as seen by
an observer towards whom the wave is moving. Such a wave
is said to be right circularly polarised. The E vector
makes one complete rotation as the wave advances through
one wavelength. If E = n/2, 5n/2 ... then

E = Ep [i cos(kz - wt) - j sin(kz - wt)] (8)
then the wave rotates counter clockwise and is referred to

as left circularly polarised.



Figure 2 Circularly-Polarised Light



A linearly polarised wave can be synthesised from
two oppositely-polarised circular waves of equal ampli-
tude. In particular if we add the right circular wave of
equation (7) to the left circular wave of equation (8), we
obtain

E = 2E, i cos(kz - wt) (3)
which has a constant amplitude vector of 2E, i and is
therefore linearly polarised. If there is a relative
phase difference { between the right and left circular
waves then the resultant wave is linearly polarised but
rotated through an angle ¢/2. The direction of rotation

depending on the sign of the phase difference.

2.3 Elliptical Polarisation

As far as the mathematical description is concerned,
both linear and circular light may be considered to be
special cases of elliptically polarised light. By this we
mean that the resultant electric field vector E will both
rotate and change in magnitude as well. In such cases the
end point of E will trace out an ellipse in a fixed plane
perpendicular to k as the wave sweeps by. We can see this
if we write the expression for the curve traversed by the
tip of E. If

Ex = Egx cos(kz - wt) (10)

Ey

Egy cos(kz - wt + ¢) (11)

then we can show that
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()2 + (F5)2 - 25 Prycose = sinie (12)
oy ox

This is the equation of an ellipse making an angle a with
the Ex,Ey co-ordinate system (Figure 3) such that

2Eqx Egqy cOS ¢
on2 - Eoy2

tan 2a = (13)

Figure 4 displays various polarisation configurations
corresponding to specific values of ¢. When E is some
multiple of 7 then the light is linearly polarised and if
¢ is some multiple of n/2 together with E,x = Eoy the

light is circularly-polarised.

2.4 State-of-Polarisation (SOP)

We are now in a position to refer to a particular
light wave in terms of its state-of-polarisation. We
shall say that linearly polarised light is in a P-state
while right and left circular light is in an R- or L-
state, respectively. Similarly the condition of ellip- .
tical polarisation corresponds to an E-state. We have
already seen that a P-state can be represented as a
superposition of P-states or as a superposition of R- and
L-states. We have also seen that an E-state can be
represented as a superposition of P-states, it can also be
represented as a superposition of R- and L-states where

the amplitudes of the two circular waves are different.
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3. Polarisation in Optical Fibres

The fundamental (or HEj{4) mode of a circularly
symmetric optical fibre consists of two modes whose
"polarisations" are orthogonal3. In general the
orthogonal "modal polarisations" do not correspond to the
two plane polarised cartesian components (equations (1)
and (2)) which apply to waves in a uniform medium.
However, most optical fibres are "weakly-guiding®"4.5, i.e.
they have refractive index profiles n(r), where the
variation between the maximum and minimum values are
small, typically less than 1%. 1t turns out that the
electric fields are then approximate solutions of the
scalar wave equation and can therefore be approximated by
plane polarised waves.. This can be appreciated by the

following arguments6.

The propagation constant g of the fundamental mode
must lie somewhere between two extremes given by the value
of B8 (or wave number) for a z-directed plane wave
propagating in an infinite medium of refractive index
equal to the maximum or minimum values of the fibre
profile n(r). If we define these maximum and minimum
values of n(r) as

Necog = maximum_refractive index of n(r)

N¢g = minimum refractive index of n(r)
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then g is bounded by

A’A_nc_l_<3<2_”_;ls:.o_ (14)

where A is the wavelength in vacuum. Because fibres are
”weakly—guiding" i.e. n¢cyp = neg it follows that g = 2mn/a
which is the propagation constant of a z-directed plane
wave in an unbounded medium of refractive index

ncl = n = nco.

