AN ASSESSMENT OF THE SPATIAL-FILTERING TECHNIQUE FOR THE
MEASUREMENT OF REFRACTIVE-INDEX PROFILES IN OPTICAL
FIBRE PREFORMS

I. SASAKI AND D. N. PAYNE

DEPARTMENT OF ELECTRONICS, UNIVERSITY OF SOUTHAMPTON,
HAMPSHIRE, SO9 5NH

The performance of optical transmission systems is
strongly dependent on the details of the fibre refractive-
index profile. In previous papers1,2 we have shown that
non-destructive measurements performed on both single-mode
and multimode fibre preforms by a spatial filtering
technique can reveal the index profile with remarkable
accuracy and resolution. The method involves imaging of
the transversely-illuminated preform by means of a high-
quality lens and modulating the transmitted light in the
lens focal plane with any of a number of types of spatial
filter. With the aid of a small photodetector placed
in the image plane it is possible to isolate individual
rays in turn and to determine their deflection as they
traverse the preform. The index profile is reconstructed
from this deflection data by performing an integral
transform.

In this paper we present an assessment of the
accuracy and spatial resolution of the preform profiling
technique when used as a routine measure of fibre quality.
A number of factors affecting the measurement precision
have been identified by performing a series of experiments
on different preforms. It is shown that, contrary to
expectations, the collimation of the illuminating beam
is not of critical importance. Fourier analysis of the
spatial frequency content of the deflection profile
shows, however, that the detector size and the lens
numerical aperture and quality are the critical factors.
Furthermore, significant ellipticity in the preform can
cause an error in the computed profile owing to the
mathematical assumption of circular symmetry.
Methods whereby the effect can be minimised are outlined.

As a result of the study, a number of improvements have been implemented which have increased the accuracy and resolution of the spatial-filtering technique.

Results are presented which demonstrate the ability of the method to predict single-mode fibre cut-off wavelength and multimode fibre parameters from preform data. A major advantage is that the measurements can be performed nondestructively along the length and variations in profile observed. Moreover, the technique is applicable to fibres and preliminary results are presented of index profiles obtained directly from the fibre.

References
