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SUMMARY
An analysis is given of coupling between modes in a curved, cylindrical, multi-
mode optical fibre and very simple forms for the coupling coefficients are obtained.

In general HE modes couple strongly to those designated HEZ,m; HEZ,m-l; TEO,m;

l,m

and TEO,m-l' In particular the HEll

TEOl modes and coupling to higher modes can, to first order, be neglected. The degree

of mode conversion is largely restricted to a periodic exchange of energy, between

mode couples almost exclusively to the HEZl and

these few modes, along the length of the fibre with a periodicity which can be less
than lmm. Excellent agreement is obtained between theory and experiment. This form
of quasi-single-mode operation is reflected in very low values of pulse dispersion
but is very sensitive to stress in the fibre. The significance of these results in

terms of mode conversion is discussed.

1. INTRODUCTION

It was originally expected that propagation in long optical fibres would be

dominated by scattering due to imperfections in the core and at the core/cladding
interface. However it has been shown possible to make fibres very accurately (Payne,
D.N. and Gambling,W.A. 1973), for example having a change in outside diameter of less
than lum in 100um over lengths of several hundred metres, and in this case their
behaviour can become similar to that of an overmoded waveguide. However, in solid-
core fibres, in addition to geometrical imperfections, there is also the possibility
of optical inhomogeneities due to stress. Nevertheless many of the features of the
observed propagation effects, such as the time dispersion of short optical pulses,

can be explained in terms of a simple ray model (Gambling,W.A., Dakin,J.P., Payne,D.N.

and Sunak,H. 1972), but the mechanism of the residual mode scattering is not understood.

Liquid-core fibres have the advantage that not only are they available with very
low loss (<6dB/km) but stress effects in the core are absent and a more fundamental
study of propagation and mode conversion is possible. Early measurements showed a
strong dependence of mode conversion on bend radius of the fibre (Gambling,W.A., Payne,
D.N. and Matsumura,H., 1972) but it was subsequently discovered that this was largely
due to distortion of the cladding since the fibre was wound on the supporting drums
under tension (Gambling,W.A., Payne,D.N. and Matsumura,H.,1973a). An investigation
of undistorted liquid-core fibres has produced some interesting results.

By adjusting launching conditions so that an input Gaussian beam excites mainly
the HEll mode, quasi-single-mode propagation has been observed in fibres of 57um core
diameter and in lengths of hundreds of metres. The launching source is a He/Ne laser
operating at a wavelength of 0.633um so that the degree of over-moding is indicated
by the ratio core diameter/wavelength of 90 corresponding to a normalized frequency
ve130. By changing the launching conditions higher-order modes can be launched and
good agreement between theory and experiment is obtained for the output mode angular
distribution for all modes up to HEI7 (Gambling,W.A., Payne, D.N. and Matsumura,H.,

1973b). These results.indicate that the amount of scattering, particularly due to wall
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imperfections and asymmetries in the core, are negligible over the lengths measured. .
In straight liquid-core fibres it should therefore be possible to achieve propagation
with only a small amount of mode conversion. However for laboratory measurements over
appreciable lengths the fibres must be coiled on supporting drums and the resulting
curvature of the fibre axis must inevitably produce some mode conversion and in order
to estimate its magnitude and effect, as well as to differentiate between the effects
of curvature and stress, an analysis has been made of optical propagation in a perfect,
curved, cylindrical, multimode fibre.
Analyses of the mode conversion caused by wall imperfections have previously been
reported (Marcuse,D., 1969; Gloge,D.,1972) and Marcatili (1969) has studied the effect
of bends in waveguides of rectangular cross-section under the assumption that only TEM
modes are excited. The analysis described here considers coupling due to bends in fibres
of circular cross-section. For a beam incident on the fibre at normal incidence it has

been shown theoretically (Snyder,A.W., 1969b) that only HE modes are excited and- this

has been confirmed by experiment (Gambling,W.A.,Payne, D.N%,:nd Matsumura,H., 1973b).
The following analysis assumes that only HEl,m modes are launched and also that the
difference between the refractive indices of core and cladding is small compared with
unity, thus enabling the core mode approximation to be invoked.

