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Abstract

Holey fibers combine two dimensional microstructuring ﬁth one dimensional lon- -
gitudinal propagation to produce fibers with tailorable dispersive and nonlinear prdp—
erties. In this paper we measure the effective nonlinearity of a typical holey fiber. The
small effective area possible in this type of fiber significantly enhances their effective

nonlinearity relative to standard fiber.

Holey fibers (HF) provide a new paradigm for the transverse guidance of light. Unlike
conventional optical fibers, which use different core and cladding materials, HF's can be
made from a single material, and guidance is provided by the average index difference
between the core and cladding [1, 2]. This difference arises from holes in the cladding,
which can either be randomly or periodically a.rranged. When the holes are periodically
arranged such structures can also possess a complete photonic bandgap(3]. The HF char-
acterized here is shown in Fig. 1, and although this fiber guides by average index effects,
the techniques described here can also be applied to photonic bandgap fibers.

Holey fibers are attractive for photonic devices because their optical properties can
be engineered during fabrication. Theybcan have anomalous waveguide dispersion and
be rigorously single-mode, which is impossible in conventional step-index fibers[4]. The
HF from Fig. 1 is predicted to always have anomalous total dispersion and furthermore
is single moded over a wide wavelength range[5], -truly unique properties for an optical

fiber. Such fibers offer the potential for creating soliton fiber lasers for A< 13pym. In



particular, doping a HF with ytterbium would allow easy fabrication of sub-picosecond
high repetition pulse sources at 1 pm which would find use in a variety of areas.

Soliton formation relies on a balance between the fiber dispersion and nonlinearity. It
is then natural to ask how the holes affect the effective nonlinearity of HF, and whether or
not it is possible to significantly alter it via the fiber design. Holey fibers offer two distinct
ways to achieve this. Firstly, by appropriate choice of HF geometry, the mode size can be
tailored by as much as three orders of magnitude[6], a much larger range than that possible
in conventional fiber types. Changing the mode size alters the effective nonlinearity of the
fiber by increasing/decreasing the intensity inside the fiber which increases/decreases the
nonlinear phase change experienced by light during propagation. A more direct way to
effect the nonlinearity would be by using HFs in which the hole spacing is less than the
wavelength of the light. In this fegime a large fraction of the mode can propagate in
the air{7], and thus by filling the HFs with a suitable nonlinear material the effective
nonlinearity could be significantly enhanced.

To measure the nonlinearity of our fiber we used the method of Boskovic et al. [8]

which involves the use of high power dual frequency beat signals. The fiber nonlinearity.

creates spectral sidebands (see Fig. 2) and the intensity ratio between the signal and the
first side band gives the nonlinear phase through
Io _ J3(¢spm/2) + Ji(dspm/2)
I Jibspm/2) + I3 (bspm/2)

where Iy are the peak intensities of the signal and first sideband respectively, Jy is the

)

nth Bessel function. ¢spas is the nonlinear phase shift given by

2w
$spu = —7LP ()
where L is the effective fiber length and P the signal power. Using this method, the

effective nonlinearity v can be calculated for the fiber under test. Note that

T2

=2 3
Y e (3)

where Aef; is the effective area, as defined in Ref. [9], and 7y depends on the material
composition of the fiber. The HFs considered here (for example Fig. 1) are composed
solely of silica, and so n, is known. Hence this method provides a direct way of accurately
measuring the effective mode area A,y in HF.

This technique for measuring the effective area is particularly useful for HFs, as it

makes no assumptions about the mode shape. As can be seen from Fig. 1, the mode
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of this HF has 6-fold (hexagonal) symmetry, and cannot be approximated by a simp.le,
circularly-symmetric Gaussian. This is particularly noticeable in the wings or at shorter
wavelengths, where the mode becomes more hexagonal. More traditional methods, which
rely on Gaussian optics to estimate the area, would fail in these cases.

To perform the nonlinear measurements we used a diode-seeded erbium doped amplifier
chain. The input to the chain was derived from two tuneable DFB lasers which were
coupled together and the resultant beat signal externally modulated to produce 5 ns square
pulses at a repetition rate of 200kHz. After amplification the peak power in the pulses
was ~ 100 W, and we coupled roughly 50% of this power into the HF (length 1.175m).
We also tested (1.9 m) of dispersion shifted fiber (DSF) to test the procedure. As these
experiments use relatively short lengths of fiber fiber dispersion can be neglected.

