
 
 

PREDICTION OF FINITE POPULATION TOTALS BASED ON THE SAMPLE 
DISTRIBUTION 

 
MICHAIL SVERCHKOV, DANNY PFEFFERMANN 

 
ABSTRACT 

 
In this article we study the use of the sample distribution for the prediction of finite 

population totals under single-stage sampling. The proposed predictors condition on the 

sample values of the target outcome variable, the sampling weights of the sample units 

and possibly on known population values of auxiliary variables.  

 

The prediction problem is solved by estimating the expectation of the outcome values for 

units outside the sample as a function of the corresponding expectation under the sample 

distribution and the sampling weights. The prediction variance is estimated by a 

combination of an inverse sampling procedure and the bootstrap method. An important 

outcome of the present analysis is that several familiar estimators in common use are 

shown to be special cases of the proposed approach, thus providing them a new 

interpretation. The performance of the new and some old predictors in common use is 

evaluated and compared by a Monte Carlo simulation study using a real data set. 

 

Southampton Statistical Sciences Research Institute 
Methodology Working Paper M03/06 



Survey Methodology, June 2004  79 
Vol. 30, No. 1, pp. 79-92 
Statistics Canada 

 

Prediction of Finite Population Totals Based on the Sample Distribution 

MICHAIL SVERCHKOV and DANNY PFEFFERMANN1 

ABSTRACT 

This article studies the use of the sample distribution for the prediction of finite population totals under single-stage 
sampling. The proposed predictors employ the sample values of the target study variable, the sampling weights of the 
sample units and possibly known population values of auxiliary variables. The prediction problem is solved by estimating 
the expectation of the study values for units outside the sample as a function of the corresponding expectation under the 
sample distribution and the sampling weights. The prediction mean square error is estimated by a combination of an inverse 
sampling procedure and a re-sampling method. An interesting outcome of the present analysis is that several familiar 
estimators in common use are shown to be special cases of the proposed approach, thus providing them a new interpretation. 
The performance of the new and some old predictors in common use is evaluated and compared by a Monte Carlo 
simulation study using a real data set. 
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1. INTRODUCTION 
 

The sample distribution is the parametric distribution of 
the outcome values for units included in the sample. This 
distribution is different from the population distribution if 
the sample selection probabilities are correlated with the 
values of the study variable even when conditioning on the 
values of concomitant variables included in the population 
model. It is also different from the randomization (design) 
distribution that accounts for all the possible sample 
selections with the population values held fixed. The sample 
distribution is defined and discussed with examples in 
Pfeffermann, Krieger and Rinott (1998), and is further 
investigated in Pfeffermann and Sverchkov (1999) who use 
it for the estimation of linear regression models. Krieger and 
Pfeffermann (1997) use the sample distribution for testing 
population distribution functions and Pfeffermann and 
Sverchkov (2003a) discuss its use for fitting Generalized 
Linear Models. Chambers, Dorfman and Sverchkov (2003) 
utilize the sample distribution for nonparametric estimation 
of regression models, and Kim (2002) and Pfeffermann and 
Sverchkov (2003b) apply it for small area estimation 
problems. 

In this article we study the use of the sample distribution 
for the prediction of finite population totals under single-
stage sampling. It is assumed that the population outcome 
values (the y-values) are random realizations from some 
distribution that conditions on known values of auxiliary 
variables (the x-values). The problem considered is the 
prediction of the population total Y based on the sample 
y-values, the sampling weights for units in the sample and 
the population x-values. The use of the sample distribution 

permits conditioning on all these values, which is not 
possible under the randomization (design) distribution, and 
the prediction of Y is equivalent therefore to the prediction 
of the y-values for units outside the sample.  

The prediction problem is solved by estimating the 
conditional expectation of the y-values (given the x-values) 
for units outside the sample as a function of the conditional 
sample expectation (the expectation under the sample 
distribution) and the sampling weights. The prediction mean 
square error is estimated by a combination of an inverse 
sampling procedure and a re-sampling method. As it turns 
out, several familiar estimators in common use and in 
particular, classical design based estimators are special cases 
of the proposed procedure, thus providing them a new 
interpretation. The performance of the new and old 
predictors is evaluated and compared by mean of a Monte 
Carlo simulation study using a real data set.   
2. THE SAMPLE AND SAMPLE-COMPLEMENT 

