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Design considerations for circularly
form-birefringent optical fibres

Y. Fujii and C.D. Hussey

Indexing term:  Optical fibres

Abstract: Single-lobe and multiple-lobe single-mode fibre core structures which are twisted at a uniform rate
along the fibre axis are proposed as candidates for achieving very high circular birefringence in optical fibres.
The main characteristics of these structures are analysed in general terms using ray optics. These circularly
birefringent fibres can give 100% twisting efficiency without any linear birefringence effects. Even with param-
eters similar to conventional monomode fibres, the maximum obtainable birefringence can be a few

rotations/mm.

1 Introduction

Circularly birefringent fibres have a practical importance
for optical transmission, for optical sensors and for optical
fibre components. Such birefringence in fibres has been
realised by mechanically twisting conventional fibres and
thereby utilising the elasto-optic effect due to the twist-
induced stress [1] or torsion.

Obviously, circular birefringence could also be obtained
by the use of a core material which has optical activity or
by Faraday rotation. The. fourth possibility which we
explore in this paper is to utilise the index distribution
only.

Many authors have performed theoretical and experi-
mental work on circularly birefringent fibres; for example
the twisted fibres using the elasto-optic effect [1, 2], spun
fibres [3-5] and fibres with Faraday rotation for sensing
purposes [6]. Helical* fibres have been proposed and re-
alised [7, 8] for some time as examples of circularly form-
birefringent fibres.

There are now well developed techniques for fabricating
fibres with complex structures, which open further pos-
sibilities for realising circular form-birefringence in fibres.
In this paper we explore such structures and find that if
they are twisted in the direction of propagation they are
capable of obtaining a much higher circular birefringence
than has previously been achieved.

In this paper the necessary considerations to realise
such a circularly form-birefringent fibre are treated in
general terms using ray optics, and new ‘spiral, and
‘twisted-cross’ fibres are proposed as the most likely candi-
dates for them. The analysis given here gives such param-
eters as the maximum circular birefringence, the
undulation of the guided beam, the extinction and the
excitation efficiency in the simplest form as functions both
of the fibre dimensions and of the index difference between
the core and the cladding.

2 Conditions for circular birefringence

In order to realise a circularly form-birefringent fibre, it is
necessary (i) to obtain an imaginary coupling coefficient
[1] between the two orthogonal polarisations which is

* We use the term ‘spiral’ to distinguish the case where the core offset distance from
the axis is approximately equal to the core diameter, we will reserve the term
‘helical’ for those cases where the offset is much larger [7, 8].
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proportional to the twisting rate and (ii) to supress any
type of linear birefringence.

Clearly, if a twist is to have any effect on the polarisa-
tion of the propagating field it is necessary to introduce
some azimuthal inhomogeneity into the core. We shall
consider some very large inhomogeneities in the form of
single- and multiple-lobe core fibres, a few variations of
which are shown in Fig. 1. '

twisted

cladding n,

b c

Cross section of twisted multicore fibres

Fig. 1

a Four-core lobes (‘twisted-cross’ fibre),
b One-core lobe (‘spiral’ fibre)
¢ Eight-core lobes (‘octopus’ fibre)

A detailed perturbation analysis for a small aximuthal
inhomogeneity of the type in Fig. la in a step-index mono-
mode fibre is contained in Appendix 8. In this case the
maximum coupling coefficient obtainable is found to be
i(An/n)t, where 1 is the twist rate per unit length and An/n
is the relative refractive-index difference between the inho-
mogeneity and the core refractive index; the coupling coef-
ficient is imaginary as required.

Although perturbation theory can be used to analyse
fibres with slightly deformed cores, it is difficult to apply to
those structures where the inhomogeneous lobes them-
selves form the guiding structure. The reasons for this are
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(i) the coupled power originates from longitudinal total
internal reflection, not from transverse reflections due to
the index difference, (ii) the index gradient is so large that
the mode profile should be entirely changed and (iii) higher
modes, not only the two perpendicular modes, are excited
at the reflecting boundary.