2. FIELD ANALYSIS OF THE CURVED CYLINDRICAL FIBRE

The first step is to perform a field analysis from which coupling coefficients
between the HEl,m modes and the HEZ,n and TEO,n modes are derived. In order to describe
the electromagnetic fields in a curved cylindrical dielectric waveguide the curvilinear
cylindrical co-ordinates (r,8,2z) are used, as in Fig.l, where the longitudinal co-
ordinate z is the distance along the curved axis of the waveguide and r,8 are polar co-
ordinates in the plane normal to the curved axis. The incremental length of a ray in

such a system is
(@)% = (an) %+ r¥(d0) %+ (/R ) *(dz) (1)

where 1 = " (r,8) = r cos® and Ro is the radius of curvature of the fibre axis. Making
the usual assumption of a sinusoidal time dependence of angular frequency w Maxwell's
equations for the field components can be written:

10 J .
r aO(hEz) b Oz<EQ) - -quhHr

D - SZ(hE) = -juuhiy
! e 355 s, g
% %E(th) gz(HQ) = -jw¢hEr
S - Sy - e,
2 (et L (n )= -jueE,
where h = 1+ '[/Ro (3)

The longitudinal components Ez and Hz can be written from eqn.(2) in terms of the

transverse components

JweEz Vt-(Ht X z)

47t-(ft x E)

quHz

It may also be shown from eqn.(2) that

(4)
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E - — - -

jwe zzt = Vn:Dﬁl'(Ht x zﬂ + mzueh(Ht X z) s)
L)H _ _ _ _

Jwp T;L = -Vt[hvt'(Et X zil - wzueh(Et X z)

where Et’ ﬁt are the electric and magnetic vectors in the transverse direction,
respectively,vt is the differential gradient operator operating on the transverse
components and Z is a unit vector.

Making the usual assumption of a small difference between the refractive indices

(nl,n ) and d1e1ectr1c constants (€ ,62) of the core and cladding, respectively, so
that & = (n /n ) << 1 and assuming an infinitely thick cladding, the property of
orthogonality of_the fiilds Elves. 1 som o= /' m
) e, X h/,m,-z r drde = . .
- o " ’ (6)
e,n = (WeN™h, xz
where Elm, Fl'm' are the normalized eigenfunctions of modes {m; ¢;m' of the transverse

field, respectively.
The transverse electromagnetic field of the curved waveguide is now expanded in

terms of the characteristic modes of the straight waveguide:
AN N
t =0 =0 {m f{m (7)

it Z; [m(r,Q)

where Efm and HZm are the expansion coefficients and are functions of z. For clarity
and ease of writing it is convenient to represent the mode designation /,m by p;
and /',m' by q.

Substitution of eqn.(7) into eqn.(5), and using the orthogonality property as

given by eqn.(6), results in the following coupled equations for Ep(z) and Hp(z):

JE
—P = - A H
vz Z: P4 q
oH i (8)
Sp - - )Y B_E
Jz q P9q
where - = € <7 /h -, -
A = jwe he e da - — - e )+e da
pq 194y, "a"%p qu.‘s (@Vereg p

(9)

B = juE \ehh -h da - hhhd
pq JElS q p wa SV(V ) é

qu and qu are the coupling coefficients between modes p(i.e.f,m) and q(¢',m').
For a weakly-guiding structure it is a straightforward matter to derive the self-
coupling coefficients and the propagation constant Bé of mode p is obtained from the

square root of the product of the self-coupling coefficients giving

2 2g 2
1 u €,(l-a)w,“0
% 1
A= jo(pe) 1 -l-B- + = / 2k
op ju(ne,) { . Ve, S 0
X 1-a 2 2 2
B = julpe)®ll + — @ - u 2k ?)
I A
where e = u /k
P |%
k = pw pel
P = core radius
2
@ = KGR (W) /Ky (e
K[ = modified Hankel function
W ,u = eigenvalues which are related to the normalized frequency v as:
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2 2 2, 2
ve = (Pw) uclb = up + wp (11)

The normalized propagation constant Bp= fﬁé is given by

2 €y(1. - ¥
8 jk[{l -[EL 4 2il=a) o 2 2]/2k2} (1 - u Zykde + gy 2]
P a €2 o p p p a p

31 - 6 Y/a) (12)

R

1

jk(1 - sz) far from cut-off

This result is identical to that for the propagation constant of a straight weakly-
guiding fibre because the wp are large except near cut-off.