        DISTRIBUTIONS  
2.1 The Sample Distribution 
 

Suppose that the population values =},{ Xy  
}]...[,)...{( 11 ′′ NNyy xx  are random realizations with con-

ditional probability density function (pdf) )|( iip yf x  that 
may be discrete or continuous. The y-values are assumed to 
be scalars but the x-values can be vectors. We consider 
single stage sampling with sample inclusion probabilities 

),,,()(Prπ iZXgsii y=∈=  for some function g, where Z 
defines the population values of design variables used for 
the sampling process. Note that the y-values are random and 
we also consider the design variables as random so that the 
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g-values are random as well. Let 1=iI  if si ∈  and ,0=iI  
if .si ∉  The conditional marginal sample pdf  is defined as,  

)1Pr(
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def
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(2.1)
 

with the second equality obtained by application of Bayes 
theorem. Note that ),|1(Pr iii yI x=  is not necessarily the 
same as the actual sample selection probability =iπ  

),,,( iZXg y  (see Remark 1 below). It follows from (2.1) 
that the population and sample pdfs are different, unless 

)|1(Pr),|1(Pr iiiii IyI xx ===  for all .iy  When the 
sample distribution differs from the population distribution 
it becomes informative, and the sampling scheme can not be 
ignored at the inference process.   
Remark 1. It is important to emphasize that the definition 
and use of the sample distribution does not assume that the 
sample selection probabilities are function of only ).,( iiy x  
As mentioned earlier and highlighted by expressing the 
selection probabilities as ),,,,(π iZXgi y=  the actual 
selection probabilities may depend on all the population 
values ).,,( ZXy  However, as shown in Pfeffermann and 
Sverchkov (1999), =),|π( iiip yE x ).,|1(Pr iii yI x=  
Thus, although the selection probabilities may depend on all 
the population values ),,,( ZXy  for given values ),( iiy x  
they equal ),|1(Pr iii yI x=  ‘on average’. In fact, iπ  may 
not depend directly on y at all and only be a function of 

),,( ZX  and still the expectation ),|π( iiip xyE  equals 
).,|1(Pr iii yI x=  The reason why the expectation may 

depend on iy  in this case is that Z may be correlated with y. 
For example, the 1999 Canadian Workplace and Employee 
Survey uses a disproportionate stratified sample with the 
strata defined by region, activity, and the size of the 
workplace. The size information is obtained from tax 
records from 1998; see, Patak, Hidiroglou and Lavallée 
(2000) for details. When modeling the payrolls in 1999 
against the number of employees, the sampling design is 
found to be informative, which is explained by the fact that 
the stratification is based in part on the size obtained from 
the tax records in the previous year, which are correlated 
with the payroll the year after. See Fuller (2003) for details 
of the analysis. 

The discussion above should not be understood to mean 
that iπ  is never a function of ),( iiy x  only. A classical 
example for the latter case is retrospective sampling. Thus, 
in a case control study, the selection probabilities of the 
cases and controls usually only depend on the respective y 
and x values (and often just on the y values). In the 
empirical study of this paper we use a real data set where the 
sample was drawn by a disproportionate stratified sample 

with the strata boundaries defined by the values of the 
dependent variable.  

In what follows we regard the probabilities iπ  as random 
realizations of the random variable ).,,,( iZXg y  Let 

iiw π/1=  define the sampling weight of unit .i  The 
following relationships, established in Pfeffermann and 
Sverchkov (1999) hold for general pairs of vector random 
variables ),,( ii vu  with pE  and sE  defining expectations 
under the population and sample pdfs respectively. (As a 
special case, ,ii y=u ).ii xv =  
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It follows from (2.4) that  
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is E
wE =  (2.5)  

For a detailed discussion of the sample distribution with 
illustrations, see Pfeffermann et al. (1998).  
2.2 The Sample-Complement Distribution  

Similar to (2.1), we define the conditional pdf for units 
outside the sample as,  

.
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The relationships (2.2) – (2.5) and the equality 
==−== )1(Pr1),0(Pr iiiiii ,|Ι|Ι vuvu

)|π(1 i iipE v,u−  imply the following representations of 
the sample-complement distribution for general pairs of 
vector random variables ).,( ii vu  

