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Abstract 

We present a new approach to all-optical switching in nonlinear Bragg grat- 

ings. In contrast to previous schemes in which the system remains in the 

switched state for a short length of time we permanent switch a CW probe 

from a state of high reflectivity to a low reflectivity state using a short optical 

pump. Finally we discuss the practicality of the device. 

42.65.-k,42.65.PcT42.70.Qs,42.81.-i 

Typeset using REVl)$ 

1 



I. INTRODUCTION 

Fibre Bragg gratings (FBGs) are emerging as one of the essential components for the 

next generation of all-optical networks due to their low insertion losses, narrow bandwidths, 

and high reflectivities. Furthermore- these linear features make Bragg gratings particularly 

interesting nonlinear devices. Indeed it has been shown that a high power pump pulse 

can significantly alter the propagation of a.weak CW probe beam as they co-propagate 

through the gratiig [1,2]. These experiments, which relied on the cross phase modulation 

effect in fibres [3], showed that it was possible to alter the transmission of a probe by the 

grating in the presence of the pump. When the pump left the grating the transmission 

of the probe returned to its initial state. Clearly a system in which the propagation of 

the pump permanently altered the transmission of a probe would be more desirable having 

obvious applications in all-optical memory and for packet switching in all-optical networks. 

Fortunately the transmission of nonlinear Bragg gratings is bistable [4] suggesting that it 

might be possible to permanently switch a Bragg grating using a pump pulse and indeed we 

present such a scheme below. 

Crucial to this scheme is the nonlinear response of a FBG to an intense CW excitation. 

Winful et al. showed that the under these conditions the transmission (and reflection) of 

Bragg grating exhibits bistable behaviour [4]. Fig. 1 shows the transmission of a uniform 

Bragg grating as a function of the input intensity. Note that for a range of input intensities 

the transmission of the grating can be in a variety of states. Which particular state it is in 

depends on the history of the device, which is the essence of this scheme. The experiments 

discussed previously operated in the low power region of Fig. 1 where only one state exists 

and hence the initial and final states of these experiments were identical. In contrast I 

propose to operate at a input intensity near the dashed line in Fig. 1 where the.grating is 

bistable. The initial and final states are given by the’two solid dots in Fig. 1. We note that 

the middle branch of the transmission curve has been shown to be unstable [5] and hence 

we ignore it in this work. In the next section I present a theoretical model of our switch and 
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proceed to show numerically that it can work. 

II. DESCRIPTION OF THE SYSTEM 

A uniform Bragg grating couples forward and backward propagating modes with fre- 

quency w close to the Bragg frequency wo, while light at other frequencies can propagate 

unchanged through the grating. We utilise this by situating the frequency wP of the pump 
. 

pulse far from the’ Bragg resonance so that the pump does not see the grating while the 

probe’s frequency is assumed to lie within the photonic bandgap of the FBG. The relevant 

portion of the electric field is then given by 

E(z, t) = (f+(z, t)$k~r+‘ot) + f-(2, t)e-i(kox+~ot)) 12: + P(~, t)eiW-+t’y (1) / 

where 2, and y are the unit vectors orthogonal to the direction of propagation. f*, are 

the slowly varying envelopes of the forward and backward propagating modes. The pump 

envelope is given by P(z, t) where x is the propagation direction. Note that we have taken 

the pump and probe to be orthogonally polarised. Using the slowly varying approximation 

we can write the coupled mode equations (CME) for f* as [6] 

.w+ 
bz + 9 - ~~+nf-+sf++2rlf-12f++rlf+~2f++~rl~(z,i)12f+=0, 
iv- + iaf- -a- dz u dt + of+ + sf- + 2rlf+12f- + rlf-12f- + $qqz,t)12.f- = 0. 