If the fibre is excited by a Gaussian beam or a plane wave from a laser then only
HElm modes are launched and this assumption will be followed here. Let the various
quantities corresponding to the TEOm modes be denoted by the subscript [Om] , those
for the HE, modes by <1lm> and for the EH

lm
or TM sets of modes are coupled to the HE

1 modes by £1lm» . Since only one of the TE
modes only TE  modes will be considered,
1m Om

but similar results are obtained when coupling to the TM_ modes takes place. Then,

using eqn.(9), the coupling coefficients may be obtainedOan are given in eqns.(13)
which are contained in the Appendix.

If the coupling coefficients for the curved fibre are studied it is seen that the
HE2 * T O, modes are coupled to the HEl, modes. In eqn.(13) the second term of
%1H®K% ]15 neglected since (1/2k )<< 1 and the following terms in the square brackets
are all of the order of unity. (For the fibres with which we are concerned f‘vSOum
for which (1/2k2)= 2xlO-6 and even when f Sum, which is very small for a multimode
fibre (1/2k2) = 2x10 .) Similarly the coupling coefficients A QXL ry A(l»m><<1
G,nPﬂ, and <1I¢@-r»can also be neglected since they are all small compared w1th the
self- coupllng coefficients of eqn.(10). As a result the form of coupling turns out to
be very simple:

A<17TTP<2:U> - AG-’[TP[O’U]= Bd:n?arn): BG-:“N:O’D]
_ 2jk/Rg , ua ﬁVq

(q, a )2 (14)
<1’m>q' (%1 n.P l)
where q' denotes the HE and TE modes.
2,m O,m

Numerical values for the coupling coefficients have been evaluated and are given
in Table 1 for a normalized frequency v=100 which is a typical value for a multimode
fibre. The factor 2jk/Ro has been omitted from the Table. The coupling coefficients
along a diagonal line are so much larger than the others that a coupling diagram, as in
Fig.2, can be drawn.

It is interesting to compare this result with that for a straight waveguide having
a wall fluctuation. By considering a slab waveguide with slightly distorted interfaces
it has been shown (Marcuse, D., 1969) that in this case also coupling occurs mainly to
nearest neighbours.

3. DISTRIBUTED ENERGY TRANSFER WITH THE HE MODE

11
In order to achieve maximum transmission distance and bandwidth in an optical fibre

waveguide a laser source must be used and the input beam must be carefully controlled
(Gambling,W.A., Payne, D.N. and Matsumura, H., 1972). A simple and convenient technique
is to operate the laser in its lowest-order transverse (TEMOO) mode in which case the
spatial distribution of the beam is Gaussian and if it is launched into the core

symmetrically then only HE1 o modes are set up in the core (Stern,R.J., Peace, M and
b
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Dyott,R.B., 1970). Using Snyder's approximate field equations (Snyder,A.W. 1969 a and b)

it is possible to develop an expression for the relative power P coupled into the

various HE,  modes: IRSCRIEY 1 3 (U R) _R;__’m
o {0 L
S“ K (W R) r2 2
+ xcn) x exp[- Wz] RdR} (15)

where W, is the spot size of the input beam.
Values of P1 o have been calculated for a range of input beam widths assuming a
’
typical normalized frequency of v=100 and are shown in Fig.3. It can be seen that for

wo/F = 0.66 as much as 97.3% of the input power is taken up by the HE . mode and only

11

0.67% enters the HE12 mode. This condition is easy to achieve in practice (Gambling,

