
 
 
 
 
 
 
 
 
 

 
 
 

Abstract 
 
 
 

Proportions below a given fraction of a quantile of an income distribution are often 

estimated from survey data in poverty comparisons. We consider the estimation of the 

variance of such a proportion, estimated from Family Expenditure Survey data. We show 

how a linearization method of variance estimation may be applied to this proportion, 

allowing for the e? ects of both a complex sampling design and weighting by a raking 

method to population controls. We show that, for 1998-99 data, the estimated variances 

are always increased when allowance is made for the design and raking weights, the 

principal e? ect arising from the design. We also study the properties of a simplified 

variance estimator and discuss extensions to a wider c lass of poverty measures. 
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Summary. Proportions below a given fraction of a quantile of an income dis-

tribution are often estimated from survey data in poverty comparisons. We

consider the estimation of the variance of such a proportion, estimated from

Family Expenditure Survey data. We show how a linearization method of vari-

ance estimation may be applied to this proportion, allowing for the effects of

both a complex sampling design and weighting by a raking method to popu-

lation controls. We show that, for 1998-99 data, the estimated variances are

always increased when allowance is made for the design and raking weights,

the principal effect arising from the design. We also study the properties of a

simplified variance estimator and discuss extensions to a wider class of poverty

measures.
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1 Introduction

A widely used measure in poverty comparisons is the proportion falling below

a fraction α of the βth quantile of a distribution. For example, Eurostat (2000)

defines a low wage as one below 60% (α = 0.6) of the national median monthly

wage (β = 0.5) and compares the proportion of employees earning low wages
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in different European countries. Based upon data from the 1996 European

Community Household Panel Survey they estimate, for instance, that this pro-

portion is 21% in the United Kingdom compared with 13% in France and 17%

in Germany.

When making such comparisons between countries, over time or between

subgroups within countries using sample survey data, it is important to have

information about the sampling variability of the estimates. The estimation of

standard errors for such proportions is, however, not simply a matter of applying

standard methods for proportions (e.g. Cochran, 1977,Chapter 3), since the

quantile must first be estimated before estimating the proportion falling below

a fraction of this estimated quantile. We shall refer to the fraction α of the βth

quantile as the low-income line and the proportion falling below the low-income

line as the low-income proportion. Estimation of the low-income proportion

thus involves estimating the low-income line first. The term income is used

here to denote the variable under study. For different applications, this variable

will be defined in different ways and might apply to different types of units, for

example individuals vs. households.

Preston (1995) considered the estimation of the sampling variance of an

estimated low-income proportion. He derived exact and large sample sampling

distributions and applied his results to data from the UK Family Expenditure

Survey (FES). His estimator of the sampling variance is, however, derived for an

unweighted point estimator under the assumption of simple random sampling.

In fact, the FES employs a complex sampling scheme involving geographical

clustering which may be expected to inflate standard errors. Weighting by

population controls is employed and this may also be expected to affect standard

errors. The aim of this paper is to show how these additional complex features

of a sample survey may also be handled in the estimation of sampling variances

and to consider the numerical implications in the case of the 1998-99 FES. Some
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other evidence that complex sampling designs may have important effects on

standard errors of (other) poverty measures is given by Howes and Lanjouw

(1998). Inference about Lorenz curves and quantile shares in the presence of

sampling weights is considered by Beach and Kaliski (1986).

Shao and Rao (1993) and Binder and Kovačevíc (1995) proposed lineariza-

tion approaches to variance estimation for a low-income proportion for the case

α = 0.5, β = 0.5. They allowed for stratified multistage sampling but not

for the effects of weighting by population controls. Their approaches might be

considered as generalizations of the large sample method of Preston (1995). Pre-

ston(1995) provides numerical evidence in the case of simple random sampling

that the asymptotic approximation of the sampling distribution, upon which

the large sample method is based, is very close to the exact distribution. Shao

and Rao (1993) established the consistency of both balanced repeated replica-

tion and linearisation variance estimators. Kovačevíc and Yung (1997) extended

Binder and Kovačevíc (1995) in an empirical study based upon the Canadian

Survey of Consumer Finance, comparing their variance estimator with some

re-sampling methods, including the jackknife, the bootstrap and balanced half

samples. The jackknife is known to provide inconsistent variance estimation

in the case of quantiles and Kovačevíc and Yung found that it was subject to

serious biases for the low-income proportion. Of the re-sampling methods, the

bootstrap had the least bias, although it still displayed greater bias than the

linearization method. Shao and Chen (1998) demonstrated the consistency of

a bootstrap variance estimator when α = β = 0.5 under a stratified multistage

design, allowing for hot deck imputation but not weighting to population con-

trols. Chen and Shao (1999) consider the case when the imputed values are non

identifiable.