Accordingly, one of the polarisations of the
fundamental mode of an optical fibre must be nearly a
transverse electromagnetic (TEM) wave, the simplest being
a wave polarised uniformly in one direction only6. Taking

this direction to be x, the fields of an optical fibre are

given by
E = i E(r) cos(wt - Bgz) (15)
H =3 (e/u)% E(r) cos(wt - gz) (16)

while the other field components are negligible, E(r)
specifies the spatial variation in the plane perpendicular
to the fibre axis. pu is the permeability of the medium,'
€ = ggn2, where n = n¢y * ncp and e, is the dielectric

constant of vacuum.

Because ncp; = n¢y, the fields are only weakly
influenced by the polarisation properties of the fibre
structure. If this is not obvious, then recall that plane

wave reflection from a dielectric interface is nearly
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insensitive to the polarisation of the incident wave when
the two dielectrics are similar?. Accordingly, the
spatial dependence, E(r) of the fields must be insensitive
to polarisation effects so that E(r) is a solution to the
scalar wave equation

{ g%? + % g? + (%1)2 n2(r) } E(r) = B2E(r) (17)

The solution corresponding to the fundamental mode is that
with the largest g and with E(r) independent of the polar

angle.

Figure 5 shows schematically the decomposition of
the "modal polarisation" of the HE11 mode when analysed by
a bulk polariser, generally the minor field component is
present at a -70dB intensity level so that for most
purposes the plane polarisation approximation is

valid8,9,10,

The two polarisations of the fundamental mode can
therefore be expressed in terms of the two orthogonal
cartesian components (x,y) as

Ex(z,t) = 2 E(r) cos (Bxz - wt) (18)

Ey(z,t) = j E(r) cos(Byz - wt) (19)
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Figure 5 Schematic decomposition of the modal
polarisation of the HE44 mode into its
major y- and minor x-plane polarised
components.
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in complete analogy with equations (1) and (2) where
Bx = By. Similarly the two polarisations of the
fundamental mode can be written in terms of the two

orthogonal right (R) and left (L) circularly polarised

components.
Ep(z,t) = E(r) (i cos(prz - wt) + j sin(Brz - wt)] (20)
E(z,t) = E(r) [i cos(Bz - wt) - j sin(BLz - wt)] (21)

where Bp = Bi.

In summary then, so called "single-mode" fibres with
nominally circular symmetry about the fibre axis are in
fact bimodal in that they can propagate two degenerate
modes with orthogonal polarisations these are the HEq¢X

and HE44Y modes or the HEq4R and HE44L modes.

4. Birefringent Fibres

Even though an ideal round-core single-mode fibre
should maintain the state-of-polarisation propagating in
the guide indefinitely, most real fibres scramble
polarisation. This is because inherent birefringence
removes the degeneracy between the two orthogonal
polarisations of the fundamental mode and any defects
(such as core deformations) and strains which are either
built into the fibre or introduced by bending, twisting or

mounting will scatter light between these two
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polarisations. Thus the state-of-polarisation at the
fibre output is arbitrary and can, in fact, vary with time
in response to temperature and pressure changes along the

length of the fibre1,11,12,13,14,

This time varying state-of-polarisation becomes a
serious problem in the interconnection of single-mode
fibres with polarisation sensitive devices such as inte-
grated optical multiplexers and switches and interfero-
metric devices since they require the interacting beams to
have identical polarisations. These depolarisation
effects also degrade the performance of devices based on
non-linear interactions in fibres, such as Raman

oscillatorsi1.14,

The general approach to maintaining polarisation in
a single-mode fibre is to increase the fibre birefringence
80 as to reduce the interchange of power between the two

polarisations.

4.1 Modal Birefringence

4.1.1 Linear birefringence

Linear birefringence arises from the breaking of the
degeneracy between the HEq¢*X and HE41Y modal polarisa-

tions. This means that the propagation constants g, and By
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are no longer equal in equations (18) and (19). The
principal axes, x and y, are determined by the symmetry
elements in the cross section as in Figures 8-13. The
larger the anisotropy of the cross section the greater the
difference in propagation constants g, and By for the two
normal modes. If the fibre cross section is independent
of the fibre length z, then the fibre behaves like a
linearly birefringent medium with a modal birefringence B
given by

BL = (Bx = By)/(2n/r) (22)
where A is the optical wavelength. Light polarised along
one of the principal axes will retain its polarisation for
all z. Light polarised at an angle e with respect to the
x—-axis at z = 0 will pass through various states of
elliptic polarisation as the phase retardation

®(z) = (Bx - By)z (23)
varies with length, provided the two normal mode
components maintain phase coherence (cf Figure 4 for a

continuously varying ¢).

