Self-imaging by ring-core fibers

Th. Niemeier, S.B. Poole*, and R. Ulrich
Techn. University Hamburg-Harburg
Harburger Schloss-Str. 20, D-2100 HAMBURG 90,
Federal Republic of Germany, Tel. 00494077170 879 - Direct Line.
*Dept. of Electronics, University, Southampton, UK

Abstract

A tubular dielectric waveguide of typically 100 \(\lambda \) diameter and single-moded wall-thickness can produce single or multiple images of one endface on the opposite one. Applications, as single-mode \(N \times N \) directional couplers are possible.
Self-imaging by ring-core fibers

Th. Niemeier, S.B. Poole*, and R. Ulrich
Techn. University Hamburg-Harburg
Harburger Schloss-Str. 20, D-2100 Hamburg 90,
Federal Republic of Germany, Tel. 004940 77170 879
* Dept. of Electronics, University, Southampton, UK

Summary

In certain multimode optical waveguides, a reconstruction of an arbitrary input light-distribution may occur in cross-sectional planes further down the guide, resulting from constructive interferences of all excited waveguide modes. This 'self-imaging' effect is known to exist in parabolic-graded-index media, and in planar and rectangular step-index waveguides.¹

We present theoretical and experimental results on a new type of self-imaging waveguide: The radially single-moded ring-core fiber (Fig.1). The high-index 'core' region of this fiber is a thin-walled dielectric tube, with lower-index inner and outer cladding regions. We show, that a monochromatic light-distribution coupled into one end-face of such a tubular core will be reconstructed in other cross-sectional planes of the guide by phase coincidences of the excited waveguide modes. These reconstructions are Fourier- and Fresnel-images of the (input) object light-distribution. Thus, ring-shaped linear objects can be imaged by the fiber. Fresnel double-imaging may permit applications as single-
mode fiber-optic 3 dB-directional couplers, and higher-order imaging the construction of $N \times N$ couplers.

Image formation in a ring-core guide can be explained conveniently by a simplified, scalar theory and the assumption, that the diameter $2R$ of the ring-core is much larger than the wavelength λ, so that the guide may be treated as a wrapped-up single-mode slab waveguide. An arbitrary light-distribution $A(r,\theta)$ in the object plane can be represented as a superposition of all waveguide modes, i.e.

$$A(r,\theta) = \sum_m a_m F_m(r,\theta)$$

with complex amplitude coefficients a_m (time factor $\exp(-i\omega t)$ omitted). After propagation through a distance z the light-distribution becomes

$$B(r,\theta) = e^{i\beta_0 z} \sum_m a_m F_m(r,\theta) e^{i\phi_m}$$

Here, $\phi_m = (\beta_m - \beta_0) z$ denotes the phase difference between the m-th and the fundamental mode ($m=0$). In good approximation we have

$$\phi_m = -\pi m^2 z/L_1 = -\pi m^2 h$$

and

where $L_1 = N(2\pi R)^2/\lambda N$ is the effective index of the equivalent planar guide.
At a distance $z=L$, $(h=1)$ we get $B(r,\theta) = A(r,\theta+\pi)$ which is a single inverted self-image. The simplest multiple image is at $h = 1/2$ where we find

$$B(r,\theta) = \frac{1-i}{2} A(r,\theta) + \frac{1+i}{2} A(r,\theta+\pi)$$

(4)

This is a double image. Higher-order images are formed in an analogous way.

In order to demonstrate these self-imaging properties, we have prepared a ring-core fiber by depositing high-index core glass ($\Delta n = 0.4\%$) on the inner wall of a silica tube, fitting a silica rod into it, and pulling this combination into fibers of various core diameters. Suitable lengths were cleaved, and TEM_{00} light of a tuneable dye laser was focussed as a diffraction-limited spot onto a point $(\theta=0)$ of the end-face of the core. Fig. 2 shows the observed images for $h=1; \ 1/2; \ 1/3; \ 1/4$.

For the spatial resolution we got about 4 μm and 2 μm in the azimuthal and radial coordinate, respectively. The latter is limited by the radial field distribution which depends on both, the index-difference and the core's wall-thickness. These spot sizes fit well with typical single-mode core diameters. We therefore anticipate directional couplers by jointing single-mode fibers to the ring-core fiber.

Figure captions

Fig. 1: Schematic view of ring-core fiber, with laser beam focused onto input plane at $\theta=0$, and single inverted self-image ($h=1; \theta=\pi$) in output plane.

Fig. 2: Self-images of a single object point
(left: schematic, right: photographs)

(a) $h = 1$ ($L = 105.6$ mm, $2R = 65.5 \mu$m)
(b) $h = 1/2$ ($L = 50.4$ mm, $2R = 65.5 \mu$m)
(c) $h = 1/3$ ($L = 75.0$ mm, $2R = 97.0 \mu$m)
(d) $h = 1/4$ ($L = 57.6$ mm, $2R = 97.0 \mu$m)

In all cases $\theta=0$ in the input plane