Deville (1999) also discusses the application of the linearization method to

variance estimation for a low-income proportion. Moreover, he considers how
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the linearization method may be extended for a general estimator via a “residual

technique” to handle the effect of weighting by population controls. We apply

this idea to the specific case of the low-income proportion in this paper.

One complication in applying the linearization method to measures based

upon estimated quantiles, such as the low-income proportion, is that it requires

estimation of the probability density function of the variable. There are dif-

ferent approaches to this estimation problem. Deville(1999) suggests a sim-

ple approach involving “numerical differentiation” of the estimated distribution

function. Preston (1995) uses kernel-based density estimation. Binder and Ko-

vačevíc (1995) apply an approach proposed by Francisco and Fuller (1991) for

functions of estimated quantiles, based upon the lengths of confidence intervals

constructed by Woodruff ’s (1952) procedure.

Zheng (2001) derives asymptotic inference procedure for a wider class of

poverty measures under simple random sampling assumption and obtains ex-

pressions for asymptotic variance under both stratified and cluster sampling.

The FES and its weighting scheme are described in Section 2. In Section 3,

we introduce notation and define the low-income proportion and an estimator

of this proportion. A method for variance estimation using linearization is

introduced in Section 4. This estimator is extended to accommodate raking and

to take account of a complex sampling design in Section 5. Results based on

the FES data are presented in Section 6. Conclusion and extension of variance

estimation to wider class of poverty measures is considered in Section 7

2 Family Expenditure Survey

The FES has a long history of being used for studies of the distribution of

income (Goodman and Webb, 1994). We use data from the 1998-99 FES to

produce estimates for the population of private households in the United King-
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dom. The variable studied is the equivalent total weekly expenditure of the

household. This is derived from total household expenditure by adjusting for

the differing sizes and compositions of the households. As an approximation

to the McClements scales before adjustment for housing cost (Department of

Social Security, 2001), an equivalent value of 0.61 is assigned to the first adult

and an equivalent value of 0.39 to each other member aged 16 or over. An

equivalent value is also assigned to each child aged under 16: 0.13 for a child

between 0 and 4 years old, 0.22 for a child between 5 and 9 years old and 0.26

for child between 10 and 15 years old. The equivalent total expenditure is then

formed by dividing the total expenditure by the sum of these equivalent val-

ues for the household members. Using total expenditure as a measure of living

standards has the advantage, compared to income variables, that it tends to

be less affected by random variation in income sources, which may not reflect

real changes in living standards (Blundell and Preston, 1998; Deaton, 2000 page

148).

The FES is a multi-stage stratified random sample of n = 6630 private

households drawn from the Post Office’s list of addresses. Postal sectors are the

primary sample units (PSU’s) and are selected by probability proportional to

a measure of size, after being arranged in strata defined by standard regions,

socio-economic group and ownership of cars. The Northern Ireland sample is

drawn as a random sample of addresses with a larger sampling fraction than for

Great Britain.

Under the FES sampling design, all households in Great Britain (GB) are

selected with equal first-order inclusion probabilities. All households in North-

ern Ireland are likewise selected with a fixed inclusion probability, greater than

that in GB. Out of the about 10,000 households selected into the target sample,

about 66 per cent are contacted and cooperate fully in the survey. Response

probabilities have been estimated in a study linking the target sample to the
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1991 Census (Elliot, 1997; Foster, 1998). These response probabilities multi-

plied by the sampling inclusion probabilities generate basic survey weights dk

for each household k. These weights will be referred to as prior weights and will

be treated as fixed, independent of the sample.

The prior weights dk are adjusted to agree with control totals using the

raking procedure proposed by Deville et al. (1993) and fully described in Section

5. The resulting weights are denoted wk and termed the raking weights. Unlike

the prior weights, these weights are sample dependent.