For incident linear polarisation with & = 450 at
z=0, the polarisation becomes circular for ¢ = n/2, linear
with e = -450 for ¢ = n, circular for ¢ = 3n/2 and linear
with e = 450 for ¢ = 2r as shown in Figure 6. The length
L corresponding to ¢(L) = 2r is called the "beat length".

L = A/Bg (24)
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The beat length can be observed directly by means of
dipole (Rayleigh) scattering from the fibrel5. Since the
radiation pattern of a dipole has a null along the dipole
axis and a maximum normal to the axis, a fibre viewed
along the direction of the incident polarisation will
exhibit a series of dark and bright bands with period L as
shown in Figure 6. It is also thus possible to determine
B from the observed beat length. The beats in the fibre
shown in Figure 7 have L = 1.2mm at A» = 633nm; therefore

BL = 5.7x10-4.

Breaking the circular symmetry of the core to remove
the degeneracy of the two polarisations of the fundamental
mode was one of the earliest suggestions to achieve linear
birefringence in a single-mode fibre16,17 (see Figure 8).
However it was shown that only a slight improvement in
polarisation performance is obtained using fibres with
extremely elliptical cores. It has been found that
anisotropic strain is more important than non circular
geometry for maintaining linear polarisation over long
lengths'8.19,20, This effect can be achieved with a
stressed elliptical cladding surrounding a circular
corel1,19 (see Figure 10). Strain is introduced because
of the different thermal expansion between the borosili-
cate cladding and the silica substrate tube. Strain is
introduced in the fibre drawing stage due to different

cooling rates during the draw. Perhaps the best known of
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(a) states of polarisation versus the
phase retardation ¢(z) and

(b) scattered intensity observed normal
to fibre at angle o.
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Figure 7 Polarisation Beats : L = 1.2mm at A = 633nm.



22

Fig. 8 Orlentation of the Oxyz-axis system in the cross-section of
an elliptical dielectric cylinder with core and cladding refractive
Indices of n, and n,, respectively

The major and minor semiaxes have lengths A and B as shown
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the strained fibres is the highly-birefringent (hi-bi)
polarisation-maintaining fibre, the two most common
forms21.22 are shown in Figures 11 and 12. The birefrin-
gence is induced by means of anisotropic thermal stress
produced by the two regions of high expansion glass
disposed on either side of the core. The fabrication and

performance of these fibres is now discussed in detail.

(a) Elliptical core fibres (Figure 8)

Core deformation and core ellipticity give rise to
what is known as shape birefringence. For weakly-guiding
fibres the birefringence is not predicted from solving the
scalar wave equation irrespective of the ellipticity of
the core%.10. Polarisation effects due to the finite
A(=(nco2-nc92)%/nco) need to be taken into account. The
birefringence is thus found to be of order A2 in magni-
tudeit, viz;

B = C.e2a2 (25)
where e is the core ellipticity [e2 = 1 - a?/b2, a and §
the major and minor core diameters] C is some function of
the fibre parameters and the modal field. Large A
elliptical fibres (i.e. not weakly-guiding) have also been

proposed?’.
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Figure 9 Azimuthally inhomogeneous fibres
(a) possible cross sections and

(b) photograph of such a fibre.
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(b) Azimuthally inhomogeneous index profiles

Another type of shape birefringence is introduced by
varying the refractive index azimuthally as shown in

Figure 9 23.

(c) Strained elliptical cladding fibres (Figure 10).

As with the following examples, the strain in this

fibre introduces a material birefringence.