)(
],π[

]π[
])π1[(

],)π1[(

])π1[(

)(],)π1[(
)(

iis
iiip

iip

iip

iiip

iip

iipiiip
iic

f
E

E

E

E

E

fE
f

vu
vu

v

v

vu

v

vuvu
vu

−
−

=

−
−

=

 

(2.7)

 



Survey Methodology, June 2004 81 
 

.
])1[(

)(],)1[(
)(

iis

iisiiis
iic wE

fwE
f

v

vuvu
vu

−
−

=  (2.8) 

(Equation (2.8) follows by application of (2.5a) to the 
second expression in (2.7)). Also, by (2.8) and the first 
equation in (2.7), 
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Remark 2.  In practical applications the sampling fraction is 
often very small and hence the sample selection proba-
bilities are small for at least most of the population units. If 

δπ <i  with probability 1, 
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where ).δ1/(δδ −<∆<−  It follows from (2.10) that for δ  
sufficiently small, the difference between the population pdf 
and the sample-complement pdf is accordingly small, which 
is not surprising.  

 
3. OPTIMAL PREDICTION OF FINITE 

       POPULATION TOTALS  
Let ∑ == N

i iyY 1  define the population total. The problem 
considered is how to predict Y based on the sample data and 
possibly population values of auxiliary variables. Denote the 
‘design information’ available for prediction by =sD  

}...1),,(;),,{( NjIsiwy jjii =∈ x  and let )(ˆˆ
sDYY =  

define the predictor. The MSE of Ŷ  with respect to the 
population pdf given sD  is, 
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since )](ˆ[ sp D|YEY −  is fixed given .sD  It follows from 
(3.1) that )ˆMSE( sD|Y  is minimized when  ).(ˆ

sp D|YEY =  
The latter expectation can be decomposed as, 
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where in the last equality we assume that jy  for sj ∉  and 

sD  are uncorrelated given .x j  The prediction problem 
reduces therefore to the estimation of the expectations 

).|( jjc yE x  In section 4 we consider semi-parametric 
estimation of these expectations.  

 
4. SEMI-PARAMETRIC PREDICTION OF FINITE 

          POPULATION TOTALS  
Suppose that the sample-complement model takes the 

form, 
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where )x(βC  is a known (possibly nonlinear) function of x 
that depends on an unknown vector parameter β.  The 
variances 2σ )( jxv  are assumed known except for .σ 2   
Remark 3.  In actual applications the model (4.1) can be 
identified by a two-step procedure, utilizing the equality 

)()( iiisiic |yrE|yE xx =  with ])1[(/)1( iisii |wEwr x−−=  
(follows from Equation 2.9). First, estimate )( iis |wE x  and 
hence ir  by regressing iw  against ix  using the sample data. 
Let ]1)(ˆ/[)1(ˆ −−= iisii |wEwr x  and transform .ˆ*

iii yry =  
Second, study the relationship in the sample between *

iy  
and ix  for identifying the form of ).(β iC x  See 
Pfeffermann and Sverchkov (1999, 2003a) for examples of 
estimating ).( iis |wE x  A similar procedure can be applied 
for identifying the variance function ),( iv x  using the 
empirical residuals ).ˆ(ˆε̂ iiisii |yrEy x−=  

The function )(β jC x  in (4.1) with the true vector 
parameter β  satisfies for all ,sj ∉  
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(The second equality follows from (2.9)). Hence, by 
substituting the sample expectation outside the curved 
brackets by the sample mean (a straightforward application 
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of the method of moments) and estimating ir  by ir̂  (see 
Remark 3), the vector β  can be estimated as, 
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The predictor of the population total takes then the form, 
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Alternatively, it follows from (4.1) that, 
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where the right hand side expectation is with respect to the 
joint distribution of ).,( jiy x  Thus, β  can be estimated as, 

∑
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since =)( is wE constant. The predictor of Y with β  
estimated by 2β̂  is therefore, 

.)(ˆ
2β̂2 ∑∑

∉∈
+=

sj
j

si
i CyY x  (4.7) 

Remark 4. A notable advantage of the use of the predictor 

2̂Y  over the use of the predictor 1̂Y  is that it does not require 
the identification and estimation of the expectation 

).()( xx |wEw s=  On the other hand, in situations where 
this expectation can be estimated properly, the predictor 1̂Y  
is likely to be more accurate since the weights =ir  