3 Point Estimation of Low-income Proportion

We denote the finite population of households as U = {1, ..., k, ..., N}, where N
is the number of households in the population. The equivalent total expenditure

for household k is denoted yk. The distribution function of yk is denoted F (y)

and defined by

F (y) =
1

N
k∈U

δ{yk ≤ y}, (1)

where δ{ξ} takes the value 1 if ξ is true and the value 0 otherwise.
The β-th quantile of yk is denoted Yβ and defined by

Yβ = inf{y : F (y) > β}, (2)

For example, Y0.5 is the median. The low-income line is the fraction α of the

β-th quantile; that is, αYβ . The finite population parameter of interest, the

low-income proportion, is the proportion of households below the low-income

line, denoted by pαβ and defined by

pαβ = F (αYβ).

Given an estimator F̂ (y) of F (y) in (1), pαβ may be estimated by

pαβ = F (αYβ), (3)
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where Yβ is defined by (2) after replacing F (y) by F (y).

In order to consider possible estimators F̂ (y) of F (y), let the sample of

responding households for which values of yk are available be denoted s, a subset

of U . Given a set of survey weights wk (k ∈ s), the usual weighted estimator of
F (y) and the one considered here is given by

F (y) =
1

Nw k∈s
wkδ{yk ≤ t},

where Nw = k∈swk. Note that F̂ (y) is invariant to multiplication of the

weights by a constant and that we assume a scaling of the wk for which it

is natural to view Nw as an estimator of N . Some alternative estimators of

F (y) which make use of auxiliary information are discussed, for example, by

Nascimento Silva and Skinner (1995). A simple unweighted estimator of F (y)

and hence pαβ , as considered by Preston (1995), is obtained by setting each wk

in F̂ (y) equal to a constant. We shall suppose that the weights wk are the ones

described in Section 2.

4 Variance Estimation by Linearization

We now consider estimating the variance of pαβ , defined by (3), with respect

to the sampling design. We treat non-response as part of the sampling process

and assume that the probability πk that household k is included in s is inversely

proportional to dk, the prior weight (see Section 2).

In this section we treat the weights wk as fixed. In the following section, we

allow for the fact that this is not the case and show how to to include this in the

estimation of variance. The basic idea of the linearization method (Campbell

and Little, 1980; Deville, 1999) is to find a “pseudo-variable”, taking value zk

for household k, such that

var(pαβ) ≈ var(tz), (4)
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where

tz =
k∈s

wkzk

and the approximation ≈ is justified by some large sample argument. The

variance of the linear statistic tz may then be estimated by standard survey

sampling techniques, which allow for the actual sampling design used. This is

considered in Section 5.

The form of the pseudo-variable may be illustrated in the simplest case when

the sampling variation in Yβ is ignored and Yβ is treated as equal to Yβ. In this

case, pαβ is a ratio and a simple pseudo-variable is given by

zk =
1

N
[δ{yk ≤ αYβ}− pαβ] . (5)

The variance of tz may then just be estimated using standard survey software

for variance estimation for ratios. Deville(1999) shows that, in order to reflect

the sampling variation in Yβ , we need to include an additional term in the

pseudo-variable, that is set

zk =
1

N
{δ{yk ≤ αYβ}− pαβ − α Rαβ [δ{yk ≤ Yβ}− β]} , (6)

where

Rαβ =
f(αYβ)

f(Yβ)

and f(·) is the density function corresponding to the distribution function F (y).
As F (y) is a step function, the definition of f requires reference to a super-

population model (Franscisco and Fuller, 1991) or some other construction

(Campbell and Little, 1980; Deville, 1999).

In the case when α = β = 1/2, these zk are the same as those proposed

by Shao and Rao (1993) Binder and Kovačevíc (1995). In Section 5, it will be

shown that for simple random sampling, these zk generate a variance var(tz)

which is the same as the large sample variance formula given by Preston (1995).
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As the pseudo-variable depends on population parameters, the zk cannot be

computed in practice. The natural solution is to replace the pseudo-variable by

its sample estimate

zk =
1

Nw
δ{yk ≤ αYβ}− pαβ − α Rαβ δ{yk ≤ Yβ}− β , (7)

where

Rαβ =
f(αYβ)

f(Yβ)

and where f is an estimate of f . To estimate f , we follow Preston (1995) in

using a kernel-based estimator of f ; that is

f(y) =
1

N b k∈s
wkK

y − yk
b

,

whereK(x) = (2π)−1/2exp(−x2/2) is the Gaussian kernel function with a band-
width b = 0.79(Y0.75 − Y0.25)N−1/5 given by Silverman (1986, page 45-47).