9 

(24 

w 

We have assumed that the pump propagates unchanged through out the fibre, i.e. P(z, t) = 

P(z - TI$). For an optical fibre we have [7,8]: 

6= 
w - wo -, r = t!T.!I3(2), 

Uug 

no is the average refractive index of the FBG, v9 is the group velocity in the absence of a 

grating, X is the free space Bragg wavelength and 2 the vacuum impedance. The strength 

of the nonlinearity is given by n t2) which equals 3 x 10S20 m2/W in silica [3]. The parameter 

K measures the strength of the coupling between f+ and f- and is proportional to the 
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refractive index modulation depth of the grating. Note that in Eq. (2a) there are three 

nonlinear terms, the first term is a cross phase modulation term describing the effect of f- 

on f+ while the second is the self phase modulation term which is half as strong as expected. 

The last term describes the effect of the pump on f+. The nonlinear terms in Eq. (2b) have 

a similar explanation. 

Throughout the rest of this paper the following boundary conditions apply, 

If+@, 9 = Ao> ’ f-(0, t> = WAo, (4 

f+(L t> = WAo f-(LJ) = 0 (5) 

where L is the length of the grating and A0 is the input intensity. The frequency of the input 

probe is explicit in Eqs. (2) through the terms proportional to 6 and hence is not included 

in the boundary conditions. The unknown functions R(t) and T(t) are the instantaneous 

reflection and transmission coefficients for the grating and are determined by solving the 

CMEs. We note that both R and T can be greater than unity for a period of time if energy 

is stored in the grating and then released all at once. 

The assumption that the pump propagates unchanged through the grating is easily jus- 

tified when the probe is weak which is not the case here. However the primary effect of 

the probe on the pump is to introduce a frequency chirp across the pump. This will not 

significantly alter the pump’s intensity profile over the length of the grating and hence we 

are justified in ignoring the propagation of the pump. This is discussed further in the next 

section. 

In the absence of the pump and for a CW probe Eqs. (2) can be solved exactly for a 

finite grating [4] giving the bistability curve in Fig. 1. This regime has been extensively 

studied both theoretically [5] and experimentally [9]. A key result of this work has been to 

show that the high transmission branch in Fig. 1 is due to a stationary gap soliton being 

trapped in the grating [lo]. 

Consider now the case when the probe is sufficiently weak that the first two nonlinear 

terms in Eqs. 2 can be dropped. Eqs. (2) then reduce to the standard equations describing 
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pump-probe interactions in a Bragg grating [6]. In the limit that P(z, t) is constant across 

the grating the CMEs then reduce to the linear equations for a FBG but with an addition 

frequency shift of 2/31’]P(t)12. Thus in the weak probe, CW pump regime the only effect of 

the pump is to uniformly shift the entire reflection spectrum of the FBG down in frequency. 

If this shift is sufficient that the probe’s frequency is now at a reflection zero then complete 

switching has occured. 

In contrast to ;he two regimes described ‘above this paper is concerned with the regime 

when all of the nonlinear terms in Eqs. (2) are significant. In this regime it is possible to 

permanently switch the state of the Bragg grating using a strong pump pulse. As analytic 

solutions to the CMEs’ in this regime are not available, numerical solutions are necessary. 

The results of a typical simulation are presented in Fig 2 for the case of a medium intensity 

CW probe. In this case the grating had a length of 8cm and a strength of IC = 0.519cm,-’ 

corresponding to the grating used in previous switching experiments [2]. The input intensity 

of the probe was take to be 2 GW/cm2 and had a detuning of 0.4 cm-i which is just inside 

the bandgap of the gratin,. c The pump has a sech profile with a peak intensity of 20 GW/cm2 

and a FWHM of 10ns. The feasibility of these parameters is discussed later. 