]1)([)1( −− iisi |wEw x  will often be less variable than the 
weights ).1( −iw  This is because the weights ir  only 
account for the net effect of the sampling process on the 
target conditional distribution ),( iic |yf x  whereas the 
weights )1( −iw  account for the effect of the sampling 
process on the joint distribution ).,( iic yf x  In particular, 
when iw  is a deterministic function of ix  such that 

),( ii ww x=  the sampling process is noninformative and 
).()()( iipiisiic |yf|yf|yf xxx ==  In this case the esti-

mator 1β̂  (but not 2β̂ ) coincides with the optimal 
generalized least square (GLS) estimator of β  since 1=ir  
and the model (4.1) holds for the sample data. (For the data 
analysed in section 7, the empirical variance of the weights 

ir  is 1.36, whereas the empirical variance of the weights iw  
is 2.66). In contrast to this, when the sampling weights iw  
are independent of ,ix  the estimates 1β̂  and ,β̂ 2  and hence 
the predictors 1̂Y  and 2̂Y  are equal since =)( iw x constant. 

An interesting special case of the predictor 2̂Y  arises 
when the working model postulated for the sample-
complement is linear with an intercept term and constant 
variance. Let ).~,1( ii xx ′=′  As easily verified, the estimator 
in this case takes the form, 

[ ]CcC
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i XcXBYyY ˆ)(
~~ˆˆ

Reg,2 −′++=∑
∈

 (4.8) 

where ])1(/)[()ˆ,ˆ(,~)(
~

∑∑ ∈∉ −−== si iCCsi i wnNXYcX x  
])~,)(1([∑ ∈ −si iii yw x  and cB

~
 is the probability weighted 

estimator of the vector coefficient of ix~  but with the 
weights )1( −iw  instead of .iw    
Remark 5. The predictor Reg,2̂Y  can be obtained as a 
special case of the Cosmetic predictors proposed by Brewer 
(1999). It should be emphasized, however, that the 
development of the cosmetic predictors and the derivation 
of their MSE assumes explicitly noninformative sampling.  

An important property of Reg,2̂Y  is that under general 
conditions it is design consistent for Y, irrespective of the 
true sample-complement model (see Lemma 1 below). 
Many analysts view ‘design consistency’ as an essential 
requirement from any predictor; see the discussion in 
Hansen, Madow and Tepping (1983) and Särndal (1980). 
The following Lemma 1 defines conditions under which the 
more general predictor 2̂Y  of (4.7) is design consistent for Y.  
Lemma 1. The predictor 2̂Y  is design consistent for Y if the 
working model used for the computation of 2β̂  satisfies the 
conditions, i- )(β xC  has an intercept term, ii- )(β xC  is 
differentiable with respect to β  in the neighborhood of 2β̂  
and iii- =)(xv constant. 
Proof : By (4.6) and condition β~2 minargβ̂, =iii  
∑ ∈ −−si iii Cyw 2

β
~ )]()[1( x  and by condition =)(, β xCi  

),~(β ββ0 ...1
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The proof is completed by noting that under mild 
regularity conditions ∑ ∈ si ii yw  is design consistent for Y, 
and )(

2β̂ isi iCw x∑ ∈  is design consistent for ∑ =
N
j iC1 β̂

).(
2

x   
Thus, the right hand side of (4.9) converges in probability to 

2̂Y  while the left hand side converges in probability to Y.  
It is important to emphasize again that the Lemma does 

not assume that the working model is the correct sample-
complement model.  
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The use of the predictors 1̂Y  and 2̂Y  requires a 
specification of the sample-complement model. Next we 
develop another predictor that only requires the iden-
tification and estimation of the sample model. The approach 
leading to this predictor is a sample-complement analogue 
of the ‘bias correction method’ proposed by Chambers et al. 
(2003). The proposed predictor is based on the following 
relationship, 
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where in the second row we replaced the sample-
complement average of the conditional expectations 

)( jjc |yE x  by its expectation over the sample-complement 
distribution of the x-values (n denotes the sample size). By 
(2.9),  
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implying that the sample-complement mean in the second 
row of (4.10) can be estimated as nM c /1ˆ =  