W.A., Payne, D.N. and Matsumura,H., 1973b) and it will therefore be assumed in the

following analysis that a virtually pure HE mode is launched into the fibre and the

effect of the distributed coupling into thel’i‘EOl and HEZI modes will be considered.
From the coupling equations the following equations can be obtained:
Jan |
= - %L pan et fL et ot % oo o, P
s}
%Q = %,p a, k0" <y
B}
Al - Yo, 541,50 %, 10, o, 7 (1)
M,
Jdz (BQ’D(1’D%:D+ B<111><.2’1)E(2:D+ %’D[O’HEP’]:])
M = -(B E + B E
32 2,0, 10,0t %, ne, 0, 1
*fo, 1
=z %, a, v o, 1o, i,
where the coupling coefficients between the HE21 and TEO1 modes are taken to be zero.
Now using eqns.(10) and (14) it is possible to simplify eqn.(16) to:
ﬁ = «A, H - A _(H, +H)
Jz 1171 1242 0]
%L-zA H, - A, (H, + H)
dz 1271 2202 0]
(17)
iﬂl = -B. E. -B _(E, + E))
dz 1171 12072 0]
m)=-213 E, - A, (E, + E)
Jz 1271 22072 0
where, again for simplification, the new suffixes 0,1,2 are used to represent,
respectively, [0,1],€1,1> and ¢2,1) that is they refer to the TEO,l’ HEl,l and HEZ,I

modes. For further simplification let

E,+E. = E

2 0 3
H2 + HO = H3
and write E, = a, + b,
1 1 1 (18)
H, = a, = b, where i=1,3
i i i

then
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1
5z A% T Aas
223 =-24 - A
oz “M12%a 2223
Obl (19)
5z APt Apgbs
c)b3
5z - Ao Tt AgPs
The general solutions of eqn.(19) are as follows:
a, = (xl + A22 - Alz)Clexpxlz + (Kz + A22 - Alz)Czexpkzz
ay = (Kl + A11 - 2A12)C1expxlz + (xz + A11 - 2A12)Czexpx22

(20)
b1 = (Bl - A22 + A12)C3expﬁlz + (62 - A22 + AlZ)CaexPBZZ

b3 = (Bl - A11 + 2A12)C3expﬁlz + (62 - A11 + 2A12)C4exp522

where
28 .
1] _ +[ ) 2 2]
262} (App + 859 Z|(A); - A" +8A),
- +
(A + 45 T A (21)
2 3
1 + 2 2] z
2x2}" Ay * A 2l Ay - 80"+ 8a,
= - by
= c(Ap T Ay T A

and the constants C1 to C4 are determined by the boundary conditions. From eqns.(10),

(14), (20) and (21) it can be shown that the quantity b represents backward waves in
the fibre but these are negligible compared with forward-travelling waves since the
forward HEll mode must predominate at the input, so that Bl=b2=0 at 2z=0 and hence
C,=C,=0. The b terms can thus be neglected and inserting the boundary conditionms,

37
a,=1, a3=0 at z=0 into eqn.(20) gives:

1
¢, =22 "M - 2A1 9
(N, =n,) (A, -A-A )
1 72 11 22 12 (22)
e . )‘1 + All - 2A12
20 O (A =Agy0mAy5)
Finally the fields in the curved waveguide are:
EtAf = Bxl + All)expxzz - (xz + All)expklé]el
+ Alz(expxzz - expllz)(eo + e2) (23)
HtAf = Bxl + All)expxzz - (xz + All)expx1 ]h1
+ Alz(expxzz - exp?\lz)(hO + hZ)
One check on this result is to let Ro)oo when the result obtained is:
= _ - . % 1 2
Et = e exp[-;w(uél) (1 - 2ep )z]
T - T : % 2 (24)
Ht = h1 exp[-Jw(uel) (1 - %Qp )z]

Eqn.(24) is, as expected, identical with that obtained from the analysis of a straight,
weakly guiding waveguide, i.e. with 8<«<1.

Having obtained expressions for the fields in the curved waveguide it is possible
to study the energy transfer between modes by calculating the flux density from the

time-averaged axial component of the Poynting vector, S, = %Re(E X E*)z (25)
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As may be seen from Fig.l the energy distribution is expected to be symmetrical
about the 8=0,n direction so that the energy flux density will be found for the values

6=0 and 6=%, i.e. in the plane of curvature. In the following the primes on symbols

denote real parts, thus Ail = m(pél)%(l - %sz)

Now in those longitudinal positions wh?re (Ki - x&)z = 2mn where m is an integer
then s, = (él/u)/ze]2 (26)
and the energy distribution corresponds to that of the HE mode.