5 Allowing for the Effects of the Complex Sam-
ple Design and Weighting to Population Con-
trols

In the previous section we treated the survey weights wk as fixed. In fact, these

weights are sample-dependent and this dependence affects the variance. In this

section we first show how the approach of Deville(1999) may be used to modify

the pseudo-variable to accommodate the sample dependence of the wk.

These weights are formed using M = 49 population control totals, defined

by age- group, sex and region. The m-th control total is denoted by

tx;m =
k∈U

xkm

where xkm is the value for the k-th household of the m-th raking variable such

as the number of males aged between 25 and 30 or a region indicator variable.
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The raking weights wk are constructed to agree with the M control totals; that

is, for each m the wk satisfy

k∈s
wkxkm = tx;m. (8)

The method used for the FES to satisfy these constraints is to choose the wk to

minimise the following measure of distance

k∈s
dkD

wk
dk

, (9)

between the prior weights dk and the weights wk subject to the set of constraints

(8); where D is the logit function defined by

D(x) =
(1− c) (L− 1)

L− c
log

x− c

1− c

(x−c)
L− x
L− 1

(L−x)

if c < x < L and D(x) =∞ otherwise, where c and L are two constants. This

method imposes an upper limit L and lower limit c on the weight ratio wk/dk.

This is often desirable to avoid negative and very large weights. The values used

for the FES are c = 0.7 and L = 1.4. The weights that minimise (9) subject to

(8) are computed using the CALMAR (Deville et al., 1993) macro in SAS.

Deville (1999) shows that effect of the sample-dependence of the wk’s on

variance estimation can be allowed for by replacing the pseudo-variable zk by

residuals zk defined by

zk = zk −
M

m=1

βmxkm, (10)

where

βm =
k∈s

dkzkxkm
k∈s

dkx
2
km

−1
.

The zk are the residuals of the regression of the pseudo-variable (7) on the raking

variables xkm.

We now show how to use the zk, obtained in the previous section, to estimate

the variance in (4), taking into account the complex nature of the sampling

design.
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The FES involves a two-stage sampling design. At the first stage the PSUs

are stratified into H strata and a sample sIh of nIh PSUs is selected from the

h-th stratum (h = 1, ...,H). Within the ith sampled PSU, a sample sih of nih

households is selected.

Under two-stage sampling, the variance (4) involves both within and be-

tween PSU components. The variance could be estimated by estimating these

components separately, for example using the method of Raj (1968), but the re-

sulting calculations can be computationally intensive (Särndal et al., 1992 page

137). A widely used alternative variance estimator, which is computationally

simpler and which may be expected to exhibit only very minor upward bias for

the small sampling fractions employed in the FES, is given by Särndal et al.

(1992 page 154):

var(pαβ) =
H

h=1

nIh
(nIh − 1)

i∈sIh
z̆Ihi − th;z

nIh

2

; (11)

where

z̆Ihi =
k∈sih

dkzk, (12)

th;z =
i∈sIh

z̆Ihi.

This estimator may be considered as a generalization of the estimator in

Preston (1995). For, in the case of simple random sampling with no survey and

no raking weighting,H = 1, nIh = n and sIh = s, so that the variance estimator

in (11) above reduces to

var(pαβ) =
n

n− 1varsrs(pαβ), (13)

where

varsrs(pαβ) =
1

n
pαβ (1− pαβ) + β(1− β)α2R2αβ − 2pαβ(1− β)αRαβ (14)

is the variance estimator proposed by Preston (1995). The proof of (13) is given

in the Appendix.
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6 Results

In this section, we compute values of the point estimator pαβ as well as estimates

of its variance for different values of α and β using the 1998-99 FES data.

First, we study the effect of weighting. We compute the value of pαβ for

different values of α and β, using different methods of weighting: “equal weights”

with each household having the same weight, “prior weights” dk and “raking

weights” wk. The results are presented in Table 1. We see that the effect of

using the prior weights or raking weights on pαβ is relatively minor. Raking

tends to increase pαβ slightly for all the values of α and β considered, which

appears to reflect the fact that age-sex groups with lower incomes tend to be

under-represented among the respondents.