,)]}(ˆ)][1/()1{[(∑ ∈ −−−si iisisi |yEyww x  where =sw  
./∑ ∈ si i nw  The proposed predictor therefore takes the form, 

c
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with )(ˆ
jjs |yE x  estimated from the sample data. The use 

of 3̂Y  only requires the identification and estimation of the 
sample regression ),( jjs |yE x  which can be carried out 
using conventional regression techniques. Moreover, under 
mild conditions 3̂Y  is design consistent for Y even if the 
expectation )( jjs |yE x  is misspecified. This property 
follows from the fact that ∑ ∉ sj jjs |yE )x(ˆ  is design 
consistent for ∑ ∉ sj jjs |yE )x(  and cMnN ˆ)( −  is design 
consistent for ].)x([∑ ∉ −= sj jjsjc |yEyM  
 

Remark 6. If the model fitted to the sample data is linear 
regression with an intercept and constant residual variance, 
the difference between the predictor Reg2,Ŷ  defined by (4.8) 
and the predictor 3̂Y  is that Reg,2̂Y  uses a consistent 
estimator for the regression coefficients defining the linear 

approximation to the model holding for the sample-
complement, whereas in 3̂Y  the regression coefficients are 
estimated by ordinary least squares (OLS), thus estimating 
the linear approximation to the sample model. 

Finally, rather than only predicting the sample-
complement values as with the previous predictors, one 
could instead predict all the population values by their 
estimated expectations under the population model. Assum-
ing that the latter model is linear regression with an intercept 
term and constant residual variance, application of (2.5b) 
yields,  
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Estimating the sample expectation in the numerator of 
(4.13) by the corresponding sample mean (application of the 
method of moments) and minimizing the sample mean with 
respect to β  yields the familiar probability weighted 
estimator ),()(ˆ

][
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})...(,]...{[),( 11][ ′′= nnss yyYX xx  and ]....Diag[w1 ns wW =  

Let ).~,1( ii xx ′=′  Estimating =′= pwkkkp B|yE ˆ)(ˆ xx  

pwk BB
~~ˆ

0 x′+  and summing over all the population values 
yields the familiar generalized regression (GREG) estimator 
(Särndal 1980), 
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(4.14)

 

Remark 7. By considering the estimation of Y as a 
prediction problem, the use of the predictor Reg2,Ŷ  in (4.8) 
requires the prediction of (N - n) values whereas the use of 
the GREG requires the prediction of N values. Hence, in 
situations where both the sample-complement model and 
the population model can be approximated fairly well by 
linear regression models with intercept terms (but possibly 
with different vectors of coefficients for the two models), 
one expects that for sufficiently large sampling fractions 

Nn /  the predictor Reg2,Ŷ  will be superior (see the empir-
ical results in section 7). 

 
5. EXAMPLES  

5.1 Prediction with No Concomitant Variables  
 

Let 1=ix  for all i. By (3.2),  
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Estimating the two sample expectations in the right hand 
side of (5.1) by the respective sample means yields the 
estimator, 
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In (5.2), ∑ ∈ −si ii yw )1(  is a ‘Horvitz-Thompson 
estimator’ of .∑ ∉ sj jy  The multiplier ∑ ∈ −− si iwnN )1(/)(  
is a ‘Hajek type correction’ for controlling the variability of 
the sampling weights. Notice that EIŶ  is a special case of 
the predictor Reg2,Ŷ  defined in (4.8), obtained by setting 

1=ix  for all i. It is also a special case of the predictor 3̂Y  if 
one estimates ∑ ∈== si ijs nyyyE .)(ˆ  For sampling 
designs such that ∑ ∈ =si i Nw  for all s, or if one estimates 

,)(ˆ nNwE is =  the predictor EΙŶ  reduces to the familiar 
Horvitz-Thompson estimator of the population total, 

.ˆ
TH ∑ ∈− = si ii ywY  

As with the GREG estimator considered in section 4, 
rather than predicting the sample-complement total =cY  
∑ ∉ sj jy  and using the predictor ,ˆ

EΙY  one could predict all 
the population y-values by estimating their expectations 
under the population model. By (2.5b), =)( ip yE  

).(/)( isiis wEywE  Estimating the two sample expectations 
by the corresponding sample means yields the familiar 
Hajek estimator, 
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Here again, we anticipate EΙŶ  to be more precise than 

HajekŶ  as the sampling fraction increases (see also the 
empirical results in section 7). Note that EΙŶ  and HajekŶ  are 
the same and coincide with the Horvitz-Thompson 
estimator for sampling designs satisfying .∑ ∈ =si i Nw   
5.2 Optimal Prediction with Concomitant Variables, 