Birefringence is introduced by grinding two parallel
flat sides into a substrate tube before depositing the
cladding and core layers via the MCVD process!l. During
the collapse, surface tension causes the preform to be
circular again resulting in an elliptical cladding and an
almost circular core. The borosilicate cladding is always
strained because of the difference in thermal expansion
between the cladding and the silica substrate

tube18,19,20

The birefringence can be expressed in terms of the

stress in the corel$

BL = nx = Ny = (5)(Bx - By) = -Cloyx —oy) (26)

where C is the stress optic coefficient and o, - oy the

stress difference in the core.
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Figure 10 Stressed Elliptical Cladding Fibre
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The modal fields can be obtained from the scalar
wave equation but now with two different refractive
indices (nx and ny) corresponding to each polarisation

HE44X, HEqqY.

(4a) Bow~Tie fibres

The Bow-Tie highly-birefringent fibre is fabricated
by the MCVD technique using a gas-phase etching stage in
the process2l. As in the elliptical cladding fibre, the
stress-producing sectors are usually of borosilicate
glass. The stages of fabrication are shown in Figure 11
and a fibre cross section in Figure 12. Analysis shows
that the Bow-Tie shaped stress regions makes optimum use
of available expansion coefficient mismatch22. This
structure has given the highest linear birefringence ever

reported in a single-mode fibre (L = .55mm, A = 633nm)21%.

(e) PANDA fibres

These are very similar to the Bow-Tie fibre. The
stress-producing sectors are of borosilicate glass.
Fabrication is by a rod-in-tube technique, with the two

borosilicate rods inserted in two ultrasonically drilled
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Figure 11 Schematic diagrams showing stages of
fabrication of Bow-Tie fibres
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stress~producing
sectors

silica
substrote

a Calculated optimum cross-section geometry. The stress-
producing sectors are highly doped to give a large expansion coef-
ficient a,

b Cross-section of bow-tic fibre manufactured by gas-phase et-
ching



Figure 13

30

Cross section of a PANDA high-birefringent
fibre
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holes disposed on either side of the core in a standard
single-mode preform. A cross section of such a fibre is

shown in Figure 13 23,

Some comments on Modal Polarisation in Hi-Bi Fibres

One difference between the "modal polarisation" on
the hi-bi fibre as compared with a conventional fibre is
that the additional minor field components are now present
at power levels between -45 and -38dB which is two to
three orders of magnitude higher the level of -70dB
estimated for conventional fibres25. This fact is
important in the fibre gyroscope where polarisers and
fibre components having extinction ratios greater than
120dB may be required. However if the analysing arrange-
ment employed fibre polarisers, which would discriminate
"modal polarisation" as opposed to bulk optics polarisers
which discriminate plane polarisation, then the above

problems may be avoided.

4.1.2 Circular birefringence

As with linear birefringence, circular birefringence
arises from breaking the degeneracy between the HE44R and
HE441L modal polarisations, i.e. gy # B_ in equations (20)

and (21).
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We saw earlier that a phase difference between two
orthogonal circularly-polarised waves produces a rotation
of linear polarisation. Similarly a circular
birefringence

Be = (Br — BL)/(21/7) (27)
will produce a phase retardation of

$(z) = (Br — BL)Z (28)
which varies with 2z, with the result that the input
state-of-polarisation is rotated at a rate

T = (Br - BL)/2 (29)
per unit length. The state-of-polarisation does not

change along the length of the fibre it is simply rotated.

If the input is linearly polarised then this
polarisation is rotated at a constant rate, r. The length
for half a complete rotation is called a beat length, L.,
which can be observed through Rayleigh scatter along the
fibre, where

Le = A (2Bg) = n/T (30)
The first technique for producing circular birefringencq
in fibres has been through twisting the fibre'2. The
twist averages out the linear birefringence to zero but it
introduces torsional stresses which induce circular
birefringence. The net result is an optical rotation
Ty = g¢ (rads/m) where g = 0.073 for silica based fibres
and ¢ is the twist rate in rads/m. Unfortunately, the

torsion induced by twist is at present limited to below



33

100 turns/m because higher torsions can break the fibre.
Even at these twist rates the long term survival of the
fibre is open to question. For this reason, and because
the circular birefringence so obtained is not high enough,
torsion-induced circularly-birefringent fibres are not

really viable.