In the well-confined optical waveguide, the fields are
assumed to remain in the waveguide with their profiles
unchanged. This affords a physical basis for the ‘axiom’
[7]: “f linearly polarised light is launched into a fibre
which is bent into a planar curve, then the angle which the
polarisation makes with the normal to the plane stays con-
stant’. However, it also holds as long as the twist is slow
and, as shown later, the rays in the core are internally
reflected at the core-cladding boundary.

To demonstrate that the coupling coefficient is imagin-
ary, let us consider a fibre twisted around the z-axis with
twist rate T per unit length. If the fields are guided with
their profile unchanged, then, after a small distance Az, the
two orthogonal fields (locally perpendicular with each
other) are expressed, in the co-ordinates fixed at z = 0, as

E(Az) = E,(0) cos 1Az + E,(0) sin 1Az (n

Ey(Az) = — E,(0) sin tAz + E,(0) cos Az 2)
Thus, we have, automatically, the coupling equations as

dE, |

E=1K12E2=1’E2 3)

id%=iK21E1 = —1k, 4

Where the coupling coefficients are imaginary as:
K1y = —iT = k3, &)

The circular birefringence is therefore equal to 21.

The twist efficiency, defined as the ratio of the coupling
coefficient to the twist rate, is 100% in this case. In com-
parison, for the elasto-optically twisted fibres [ 1], the twist
efficiency is about 8%, whereas in spun fibres, or in a stack
of twisted birefringent plates [9, 10], it is much smaller.

The condition necessary to suppress the linear birefrin-
gence is intuitively obtained as follows: (i) if each lobe is
uncoupled with the other, then each lobe must not have
any linear birefringence. (In this case it is clearly more
sensible to consider the single lobe ‘spiral’ fibre of Fig. 1b);
and (i1) if the lobes are coupled, the core structure must
have at least two equal mirror symmetries perpendicular
with each other (this is the case of ‘twisted-cross’ or
‘octopus’ fibre [ 11, 12] see Fig. 1a and 1c.

3 Analysis by ray optics

As the mechanism of twisting relies on longitudinal total
internal reflection, the use of ray optics provides an in-
tuitive and quantitatively excellent [13] basis, both for
analysing the twisting structures of Fig. 1, and also for
providing general design criteria for their implementation.
In ray optics, a propagating mode is represented by a
bundle of rays which are totally internally reflected in a
zigzag manner between a pair of boundaries, with an angle
,, to the boundary when the guide is not twisted. The
angle y,, must be smaller than the critical angle . (the
configurations and the definitions are summarised in Fig.
2). Using the definitions in Fig. 2, we have

sin Y, = /1 — (B/B)* =sin /1 — B <siny,  (6)
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So, the incident angle ¥, corresponds to a specific value of
B i.e. to a specific mode.

<l

. -1
sin /B
U
Fig. 2  Diagram of the propagating-wave vector 8 and the wave vectors
By =kony, By =kon,

kg is the wave number in vacuo. V2 = pi — B2 B = (B* — BABI — B3y = W¥/V2
The critical angle  is defined as sin . = V/f, = J2An/n

The boundary between the lobed core and the inter-
mediate cladding is shown schematically in Fig. 3. The
totally internally reflected ray is incident from the
untwisted section of the guide onto the boundary of the
twisted guide with an angle ¥ . to the boundary, as

wi =l//mirr (7)

where the double sign corresponds to the reflections at the

Vm e Tr

boundary — &

Trz

Fig. 3  Configuration of the boundary between the core lobes and the
intermediate cladding

7: the twist rate, n: normal to the boundary and r: the radius from the axis of the
twist
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front and back boundaries. To ensure total internal reflec-
tion, the angle ¥ ., must be smaller than the critical angle

lpl"

l//i < lpc (8)
Thus, we have the maximum realisable twist rate as
Tmax < (lpc - lpm)/’o (9)

where r, is the outermost radius of lobes from the twist
axis. 1,,,, is the maximum twist rate for which both rays
propagate and for which we have 100% twisting efficiency,
by twisting at faster rates the twisting efficiency is reduced.