Comparison with Optimal Predictors Under 
Noninformative Sampling  

Let the population model be, 
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and suppose that the sample inclusion probabilities can be 
modeled as,  

[ ] ( ) 0,δ,δ)(π =+×= iiipiiii yEgyK xx  (5.5) 

where )(),(β xx vH  and )(xg  are positive functions and K  
is a normalizing constant. (Below we consider the special 
case of ‘regression through the origin’). This sampling 
scheme is considered for illustration only, although in 
section 2 we mention several practical situations where the 
sample selection probabilities depend directly on the y and 
x-values. In particular, this is the case with the data set 
analysed in section 7. Under (5.4) and (5.5), =)(π ix  

.)()()π( β iiiip gKH|E xxx =  Hence, by (2.9), (5.4) and 
(5.5),  
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(5.6)

 

The last expression in (5.6) shows that <)( jjc |yE x  
),()( β jjjp H|yE xx =  which is clear since for the 

inclusion probabilities defined by (5.5), the sample-
complement tends to include the units with the smaller 
y-values for any given x-values. Note, however, that as 

,0/ →Nn 0→K  and 0)()( →− jjcjjp |yE|yE xx  
(see Remark 2). 

As a special case of (5.4), consider the case of a single 
auxiliary variable x and let β)(β xxH =  and xxv 2σ)( =  
(‘regression through the origin with variance proportional to 
x’). For noninformative sampling and known β,  the optimal 
unbiased predictor of Y minimizing ])ˆ[( 2

sp D|YYE −  is in 
this case, ∑∑ ∉∈ += sj jsi i xyY .βˆ  In the practical case of 
unknown β,  the optimal unbiased predictor of Y is the 
familiar Ratio estimator )/(ˆ xXyNYR =  with y  denoting 
the sample mean of Y and ( x , X ) denoting the sample and 
population means of x (Brewer 1963, Royall 1970). 

Now let 1)( =xg  in (5.5) for all x, so that =iπ  
.)δ(/)δ( 1∑ = ++ N

j jjii yyn  For sufficiently large N, we can 
approximate ),β/()δ(π XNyn iii +≈  implying that 

).(/)π()(π XNnxx|Ex iiipi ≈=  By (5.6), =)( jjc x|yE  
])β(/[σ-β 12

j
-

jj xXfxx −  where Nnf /=  is the 
sampling fraction, so that for known β  and 2σ  the optimal 
predictor of Y is, 
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Lemma 2: Let the population model be defined by (5.4) 
with β)(β xxH =  and .σ)( 2 xxv =  Assume also 
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.0)ε( 3 =iip x|E  Suppose that the sample units are selected 
independently with probabilities defined as in (5.5), with 

.1)( =xg  Then,  
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Proof : By the independence of the population values and of 
the sample selections, 
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By (5.6), =− 2)]|([ jjcj xyEy 2* )]}(π1[/ε{ jjj xx −+  
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It follows therefore that ∑ ∉ −= sj jsEp xDY 2
Reg, σ)|ˆ(MSE  

Q.E.D..]))(π1([ 2*∑ ∉ −sj jj xx   
Remark 8: For noninformative sampling and with known 
β,  the prediction MSE of the optimal predictor =Ŷ  
∑ ∑∈ ∉+si sj ji xy β  is, ∑ ∉=− sj jsp xDYYE 22 σ]|)ˆ[( . This 
MSE is larger than the MSE obtained under the informative 
sampling scheme defined by the Lemma, which is obvious 
since the latter scheme tends to sample the units with the 
larger y-values and hence also with the larger x-values and 
the larger standard deviations. 

 
6. MEAN SQUARE ERROR ESTIMATION  

Estimating ]|)ˆ[()|ˆ(MSE 2
sps DYYEDY −=  for the 

predictors Ŷ  considered in section 4 requires strict model 
assumptions that could be hard to validate. This is largely 

due to the conditioning on the design information .sD  In 
order to deal with this problem, we propose to estimate 
instead the unconditional MSE, =−= ])ˆ[()ˆ(MSE 2YYEY  

]},|)ˆ[({ 2
spD DYYEE

s
−  where sDD EEE

s
=  defines the 

expectation over the sample distribution (given the selected 
sample) and over all possible sample selections. Notice that 

]|)ˆ[( 2
sp DYYE −  can be viewed as a random variable 

),( sDu  so that )]([)ˆ(MSE sD DuEY
s

=  defines its ‘best 
predictor’ with respect to the mean square loss function 
under the distribution 

sDf  over which the expectation 
sDE  

is taken. By changing the order of the expectations, the 
unconditional MSE can be expressed as, 
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(6.1)
 

where }.;{ Uiyi ∈=y  Estimating the unconditional MSE 
of any of the predictors Ŷ  can be carried out therefore by 
estimating its randomization MSE, see Pfeffermann (1993) 
for further discussion. Estimation of the randomization MSE 
of the various predictors has the additional advantage of 
allowing their use under the design based approach. 