Two more techniques for achieving high levels of
circular birefringence in fibres have recently been
proposed and developed at the University of Southampton.
The first is the helical fibre26.,2? whose operation is
based upon the rotation of polarised light which occurs
when light is constrained to follow a helical or non
planar path28,29,30, The second is the spiral fibre31,32
which exploits the fact that polarised light will rotate
in a twisted anisotropic medium33.34. These are now dealt

with in detail.

(a) Helical-core fibre

3

If light is constrained to follow a non planar curve
the polarisation of that light will experience a rotation
per unit length equal to the geometric torsion of the
curve28. In a helical curve this torsion is a constant
given by P/S2 where P is the pitch of the helix, S the arc
length for one pitch where S = ((2nQ)2 + P2)% and Q is the

offset from the helix axis. Relative to the helix axis
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Fig. 14 Optical rotation in helical-core fibres calculated
for various pitch and core offsets.
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Figure 15
{a) Holical-core fibre cross-sect:ons showing hollow tube and

core structure.

[

{(b) Transverse view ot heircal core tibre.
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the rotation per turn (or per pitch) has been shown to

bel6
H = 2r(1 - P/S) (31)
and the beat length or optical rotation length is given by

L

P3/2m2Q2, P >>Q (32)
For large levels of birefringence (short beat length) we
therefore require a large core offset Q, and a short pitch
P. Figure 14 shows the optical rotation length for
various helix parameters while a transverse and a cross-
sectional view of the fibre is shown in Figures 15(a) and

(b).

One of the problems with this fibre is that to
achieve a high birefringence the fibre dimensions need to
be very large. For instance if L = 13mm and P = 2mm then
the core offset Q = 184um so that the overall fibre
diameter would need to be greater than 2 x Q = 368um.
Another difficulty is the pronounced skew angle at which
light needs to be injected to and extracted from the

fibre.

(b) Spiral fibres

If a linearly birefringent fibre is twisted the
polarisation of 1light polarised along one of the bire-
fringent axes at the input to the fibre will be found to

follow the twist34. Clearly this phenomenon is not
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circular birefringence since the evolution of the state-
of-polarisation along such a fibre will be the normal
evolution along a straight linearly birefringent fibre,
with the rotation due to the twist superimposed. However
with careful design of the core the rotation of polarised
light that occurs in a twisted birefringent or twisted
anisotropic medium can be exploited to produce circular

birefringence.

If a twist is to have any influence on the polari-
sation of the propagating field it is necessary to
introduce some azimuthal inhomogeneity into the core. For
high levels of circular birefringence it is necessary to
consider some very large inhomogeneities and core struc-
tures which have single lobe and multiple lobe configu-

rations as shown in Figure 1631,32.

It is important that these structures do not have
any inherent linear birefringence so that certain
symmetries need to be observed. For instance if the lobgs
are coupled then the overall core structure must not have
distinguishably different orthogonal axes e.g. cases I, II
and III of Figure 16. If the lobes are uncoupled then
each lobe must independently have no linear birefringence.

To achieve high levels of circular birefringence the lobe
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Figure 16 (a) Typical fibre cross section defining fibre

parameters.

(b) Possible azimuthally inhomogeneous core
structures.
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refractive index should be much greater than both the
immediately adjacent core refractive index and the

cladding refractive index31.

If these structures are twisted along the axis of
the fibre then the polarisation can be made to rotate at
the twist rate and under certain conditions the polari-

sation can be made to rotate at a slower rate.

Figure 17 shows some design curves for a twisted
cross structure (Case I of Figure 15)31. The curves show
the optimum core radius to obtain the maximum twist rate.
The optimum appears as a compromise between poor
capability of field confinement at the small radii and the
spilling out of the field at the outermost radius when the
peripheral twisting speed is high. The optimum radius

decreases as (an/n)-%.