1,1
On the other hand when (Ki - xé)z = (2m + 1)=® then

3 -2 ] 2
- 2 oyt ] ' ] + [
SZ (él/u) (>\1 xz) [(7\1+7\2+2A11)e1 X 2A12(eo+e2)

(29)
Eqn.(29) shows that in a fibre which is not too sharply curved the point of

maximum energy density shifts away from the centre of curvature by an amount which
depends on the bend radius. The energy distribution in the ©=0,% direction, for a
normalized frequencyv =100 and normalized radius of curvature Ro/F =5x104, for four
values of (k'-xé)z, is shown in Fig.4. It can be seen that starting from the HE

1
distribution an outward shift occurs as coupling to the HE and TEO

11

21 modes takes place

followed by a complete transfer back to the HEll mode again.

The total power density Pt in all modes can be obtained using eqn.(25) by

1

integrating over the entire cross-section from r=0 to r= oo, thus

Pt = S Szr drde (30)
In this way the rate of power transfer from the HE11 mode to the HE21 and TEO1 modes
can be derived: B
P = Lot len+oyy T 1t P20 (31
where ) 2 2
= (] ' [ ' Yy 4 ' ' ' '
P1 (.\1 7\2) [()‘1”‘11) + (>\2+A12 2(x1+A]1)(x2+A11)
] ]
cos(xl-xz)z] (32)
ohy,)"
P = 12 2 [1 - cos(x'—h')z]
2,0 Zx'l-x'z) 1 72
and Pl + PZ,O = 1 (33)
These equations confirm that P2 0 is zero at (xi-xé)z = 2mm and a maximum at
’

(A'-A')2z for various normalized radii of curvature (R /p) at a normalized frequency
1 72 o P

v=100. Taking one case as an example, if the core diameter is 50um and the bend radius
is 25cm then Ro4o =104 and P2,0 rises to a maximum value of 0'75Pt' For Ro>2m the

power transfer is negligible and the fibre behaves as a straight waveguide. The power
transfer is shown in Fig.5(b) to become greater as the normalized frequency is increased.

It is also useful to compute the ratio Q of the total power which is carried in

the core and from eqns.(23) and (30) it is possible to show that: 2
- ul 2 '1] 12 ' ] ‘2[ . ' ] ig) -1
Q = P -(v ) (l-a1 ) - 4A12(K1-l2) 1 - cos(kl-kz)z 7 (1-(12 )y -
2
Ul) -1
(v (1-a; ) (34)

The variation of Q with z and v is shown in Fig.6(a) and (b). Q is a minimum at
(xi-ké)z = (2m+1)® and increases with v, as would be expected from the mode conversion
results of Fig.5. 1In order to show the effect more clearly Fig.6(a) is calculated for
v=20. From the value of Q at z=0 it is found that the proportion of the HE11 mode power
which is carried in the cladding is 0.06%. The minimum value of Q is given as a function
of v in Fig.6(b) and it may be seen that when v exceeds about 80 the penetration of the

fields into the cladding is negligible.
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4. EXPERIMENT

It might be expected that there would be some difficulty in observing experimentally
the effects predicted in the above theory because in most fibres propagation is
dominated by imperfections in the core/cladding interface, inhomogeneities, stress and
birefringence. However, as mentioned earlier, core inhomogeneities and birefringence
do not affect a liquid-core fibre, while by producing the cladding capillary on a
precision fibre-drawing machine the interface can be made almost perfect so that, as
we have already shown (Gambling,W.A. Payne,D.N., and Matsumura,H., 1973b), discrete mode
propagation over appreciable lengths can be achieved if care is taken to avoid stressing
the fibre in any way.