As the incident angles on the twisted boundary ¥, do
not correspond to any eigenmode of the twisted wave-
guide, the field is no longer stationary. The field profile
contains higher-order modes, but it changes periodically
by an inverse of the periods, Af; as:

ARy =1Bs — B_| =2B,try, (10)

This equation is obtained from eqn. 7, and the definitions
of B, are

1 =B —y) (1)

The field spread out into the intermediate cladding is
mixed up with the field from the neighbouring core. Thus,
this component cannot be twisted. This portion of power
U. is estimated as

e‘ZWd,

Ve=awr 71 (12

where W is the decay constant in the cladding, d, is the
half effective thickness of an intermediate cladding, and r,

is the half effective thickness of a core lobe, where the field -

is assumed to be uniformly distributed.

In ‘spiral’ fibres, if the axis of twist is in the core lobe, a
part of the field cannot be twisted because it sees no reflec-
ting boundary, as shown by the light area in Fig. 4a.

untwistable
radius

axis of twist

lobed core radius r,

untwistable
radius r,

Fig. 4  Cross-sections of (a) ‘spiral’ fibres and (b) ‘twisted cross’ fibres
Only the dark area can be used for the twisted guide
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In ‘twisted-cross’ fibres, the field penetrates into the
cladding by W~'. Thus the fields of the neighbouring lobe
are mixed up and the fields cannot be twisted. This
‘untwistable’ radius, r, may be estimated simply

1

where « is the half angle of the lobe (Fig. 4b). Thus rota-
tion may only be obtained in the dark area in Fig. 4b.

<rg (13)

4 Numerical examples and discussion

Numerical examples of the characteristics of ‘twisted-cross’
fibres are calculated using the preceding relations. Field
profiles are roughly estimated as if each lobe is itself a
monomode fibre. Because the field distribution of the rec-
tangular dielectric waveguide is very similar to that of the
step-index fibre [14], the propagation constant is esti-
mated from the results for circular fibres [15].

The numerical examples are given for ‘twisted-cross’
fibres, however, the methods can also be applied to other
form-birefringent fibres, including the ‘spiral’ and octopus’
fibres as in Fig. 1.

Fig. 5 shows the optimum lobed-core radius to obtain

2.0

T/mm

0.8

0.6

maximum twist rate |

0.4

0.2

0 5 10 20 30 40
lobed-core radius r, , pm
Fig. b Maximum obtainable twist rate as a function of the lobed-core
radius and the index difference
x = 30"

. An
(i) — =0016
n

i)  =0008
{ii) = 0004
(iv) =0002
the maximum twist rate. The optimum appears from a
compromise between poor capability of field confinement,
at small radius, and the spilling out of field at the outer-
most radius, where the peripheral twisting speed is
high. The optimum radius decreases approximately as
(An/n)~ 2,

The ‘undulation length’ at the maximum value of the
twist rate is shown in Fig. 6. This phenomenon is very
similar to the undulation of a beam obliquely incident to a
graded-index medium. The ‘undulation length’ is inversely
proportional to the twist rate, as shown in eqn. 10; thus we
will have longer values than that shown in Fig. 6, if the
twist is slow.
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The untwistable power, estimated by eqn. 12, is shown
in Fig. 7. Of course it can be much improved by increasing
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Fig. 6  Undulation length of the field profile at the maximum twist rate
as a function of the core radius and the index difference
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Fig. 7 Ratio of the untwistable power to the guided power as a function
of the core radius and the index difference
x =30
. An
iy —=0016
n
(i) =0008
(i) =0.004
(iv)  =0002

the index difference. Remarkably, we have an untwistable
power of —25 dB at the optimum twist rate for all values
of the index difference.