In Fig 2 the solid line gives the reflectivity of the grating, while the dashed line shows 

the pump profile (on a different scale). It is quite clear that prior to the pump the probe’s 

reflection approached unity while after the pump propagated through the grating the reflec- 

tion is close to zero. The reason for this can be seen Fig. 3 which show the field distributions 

inside the grating before and after the passage of the probe. The initial field distribution 

decays approximately exponentially inside the grating leading to the high reflectivity. This 

field profile is what is expect for light on the low transmission branch of the bistability curve 

in Fig. 1. After the pump has traversed the grating the field structure is completely different 

possessing a resonant structure allowing nearly complete transmission. This suggests that 

a stationary gap soliton has been trapped in the grating which is what is expected theoret- 

ically [lo] and shows that we are on the upper branch in Fig. 1. Note that the peak of the 

intensity profile in Fig. 3b is slightly off-centre resulting in a non-zero reflectivity. 
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To understand these results it is helpful to compare them to the CW switching results 

for a weak probe. As described previously the only effect of the pump in such a system is 

to change the effective detuning of the probe so that instead of being within the photonic 

bandgap it lies in a transmission resonance instead. The shape of the field structure for the 

first linear transmission resonance is very similar to that of the final state shown in Fig. 3b. 

Returning to the complete system, the.pump again shifts the detuning of the probe to lie 

outside the bandg?p in a transmission resonance. In Fig. 2 this simple switching accounts for 

the first dip in the reflection near t = -5 and the subsequence increase in reflection suggests 

that the peak pump power shifts the probe past the first transmission zero. However now 

the intensity of the probe is sufficient that as the additional detuning caused by the pump is 

slowly decreased the field profile can smoothly transform itself into a stationary gap soliton. 

In Fig. 2 this process occurs from t = 0 to approximately t = 10. A similar transformation 

was observed by Kahn et al. who observed that the linear resonances outside the grating 

smoothly transformed themselves into gap solitons as the incident power increased [ll]. Also 

work by Broderick et al. [12] showed that a linear resonance in a nonuniform Bragg grating 

could be transformed into a moving gap soliton. 

Numerical simulations with different parameters show that permanent switching can be 

achieved for a reasonable range of parameters. Fixing the power of the probe and altering 

the detuning reveals a variety of different behaviour from permanent stable switching to 

unstable transient switching. Between the two regimes the reflectivity remains small after 

the passage of the pump but oscillates about a centre value with a fixed period. The reason 

for this behaviour is not fully understood but would appear to be related to the stability of 

the system, which is discussed further below. However there does appear to be a sufficiently 

wide window of operation to allow permanent all-optical switching to be easily seen. 
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III. DISCUSSION 

In the previous section we showed numerically that it is possible to permanently switch 

a Bragg grating from one state to another via the cross phase modulation of a strong pump. 

Throughout the proceeding sections we have assumed that this interaction takes place in 

a fibre geometry as previously most work on nonlinear Bragg gratings have concentrated 

on fibre Bragg gratings. However as the numbers used in simulations show that the power 
, 

requirements for ‘the probe are currently unavailable while the pump pulse is only just 

feasible. These power requirements could be reduced by the use of Chalcogenide fibres 

whose nonlinearity is about 100 times that of silica [13]. In addition the required probe 

power can be made arbitrarily small by increasing the length of the grating (currently one 

metre gratings are feasible). However the price for this would be to increase the peak pump 

power needed and some trade off between decreased probe power and increased pump power 

would be necessary. By using long gratings in Chalcogenide fibres it should be possible to 

reduce the probe power needed to x 100 mW. Such power levels are currently available 

using commercially available laser diodes suggesting that a realisation of this scheme in the 

near future is possible. 

It should be noted that although we have followed convention in referring to Bragg 

gratings as bistable devices it has not been shown that the upper branch of the bistability 

curve is in fact stable. However numerical simulations suggest that in some regimes this 

branch is stable, although in other regimes modulational instability leads to the formation 

of a periodic train of gap solitons [14]. This instability explains why in some cases the Bragg 

grating returns to its initial state after the passage of the pump beam. 

In the simulations discussed here the pump’s width was much longer than the length of 

the grating and thus the only effect of the pump is to slowly change the effective detuning 

of the probe beam. Furthermore the long time scales over which the switching takes place 

suggest that alternative stronger nonlinearities could be used which typically are much 

slower than the Kerr nonlinearity. This has the additional advantage of reducing the effects 
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of modulational instability on our system [14] thus allowing a larger window of operation. 