The spiral fibres can be fabricated by a rod-in-tube
technique. The preform is then spun as the fibre is drgwn
using standard drawing procedures. Some results for a
fibre with the simplest single lobe structure are quoted
in Table 132. A single MCVD preform was used to provide
the lobe. The fibre parameters were: an = 0.0l1, core
radius 1l0um, nce = niyy and an unspun length of fibre was

single moded at A = .633um. Fibre diameter was 110um.
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(T/mm)

Maximum twist rate

Lobed-core radius s (pm)

Figure 17 Design curves for the "twisted cross"

structure showing the maximum obtainable
twist rate versus core radius for
different values of refractive index.
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Twist rate Optical rotation rate Beat length
T/m T/m mm
50 50 10
83 83
100 100 5
116 116 4.3
160 14 35
250 10 50

Table I : Measured twist rates and beat lengths
on our sample fibre
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From Table 1 it is clear that the polarisation
follows the twist rate up to some critical point, the beat
length of 4.3mm corresponds to the highest level of
circular birefringence ever yet reported in single-mode

fibres.

4.1.3 Elliptical birefringence

In general fibres are elliptically birefringent so
that the two polarisation eigen modes of the fibre are
elliptical in form. Any elliptical birefringence may be
resolved into linear and circular components and the
elliptical birefringence can be written as?2

Bg2 = B¢2 + B2 (33)
In most applications the fibre will be predominantly
linearly birefringent (B » B¢) or circularly birefringent
(B¢ » B) so that we do not need to take the elliptical
polarisations into account although their behaviour is

well understoodi?.

5. Ring core fibres as possible futuristic fibres for

polarisation dependent applications

So far in this lecture I have introduced the idea of
"modal polarisation" in contrast with the plane polari-
sation of bulk optics. 1In the fibres that have been

considered so far the modal polarisation bears a very
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great resemblance to plane polarisation so that with care
the modal polarisation can be approximated by plane
polarisation. I am now going to introduce a single-mode
fibre where the modal polarisation bears no resemblance to
our conventional bulk optics ideas of polarisation35,36,
This fibre is a ring core fibre as shown in Figure 18.

The fibre comprises a thin layer of high refractive index
sandwiched between an outer and inner "cladding" of lower

refractive index.

It has been shown that such a fibre36, which has the
layer of higher refractive index (n; = 1.455) 2um thick
at a radius of 250um and cladded (nq = 1.449) to give an
overall diameter of about 800um, has an unusual dispersion
behaviour. The fundamental modes (i.e. they propagate for
all wavelengths) are now the TEgq (and TMgq) modes while

the HE4q4 modes are cutoff at short wavelengths.

The polarisations of the TEjq, mode on the tubular
waveguide is a pure circumferential electric field (i.e.
in cylindrical coordinates it is e directed) while the
TMgq polarisation is purely radial (i.e. r directed).

These are shown in Figure 18.



44

Figure 18 The ring core fibre showing the two pure
TEgq. TMg1 modal polarisations.
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Given the cylindrical nature of an optical fibre it
Seems reasonable to consider these cylindrical polari-
sations as the "natural" polarisations. Modal birefrin-
gence could be introduced very simply with radial stress
thereby introducing a birefringence

B = (Br - Bo)/(2u/2) (34)
where g, is the propagation constant of the T™Mpq1 mode and

Bo 18 the propagation constant of the TEgq mode.

Fibre polarisers with a metal cylindrically disposed
in the fibre where it can interact with the modal fields
will completely extinguish the TMgq4 mode thereby supplying
complete modal polarisation discrimination required for
fibre sensors. One other advantage of the ring core fibre
as a birefringent fibre is that it should be very immune
to the normal external perturbations of bends and pressure
since these generally impart a preferred cartesian axis to
the fibre so that their effects should distribute

themselves equally over the TEgq9 and TMpq modes.
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Conclusions

The exploitation of polarisation effects in optical
fibres is really only beginning. Applications which use
fibres in conjunction with bulk-optic components require
us to be alert to the differences between the fibre's
"modal polarisation" and the bulk-optic's "plane
polarisation" and also to understand the limitations which
this imposes on our measurements. It is only with the
development of fibre based devices such as fibre
polarisers, fibre couplers and fibre switches etc. that

such restrictions will be removed.

The use of novel fibre geometries, such as the ring
core fibre, forces us to consider "modal polarisations"”
which are radically different to our conventional
conceptions of polarisation. Yet, such fibres may prove,
in the long term, to be much more "practical" for
polarisation dependent applications than fibres that have,

so far, been developed. Time will tell.
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