β α Equal Prior Raking β α Equal Prior Raking
weights weights weights weights weights weights

0.3 0.3 0.008 0.008 0.009 0.4 0.6 0.155 0.154 0.157
0.3 0.4 0.025 0.025 0.028 0.4 0.7 0.213 0.215 0.218
0.3 0.5 0.056 0.055 0.058 0.5 0.3 0.033 0.034 0.035
0.3 0.6 0.098 0.099 0.100 0.5 0.4 0.081 0.083 0.086
0.3 0.7 0.146 0.146 0.148 0.5 0.5 0.148 0.149 0.151
0.4 0.3 0.017 0.017 0.018 0.5 0.6 0.216 0.219 0.222
0.4 0.4 0.049 0.049 0.052 0.5 0.7 0.292 0.294 0.298
0.4 0.5 0.098 0.099 0.101 0.5 0.8 0.363 0.364 0.366

Table 1: Values of pαβ for different values of β and α and for different
weighting schemes.

We next consider the values of alternative variance estimators defined by

(11) and (14). To standardise the results for different values of α and β, we

consider the relative variance (RV) given by

RV = 100
var(pαβ)

p
(r) 2
αβ

,

where p
(r)
αβ is the low-income proportion computed using the raking weights,

i.e. the last column of Table 1. In order to assess the impact of raking and
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complex sampling, we compute three alternative variance estimates and associ-

ated estimates of the relative variance, as shown in Table 2. The first estimator

ignores the weighting and complex design and thus effectively makes simple ran-

dom sampling assumptions, as in Preston (1995) and is denoted RV (srs). This

variance estimator is given by (14). The second estimator allows for the prior

weighting and the complex design but ignores the effect of raking - it is denoted

RV (design). This estimator is given by (11) where the zk’s are replaced by the

zk’s defined in (7). The third estimator allows for the full survey weighting,

complex design and effect of raking and is denoted RV (full) and given by (11).

Raking Complex Sampling Weighting

RV (srs) No No Equal

RV (design) No yes Prior Weights

RV (full) Yes Yes Raking Weights

Table 2: Definition of estimators of the relative variances considered.

The values of these three estimated relative variances for different values of β

and α are given in Table 3 . In addition, we present values of the misspecification

effects, meff(raking) andmeff(full), which are obtained by dividing RV (full) by

RV (design) and RV (full) by RV (srs), respectively. These measure the effect of

misspecifying the variance estimator by ignoring the raking effect or by ignoring

both the effect of raking and complex sampling, respectively (Skinner, Holt and

Smith, 1989,Ch.2). There is a strong inverse relationship between the variance

and the estimated value of the low income proportion, just as for the binomial

variance of a proportion. Comparing RV (srs) with RV (design), we see that the

variance is almost always underestimated if the complex design is ignored. The

values of meff(raking) indicate that ignoring raking tends to lead to a slight

underestimation of the variance, but not always. Overall, the effect of raking

and the complex design, as measured by meff(full), is consistently to increase
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the variance, but never by more than 17% for the values of α and β considered.

There is no evident strong dependence of these values on α or β.

The sampling variation in the estimated low-income proportion arises from

two sources: sampling variation in the estimated low-income line and sampling

variation in the estimated low-income proportion given this estimated line. An

interesting finding of Preston (1995) is that these two sources can be mutually

compensating “in a manner that is typically helpful to the estimation of relative

poverty incidence” (Preston, 1995, page 95). As a result, if the variance of the

estimated low-income proportion is estimated under the simplifying assumption

that the low-income line is fixed, the resulting estimated variance may actually

be conservative, whereas one might have expected it to be an underestimate

since it ignores a source of sampling variation. Preston(1995) finds that the

variance under the simplifying assumption is larger than the actual large sample

variance particularly for large values of α. Indeed, if α is large pαβ is close to

the constant β.