In Fig. 8 the untwistable radius is estimated by eqn. 13.
In the area where r, > r,, the twisting of the field cannot
be achieved. Thus, the excitation from an incident beam,
assumed to be uniform within the outermost radius ry, is

252

effectively done in the dark area in Fig. 4b. The simplest
estimation of the excitation efficiency (i.e. the ratio of the
dark area to the full area within r,) is shown in Fig. 9.

unusable area (ry>ry,)

untwistable radius r,, pm

1 A 1
0 ) 10 20 30 40
lobed-core radius r, um
Fig. 8  Untwistable radius r,, calculated by using eqn. 13. No twist of

the field will be achieved in the region where r, exceeds the outermost radius
To
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Fig. 9  Excitation efficiency assuming uniform excitation within the out-
ermost radius r,
o = 30"
An
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(1) = 0.008
(i) = 0004
(iv) = (.002
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The maximum twist rate, the untwistable power and the
excitation efficiency are estimated as a function of the half-
lobe angle o for the optimum outermost radius, ro, for
each value of the index difference (An/n) (Fig. 10). The exci-
tation efficiency and the untwistable power remain

2.5

2.0

maximum twist rate  T/mm
-
wn
T

0.5
(iv)
0 1 1 1
10 20 30 40
a half-iobe angle, degree
0~
ﬁ\
\
-10 | excitation etficiency \
@
o untwistabie power
220
=30+
40 1 1 1 1
0 10 20 30 40
b halt-lobe angle K degree

Fig. 10  Maximum twist rate (a) and excitation efficiency and untwist-
able power (b) as a function of the half-lobe angle, at the optimum value of
ro to An/n for the maximum twist rate

. An
i) — = 0016 (r, = 7 um)
n

(i) =0008( =10pum)
i) =0004( =15pm)
iv)  =0002( =20 um)

approximately the same, irrespective of the value of {An/n).

From these results, we may say that o« = 30° is the
optimum for every practical value of An/n.

The excitation of these fibres from conventional
HE,,-mode fibres, is a problem of a trade-off between the
untwistable power (i.e. extinction) and the excitation effi-
ciency. A tapered coupler might be devised, but it would
be difficult to fabricate.

To improve the confinement, it is desirable that the
index of the intermediate cladding should be chosen to be
less than the surrounding cladding, and that the portion of
the lobed cores within the untwistable radius should be
removed.

As a result, we may have a fibre configuration which
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has a ‘clover-leaf’ lobe structure (Fig. 11). Although the
numerical values are shown in Fig. 11 only as an example,
we can design with other parameters.

fo=7Hm

Fig. 11 Example of the optimum design of a clover-leaf circularly
birefringent fibre
© = 2T/mm

Reo > Ny > My

Almost all the parameters shown here are applicable to
the ‘spiral’ or ‘octopus’ fibres with little amendments.

If each lobe is itself regarded as a monomode fibre, then
the normalised frequency V, which corresponds to the
optimum twist rate, is about 3.5 for each An/n.

This means that the design conditions obtained here for
circularly form-birefringent fibres may be readily satisfied
with the conventional parameters of monomode fibres.

The ‘spiral fibre’ should be the simplest to implement.
The ‘twisted-cross’ fibres are more complex, but because
they have a symmetrical structure, it seems easier to
remove any residual linear birefringence which may be
duce to the deformation of core, or to the clasto-optic
effect. The influence of the elasto-optic effect [1] and of the
Faraday rotation, if they exist, may be linearly added, as
long as these effects are smali {7].

For more detailled discussion, it is indispensable to cal-
culate the exact field profile.

5 Conclusion

We give the principles for designing circularly form-
birefringent fibres and, as examples, we propose the ‘spiral’
and ‘twisted-cross’ or ‘clover-leaf’ fibres. The multicore
fibres have been analysed and also fabricated by many [11,
12, 16]. We believe, therefore, that it should be relatively
easy to realise circularly form-birefringent fibres which
exhibit reasonable characteristics.

These fibres should be effective in obtaining high
circular birefringence because they have 100% twisting
efficiency.
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8 Appendix: Analysis of the twisted-cross fibre by
the coupled-mode equations

8.1 Introduction

The coupled-mode formalism is a very effective tool for
calculating the birefringences due to small changes of the
index profile. This formalism is applicable to the analysis
of the ‘twisted-cross’ fibre (Fig. 1a) when the index differ-
ence is very small and the field profile 1s almost uniform.