Fig. 2 shows the incident and transmitted pulse spectra for high incident power onto the
HF. Both the signal beams can be clearly seen and are separated by 0.23 nm and hence the
nonlinearly generated side bands are also separated by the same amount from the signal
beam. From the input spectrum (dashed lirie) it can be seen that the amplification process
is essentially linear although a small nonlinear phase shift is observed (note the additional
low level side bands). The level of the first order sidebands is dramatically increased after
propagation through the fiber, and in addition further sidebands are generated. |

We recorded the output spectra at a range of powers and measured the ratio of Jo /L
as a function of transmitted power. The total nonlinear phase at each power level was
obtained by taking the inverse of Eq. 1. The nonlinear phase shift due to propagation
in the fiber under test was then evaluated by subtracting the small nonlinear phaée shift
associated with propagation through the amplifier chain. The results obtained for both
the DSF and HF are shown in Fig. 3 along with the results of least squares linear fits.

As expected the nonlinear phase increases linearly with peak power and the slope of
the fit gives the nonlinearity via Eq. 2. For the DSF, the value v =~ 4.32 X 10" w-!
was obtained, which using the standard value of ny = 2.35 x 1072 m?W-! for DSF gives
a mode area of Agrp =~ 54 pm? (see Eq. 3), a realistic value for this fiber type 8, 9]
For the holey fiber we obtained v ~ 1.56 x 1070 W~'. Note that we have included a
correction of 2 5% to account for the effect of the background loss of 0.24 dBm~! in the
HF [5]. As the HF is formed from pure silica, np = 2.16 X 1020 m?W-! [9], and so for
this fiber Agpp ~ 13.9 pm?. Applying our numerical model for HFs (6], we predict that
Aepr =14 pm?, in excellent agreement with the above measurement.

From this excellent agreement and from Fig. 1, it is clear that very little light is located



in the holes. However by careful fiber design, it is possible to locate as much as 40% of the
mode within the holes [7]. In such a case the effective area is no longer a useful measure of
the nohlinearity, as different parts of the mode see radically different nonlinearities, and
the only meaningful parameter would be -, which is what is measured by this method.

To determine whether the microstructuring in HF effects the Brillouin scattering, we
measured the relative Brillouin thresholds for the HF and DSF. We used the experimental
setup described above, but amplified the modulated output from a single DFB laser. The
pulse duration and source linewidth were 10 ns and < 300 MHz respectively. By coupling
the reflected light into a high resolution (0.02 nm) commercial spectrum analyzer we were
able to resolve the Brillouin line and directly measure the threshold-. For this measurement
we ensured that the lengths of HF and DSF were the same (1.175m), and we decreased the
repetition rate to 5kHz. The resulting peak power of 4kW was sufficient to observe the
generation of multiple Brillouin lines in both fibers (see Fig. 4). For the HF the threshold
was 75 W whereas for the DSF it was 275 W. The ratio of these thresholds is 3.66 which
agrees within experimental error with the ratio of the effective areas (54/13.9 =~ 3.88)
and thus we conclude that in this HF there is no significant change to the phonon mode
densities due to the microstructured cladding region. The Brillouiﬁ shift for the HF was
measured to be 11.5 (+0.5) GHz, consistent with the quoted value for pure silica [9].

In conclusion, we have successfully measured the Kerr nonlinearity and the Brillouin
threshold for a typical holey fiber, and we find that both are enhanced by the small
effective area of this HF (= 14 um?). Note that mode areas as small as 1 um? are possible
for different hole arrangements. The technique described here is a fast easy way to measure
the effective area of HF's since né in such fibers is that of pure silica. The measured effective
area is in excellent agreement with the theoretical prediction, providing additional support
for our model of HFs[6).

This particular fiber, which is predicted to be anomalously dispersive at all wavelengths
[5], could thus be used in a laser cavity to provide soliton mode-locking over a wide
wavelength range. Our model predicts that the dispersion of this fiber at 1.03 um is
~ 20psnm~lkm™!, similar to that of standard fiber at 1.55 um. Hence, for example,
when a 1ps input pulse is used, the soliton period is 140 m, similar to that of standard
fiber at 1.55 um. Also, the effective nonlinearity for this HF is 3.9 times that of standard
fiber due to the smaller effective area, and thus soliton energies would be reduced by
this factor. This increase in the effective nonlinearity also reduces the threshold for other

nonlinear effects such as continuum generation[10] and four wave mixing.
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Figure 1: SEM of the holey fiber used here along with the predicted mode profile at

1550 nm, with contours separated by 1 dB. Note that the mode is not circular.

Figure 2: Typical measured spectrum for the nonlinear mixing in the holey fiber. The
dashed line is the input spectrum, the solid line is the transmitted spectrum. Note the

large increase in power in the sidebands due to SPM.

Figure 3: Experimental plot of the nonlinear phase against internal peak power for both
the HF (squares) and the DSF (dots). The least squares fits to the experimental data are

shown.

Figure 4: Spectra of the Brillouin spectra for HF (solid line) and DSF (dashed line) for
the same transmitted power. Note that multiple Brillouin lines are generated in the HF

due to the smaller effective area.
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Fig. 2
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Fig. 4
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