β α p
(r)
αβ RV (srs) RV (design) RV (full) meff(raking) meff(full)

0.3 0.3 0.009 1.645 1.712 1.793 1.047 1.090
0.3 0.4 0.028 0.479 0.463 0.492 1.064 1.028
0.3 0.5 0.058 0.221 0.238 0.245 1.030 1.111
0.3 0.6 0.100 0.107 0.119 0.124 1.044 1.153
0.3 0.7 0.148 0.055 0.055 0.056 1.018 1.018
0.4 0.3 0.018 0.801 0.838 0.834 0.995 1.040
0.4 0.4 0.052 0.267 0.302 0.311 1.031 1.165
0.4 0.5 0.101 0.120 0.138 0.138 1.000 1.144
0.4 0.6 0.157 0.063 0.065 0.067 1.025 1.052
0.4 0.7 0.218 0.034 0.037 0.037 1.002 1.095
0.5 0.3 0.035 0.413 0.440 0.441 1.003 1.068
0.5 0.4 0.086 0.155 0.173 0.172 0.994 1.110
0.5 0.5 0.151 0.077 0.084 0.085 1.007 1.101
0.5 0.6 0.222 0.042 0.047 0.048 1.024 1.129
0.5 0.7 0.298 0.023 0.026 0.025 0.986 1.110

Table 3: Values of the relative variances (%) for different values of β and α.
meff(raking) is the effect of raking and meff(full) is the effect of the design

and raking.
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We now extend this comparison to include allowance for the complex design

and weighting in the FES. To do this we consider the pseudo-variable (5) instead

of (6), that is we use zk = [δ{yk ≤ αYβ}−pαβ]N−1w . The resulting “naive” vari-

ance estimator based upon this binary pseudo-variable is easy to compute and,

indeed, may be obtained from standard software for survey variance estimation

by treating the low-income proportion as a standard estimated proportion. In

particular, this variance estimator does not require the estimation of the density

function. Table 4 gives these naive estimates of variance.

β α p
(r)
αβ RV (srs) RV (design) RV (full) meff(raking) meff(full)

0.3 0.3 0.009 1.525 1.562 1.644 1.053 1.078
0.3 0.4 0.028 0.465 0.499 0.523 1.047 1.123
0.3 0.5 0.058 0.236 0.300 0.288 0.957 1.219
0.3 0.6 0.100 0.135 0.196 0.182 0.927 1.350
0.3 0.7 0.148 0.086 0.128 0.114 0.890 1.321
0.4 0.3 0.018 0.744 0.823 0.812 0.987 1.091
0.4 0.4 0.052 0.262 0.347 0.337 0.972 1.285
0.4 0.5 0.101 0.132 0.194 0.180 0.926 1.368
0.4 0.6 0.157 0.080 0.121 0.108 0.895 1.346
0.4 0.7 0.218 0.053 0.081 0.071 0.877 1.334
0.5 0.3 0.035 0.388 0.456 0.430 0.944 1.109
0.5 0.4 0.086 0.152 0.211 0.199 0.943 1.312
0.5 0.5 0.151 0.083 0.126 0.111 0.884 1.336
0.5 0.6 0.222 0.052 0.079 0.069 0.873 1.327
0.5 0.7 0.298 0.035 0.054 0.047 0.872 1.352

Table 4: Values of the relative variances (%) for different values of β and α,
ignoring sampling variation in the low income line.

Comparing Table 3 and 4, we see, as in Preston (1995), that RV (srs) is

larger for the naive estimator if α is sufficiently large, for each value of β. The

same finding applies to RV (full) for markedly wider ranges of α. Thus, the

variance estimator that takes the raking and the sample design into account

is conservative for all cases between α = 0.4 and α = 0.7. The effect of the

design and the raking adjustment tends to be more marked for this estimator,

as measured by the difference between the misspecification effects and 1.
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7 Conclusion and Extension

We have shown how both complex sampling schemes and raking adjustments

may be handled in variance estimation for low income proportions. The ap-

proach is straightforward and could be handled with standard survey software

for variance estimation together with software which enables the calculation of

the pseudo-variable in (6) and the regression residuals in (10). Using data from

the 1998-99 FES, the impact of complex sampling and raking tends to increase

the estimated standard errors for all values of α and β considered, although the

inflation of the variance never exceeds 17%. We have also considered the use of

a simpler ’naive’ approach, which ignores the sampling variation in the low in-

come line and treats the low income proportion just like a standard proportion.

As in Preston (1995), this approach appears to be conservative so long as α is

not too small.