Experiments have therefore been performed on a liquid-core fibre consisting of hexa-
chlorobuta-1, 3-diene in Chance-Pilkington MEl glass tubing. The refractive indices of
core and cladding, respectively, are 1.557 and 1.485 at a wavelength of 0.633um giving a
numerical aperture of 0.45. The core diameter was 57um corresponding to a normalized
frequency of v=125, so that the fibre is capable of supporting roughly 7,800 modes. A
Gaussian beam from a helium/nmeon laser operating in a single, TEMOO, transverse mode was
launched along the axis of various lengths of fibre up to 50m, but confirmatory checks
were also made over 125m. With the lenses available the nearest it was possible to get
to the optimum beam width for the fibre Qas mo/f =0.86 (instead of 0.66) so that about
90% of the input power entered the HE11 mode. Typical results are shown in Fig.7 for a

fibre coiled loosely in a diameter of about llcm. A pure HE mode is seen at (a) and

11
this has been confirmed (Gambling,W.A., Payne,D.N. and Matsumura,H. 1973b) by measurement
of the radial intensity distribution and the angular width of the pattern. Figs.7(b) to
(e) were obtained by progressively shortening the fibre and show clearly the development

01 21
The shortening of the fibre between (a) and (e) was less than lmm as predicted by the

of the TE and HE modes and their decay again so that the pure HEll pattern is repeated.

theory. By increasing the radius of curvature to RO=IOOcm the periodic coupling length
increased to l.4cm.

Despite the low attenuation of the fibre, namely 40dBfkm at the measurement wavelength
of 0.633um (5.8dB/km at 1.06um) there was just sufficient light scattering to enable the
beam locus to be observed under a microscope. The beam locus in Fig.8(a) is along the
axis of the core at a position corresponding to the HEll mode while Fig.8(b) was taken
midway between two HEll positions and the beam has now moved close to the core boundary
on the outside of the curve. The periodic length measured by traversing the microscope
along the fibre agrees with that found by shortening it. The observations show that the
beam in a curved fibre follows an undulating path, moving from the axis to the outside
of the bend and back again.

Confirmation of Snyder's (1969b) statement that only HElm modes are launched on a
fibre by a Gaussian beam at normal incidence is given by the far-field patterns in
Fig.9(a) and (b) which were obtained for a few metres length of straight fibre at two
different ratios wO/P . Modes up to HEIJO can be clearly seen.

It was found that the simple mode pattern and the periodic coupling were destroyed
when excessive mode conversion was caused by squeezing, and thus distorting, the fibre

and by winding it under tension on a supporting drum.
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5. CONCLUSIONS .

By expanding the electromagnetic fields along a curved multimode cladded fibre in
terms of the characteristic modes of a straight fibre the coupling coefficients between

the HE and other modes have been derived. It is found that coupling occurs mainly to

1m
HEZ,(m-l); TEO,(m-l);HEZ,m and TEO,m modes. In particular the analysis predicts a
periodic coupling between the HE11 mode and the HE21 and TEO1 modes and this has been

confirmed experimentally by observation in the longitudinal direction of the far-field
output pattern as the fibre length is changed and in the transverse direction of the

beam 1 us. The experiments thus not only support the theory but indicate that in an
unstressed fibre the amount of mode conversion due to wall imperfections, inhomogeneities
and scattering is negligible.
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APPENDIX - EQUATION 13

3 Y,wi,e (oef,e  Wefo
A - N - + O(é)
4y mxl, o kp (a a 2 u2 - u2
f’ <1,m><1,n? <d,mw> <1, léO,n) l§O,m>
A<1,m)¢1,n))= @\l,r\})(l,n?
_ -] S, W, w Yd,rv)}zl,nb ‘il,and,m) 06
- L 2 2 T + 009
kID(Q(l,m%(I,rg uil,rﬂ)- léd,n)) %2,n> <0,