For example in a semiconductor geometry the nonlinearity is provided by the presence of 

free carriers i.e. electrons and has a typical responds time of about 1 ns. Switching powers 

as low as a few milliwatts have been reported in such geometries [15] making the proposed 

device practical. An additional attraction of a semiconductor geometry with a free carrier 

nonlinearity is that in such a system an optical pump could be replaced with an electronic 

injection of carrie;s into the device thus providing a high contrast electro-optic switch. 

Alternatively the grating could be side illuminated by an intense UV beam to create the 

appropriate number of free carriers. This would eliminate any concern about the effects of 

propagation on the pump profile. 

IV. CONCLUSION 

We have proposed a novel high power nonlinear switch based on a nonlinear Bragg grating 

and a strong pump pulse. In contrast to previous schemes based on Bragg gratings the 

pump pulse permanent switches the grating from a high reflectivity to a low reflectivity state 

making it ideal for applications such as all-optical memory storage and high power all-optical 

switches. Although currently such a switch is impractical in a silica fibre geometry the powers 

required are feasible in materials with a slower but stronger nonlinearity. Furthermore in a 

semiconductor geometry it should be possible to replace the optical pump with an electrical 

signal thus creating a novel electro-optical switch. 



REFERENCES 

[l] S. LaRochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Elect. Lett. 26, 1459 (1990). 

[2] N. G. R. Broderick et al., OSA Topical Meeting on Bragg Gratings, Photosensitivity, 

and Poling in Glass Fibres and Waveguides Williamsburg, Virginia, October 1997. 

[3] G. P. Agrawal, Nonlinear Fibre Optics (Academic Press, San Diego, 1989). 

[4] H. G. Winful, 3. H. Marburger, and E: Garmire, Applied Physics Letters 35, 379 (1979). 

[5] C. M. de Sterke and J. E. Sipe, in Progress in Optics, edited by E. Wolf (North Holland, 

Amsterdam, 1994), Vol. XxX111, Chap. III Gap Solitons, pp. 203-260. 

[6] C. M. de Sterke, Optics Letters 17, 914 (1992). 

[7] J. E. Sipe, L. Poladian, and C. M. de Sterke, J. Opt. Sot. Am A 11, 1307 (1994). 

[8] C. M. de Sterke and J. E. Sipe, Phys. Rev. A 42, 550 (1990). 

[9] N. D. Sankey, D. F. Prelewitz, and T. F. Brown, Appl. Phys. Lett. 60, 1427 (1992). 

[lo] W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987). 

[ll] L. M. Kahn, K. Huang, and D. L. Mills, Phys. Rev. B 39, 12449 (1989). 

[12] N. Broderick, C. M. de Sterke, and J. E. Sipe, Op. Comm. 113, 118 (1994). 

[13] M. Asobe, Opt. Fib. Tech. 3, 142 (1997). 

[14] H. G. Winful and G. D. Cooperman, Appl. Phys. Lett. 40, 298 (1982). 

[15] B. Acklin, M. Cada, J. He, and M. A. Dupertius, Appl. Phys. Lett. 63, 2177 (1993). 

9 



FIGURES 

FIG. 1. Nonlinear transmission for a uniform Bragg grating. Note that for a range of input 

intensities the transmission is multi-valued. The dashed line indicates the region in which the 

device operates. The two solid dots show the initial and final states of the Bragg grating. 

FIG. 2. Reflectivity of a Bragg grating showing the permanent switching caused by the pump 

pulse. The dashed line shows the pump ‘profile on a different scale. The parameters for this 

simulation are given in the text. 

FIG. 3. Field distributions inside the grating before (a) and after (b) the presence of the pump. 

The solid line represents the total intensity lf+j2 + lf-12. The dotted line gives lf+12 while the 

dashed line gives If- 12. Note that in (a) the field decays approximately exponentially leading to 

the high reflectivity while in (b) a resonance structure has appeared leading to almost complete 

transmission. 
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