As a measure of poverty, the low income proportion considered in this paper

is crude, since it takes no account of how far an income falls below the low-

income line. The shortfall of an income yk below a low income line θ may be

taken account of in the wide class of “decomposable” measures, considered by

Zheng (2001),

p =
1

N
k∈U

h(yk, θ)

where h(yk, θ) is a “poverty deprivation function” with h(yk, θ) = 0 if yk > θ.

An important sub-class arises when h(yk, θ) = [(θ−yk)/θ]γ δ{yk ≤ θ} and γ is a
specified non-negative constant (Foster et al. 1984). The low-income proportion

is the special case where γ = 0 and θ = αYβ . Measure with γ = 1 or 2 also have

natural interpretation (Foster et al. 1984).

The measure p may be estimated by

p =
1

Nw k∈s
wk h(yk, θ) (15)
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if θ is known, or by substituting an estimator θ for θ otherwise. If θ is a given

constant then p is simply a ratio of linear statistics and the approach in the

paper to handle complex sampling and raking (see Section 5) may be followed

by replacing zk in (5) by

zk =
1

N
[h(yk, θ)− p]

If θ is estimated from the sample s then further linearisation is required. If θ =

αYβ as in this paper with θ = αYβ then, following the argument of Zheng (2001),

under regularity conditions on the function h(., .) given by Zheng, the pseudo-

variable in (6) may be replaced by (see Zheng, 2001, page 343 and Deville, 1999,

page 197)

zk =
1

N
h(yk, θ)− p− α R

(h)
αβ [δ{yk ≤ Yβ}− β] (16)

where

R
(h)
αβ = [a+ h(θ, θ) f(θ)] f(Yβ)

−1

a =
1

N
k∈U

hθ(yk, θ)

where hθ(yk, θ) = ∂h(yk, θ)/∂θ and f(·) is the density function considered ear-
lier.

A linearisation variance estimator may then be determined by replacingN, θ,

p, Yβ, f(Yβ) and a by Nw, θ, p, Yβ, f(Yβ) and a = N
−1
w k∈s wkhθ(yk, θ). Note

that in the case of the low income proportion, we have a = 0 and h(θ, θ) = 1

so (16) reduces to (6). Note that for the case when h(yk, θ) = [(θ − yk)/θ]γ

δ{yk ≤ θ} and γ > 0 we have h(θ, θ) = 0.

Another common choice of the low-income line is θ = α µ, where µ is the

mean income µ = N−1 k∈U yk and α is a given fraction. If p in (15) is defined

with θ replaced by p = αN−1w k∈swk yk, then, following Zheng (2001), the

pseudo-variable becomes (see Zheng, 2001, page 343 and Deville, 1999, page

17



197)

zk =
1

N
{h(yk, θ)− p+ (α yk − θ)[a+ h(θ, θ) f(θ)]}

and the linearization variance estimator may be determined again by replacing

N , θ, p, a, f(θ) and a by Nw, θ, p, a, f(θ). Note that for the class of measures

h(yk, θ) = [(θ− yk)/θ]γ δ{yk ≤ θ} with γ > 0, the computation of this variance
estimator is simplified since h(θ, θ) = 0 and it is not necessary to estimate the

density function f(·).
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8 Appendix - Proof of (13)

In the case of simple random sampling with no survey weighting, H = 1, nIh =

n, sIh = s, zk = zk and dk = Nn−1, so that the variance estimator in (11)

reduces to

var(tz) =
N2

n(n− 1)
k∈s

(zk − zs)2

where zs is the sample mean of the zk’s. It can be easily shown that zs = 0.

Thus,

var(tz) =
1

n(n− 1)
k∈s

δ{yk ≤ αYβ}− pαβ
2

+α2R2αβ
k∈s

δ{yk ≤ Yβ}− β
2

−2αRαβ

k∈s
δ{yk ≤ αYβ}− pαβ δ{yk ≤ Yβ}− β ,

18



=
1

n− 1 pαβ (1− pαβ) + β(1− β)α2R2αβ

−2αRαβ
1

n
k∈s

δ{yk ≤ αYβ}δ{yk ≤ Yβ} − βRαβ . (17)

It is clear that for α < 1,

1

n
k∈s

δ{yk ≤ αYβ}δ{yk ≤ Yβ} = pαβ. (18)

Thus by replacing (18) in (17), we obtain (13).
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