A = A
<1, m2,n <2, md,n>

2k 1, m %2, n>
T 72 2 .2
2
Ro(il,mﬁz,n? (gl,m> 92,n3

AL mto, 1 - Ao, njd, m>
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_ o 2jk ‘21,m>‘€o m
R (al,nVOtO,n]) <1 w ‘io,nf
B i <l,m> <1,n>/<l,n> <d,n> <1,an<1,m>
<1’m)<].,n7 2 2
kf)( <1, m><1 rx) <l,m) <l,n> IEo,m l20,m>
%1:“17‘1:11): %‘1,@4,[11)
) j “<1 m>‘i1,n> (‘2’4,n>alfn,>_ ‘a,m K<l,m>>
kpC <1,m>41,n2~ <1 w ‘il,x» B2, o> %0, m>
%l,mx2,n>= %2,nxl,m)
2ik %1,m>32,n>
= y - 2 2 7 10
R (04 ,ﬂb(?.,rt? (u].)m; %2,“)
2, w0,q ™ Ho,ga,ms |
) 235k <, 10, n] Lo o |(tounl fo,m ‘il,m>’§1,m>)(u2 2
2 2k2 K <l,m CO]F?
41 m?%o,n]) <]. m> Lio,n}) Ih Iﬂ <O,m>
2 W 2 u2
_ %D,n]%O,ﬁ](l,m><l,mD_ %l,nDLO,n] <l,m)¥0 nﬂ + 0(8)
2
l?O,m)K[l,n] v
where 0(8) is small compared with the other terms.
TABLE 1
Coefficients of coupling from the HE modes to the HE and TE modes
1’lll 2,[‘. O,h
+
HE2 n TEO,n
AN 1 2 3 4 6 7 8
1) 1.2 E-1 §{9.1 E-3 {2.6 E-3| 1.1 E-3] 5.7 E-4{ 3.3 E=4 | 2.1 E-4|1.4 E-¢4
2| 8.6 E-2]1.1 E-1 }1.1 E-2}| 3.4 E-3{ 1.6 E-3| 8.7 E-4 |5.3 E-4 | 3.5 E-4
31 9.2 E-3 9.3 E-2 |1.1 E-1{ 1.1 E-2| 3.7 E-311.8 E-3]1.0 E-3]|6.4 E-4
4t 3.0 E-3 1.0 E-2 (9.6 E-2]1.1 E-1|1.1 E-2}| 3.9 E-3|1.9 E-3 (1.1 E-3
c 5| 1.3 E-3 | 3.5 E-3 |1.1 E-2|9.7 E-2| 1.1 E-1|1.1 E-2 |3.9 E-3{1.9 E-3
w1 6| 7.2 E-4 |1.7 E-3 |3.7 E-3}| 1.1 E-2|9.8 E-2|1.1 E-1 1.1 E-2 |4.0 E-3
T
71 4.3 E-4 |9.4 E-4 |1.8 E-3| 3.8 E-311.1 E-2]9.9 E-2 (1.1 E-1 {1.1 E-2
8| 2.8 E-4 | 5.8 E-4 |{1.0 E-311.9 E-3| 3.9 E-3|1.1 E-2 {9.9 E-2 [1.0 E-1
91 1.9 E-4 |{3.9 E-3 |6.6 E-4|1.1 E-3}1.9 E-2{4.0 E-3 |1.1 E-2 |1.0 E-1
In the table E-3 denotes xlO-3 and the factor (2jk/Ro) has been omitted
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o'

Fig.1 Toroidal co-ordinates used in the analysis of the curved waveguide

Fig.2 Diagram showing coupling between the HE| ,, modes and the HE; , and TEp , modes

10

LB LB

10

Excitation Efficiency (%)

10

Fig.3 Theoretical excitation efficiency at normal incidence as a function of the normalized
spot size of the input Gaussian beam for a normalized frequency v = 120
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Normalized power

-p 0 +p

r—)
Fig.4 Transverse intensity distribution in the plane of curvature (6 = 0, 7) of the curved fibre for @

R,/p = 5 x 10* and for various values of (A’ —2A})z
0 1 M
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1.7

(a) (b)

(©) ' (d)

()

Far-field output patterns transmitted through progressively shorter fengths ot curved fibre of S7um
core diameter. The normalized input spot size is about 086 The difference
m length between G and (o) s less than Tmm
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Fig.8

e o

(a) (h)

Thie Tocus of the beam in 1 curved fibre undulates periodicatly between the positions shown in
(b and (b). Position 1) corresponds to o pure HE | mode and (b to a combmation
of low-order modes

ta) (433

Far-field output patterns from a straight Abre for a Gaussian input beam ol normalized mput spot
size o, 03D and 004 showing THe 0 modes torvalies of e up to 10