8.2 Generalised coupling coefficient to a line integral
The coupling coefficient between two electric fields e and
is given by Snyder and Young [17] and it is generalised to
include the three-dimensional index gradient as

48 (Ve Vng)dA
h 2B( 48 - e dA

where ¢ is the standard distribution, and e is the perturbed
distribution but is assumed to be expandable by é.

This equation holds for the coupling problems including
the index profile and its gradient. §§ is an averaged propa-
gation constant between two modes.

In practical cases, the configuration of the index dis-
tribution is made by abrupt step changes of index. In these
cases, the numerator in eqn. 14 has a nonzero value only
on the surface of the step index change, so that it is conve-
nient to convert it into an integral for such surfaces only.
The integrand of the numerator in eqn. 14 can be rewritten

(14)
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in terms of the local normal and tangential co-ordinates, n
and t, as shown in Fig. 12, as

N . Plneg dln ¢ de,

¢ -Vie-Ving)=e, o e, +é, an on
. 0ln g de,
“Ton o (13)

where the third term in the right-hand side is negligible
because e, does not have an abrupt change at the surface.

Fig. 12

Configuration of the surface of a step-index change

Integrating eqn. 15 by parts locally on the normal axis
n, and summing up for the whole cross-section, we get

dé,0lIne de, Ae
- - dA = — - di 16
L an on " fﬁ ne " t1e)

The second term is obtained by converting the small area
dA to dndl. When we then integrate by dn, we assume that
the field parameter e, de,/0n is continuous on this surface,
and we also rely on the fact that d In ¢/0n has a nonzero
value only on the surface of the step-index change. Then,
the coupling coefficient « is given by

de. A
_J(_en_ﬁed,

on ¢ "
2Bfate dA

(17)

K=

8.3 Application to twisted-cross fibres

Consider fibres with core structure as shown in Fig. la.
The core consists of lobes with a certain index interlaced
with those of a smaller index. This structure is twisted uni-
formly along the z-axis by 7z. Apparently, this structure
(Fig. 1) has no linear birefringence. The normal of the
surface of step index change is shown in Fig. 3, and thus

2 _dyd =l
on  dndy  dn oz
Assume that the index difference A¢ is much smaller than
the index difference between the core and the cladding, and
that the test fields are two HE,;; modes linearly polarised

in the x- and y-directions.
On the surface, the fields normal to the surface are:

é,=E, J(rje ¥ sin « (19)
e, = E J(r)e” " cos (20)

(18)

where J(r) is the radial field distribution. Thus, using eqn.
18 and the relation in Fig. 3
oe,
on

0J 4
= sin a[T cos tr + (—if)J sin tr]e““: (21)
dy
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The first term in the right-hand side can be ignored as the
field is almost uniform. Summing up the eight radial sur-
faces (Fig. 1), the coupling coefficient « is given by

. L Ae [T,
8(sin o cos a)if)r - Jr dr sin 22 A
2 = —8—1’i (22)
n

K=

ro
28 - 2n J Jirdr

0
where r,, is the radius of the core.

It should be noted that the derivation to the tilted

normal is essential to obtain the imaginary coupling coef-
ficient. The eqn. 22 is obtained regardless of the field dis-
tribution.

IEE PROCEEDINGS, Vol. 133, Pt. J, No. 4, AUGUST 1986

The maximum value of x for the above case, is obtained
at a = 45°. By increasing the number of lobes, « increases,
but it saturates to

k=) (Aefe) - 1i (23)

for an infinite number of lobes.

8.4 Conclusion

The coupling coefficient obtained is very small. The twist
efficiency is of the order of Ag/e( = 2An/n). This is because
no confinement in the lobed cores is assumed, and because
only small amounts of reflection from the small index dif-
ference Ac/e are utilised for coupling.
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