Estimation of randomization variances of design based 
estimators is considered extensively in the literature and 
many diverse methods are in routine use. However, in view 
of the complicated structure of some of the predictors 
considered in this study and in order not to restrict to 
particular sampling schemes, we propose below the use of a 
two-step procedure that combines an inverse sampling 
process (Step 1) and what can be viewed as a bootstrap 
resampling algorithm (Step 2). A notable advantage of this 
procedure is that it is general and applies ‘equally’ to all the 
predictors. Also, unlike other variance estimation methods 
in common use, it does not require knowledge of the pair 
wise joint selection probabilities ).,Pr(π sjiij ∈=  As 
discussed later, a valid application of the first step requires 
sufficiently large samples. The two steps of the proposed 
procedure are as follows: 
 

Step 1- Generate a single ‘pseudo population’ by selecting 
with replacement N units from the original sample with 
probabilities proportional to ,π/1 iiw =  where N is the 
population size. The justification for this step is given 
below, see also Remark 10. Denote by ppY  the sum of the y-
values in the pseudo population. 
 

Step 2- Select independently a large number B of bootstrap 
samples from the pseudo population generated in Step 1, 
using the same sampling scheme as used for the selection of 
the original sample, and re-estimate the population total. 

Let Ŷ  represent any of the predictors and denote the 
predictor obtained for bootstrap sample b by .ˆ b

ppY  Estimate, 

.)ˆ(
1

)ˆ(ˆ
1

22 ∑ = −=− B

b pp
b
ppD YY

B
YYE  (6.2) 
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The performance of the estimator (6.2) in estimating the 
randomization MSE depends obviously on the ‘closeness’ 
of the pseudo population generated in Step 1 to the actual 
population from which the original sample was drawn. The 
closeness of the two populations can be verified in part by 
noting that the marginal distribution of iiy x|  in the pseudo 
population is the same as in the original population. To see 
this, note that the pseudo population generated in Step 1 is a 
‘sample with replacement’ from the original sample with 
selection probabilities iCw  on each draw, where 

∑ == n
i iwC 1 ./1  Denoting by )|( iipp yf x  the marginal 

pseudo population distribution we find using (2.2) and 
(2.5a),  
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Remark 9. Equation (6.3) only refers to the marginal 
distribution of .| iiy x  Like with the standard bootstrap 
method, a successful application of the proposed procedure 
requires that the original sample size is sufficiently large and 
that the sample measurements are approximately inde-
pendent. Pfeffermann et al. (1998) establish conditions 
under which for independent population measurements the 
sample measurement are ‘asymptotically independent’ 
under commonly used sampling schemes with unequal 
selection probabilities.  
Remark 10. Step 1 is similar and asymptotically equivalent 
to duplicating sample unit iwi  times. Notice, however, that 
the use of this duplication procedure does not yield pseudo 
populations of size N unless ∑ = =n

i i Nw1 .  It is also not clear 
how to establish the relationship (6.3) when using this 
procedure. 

 
7. EMPIRICAL ILLUSTRATIONS  

7.1 Description of Empirical Study  
In order to illustrate the performance of the predictors 

and the associated MSE estimates discussed in previous 
sections we use a real data set, collected as part of the 1988 
U.S. National Maternal and Infant Health Survey. The 
survey uses a disproportionate stratified random sample of 
vital records with the strata defined by mother’s race and 
child’s birth weight; see Korn and Graubard (1995) for 
details. For the empirical study in this section we considered 
the sample data as ‘population’ and selected independently 

1,000 samples with probabilities proportional to the inverse 
of the original sampling weights, using a systematic PPS 
sampling scheme. The list of ‘population units’ was 
randomly ordered before every sample selection. For each 
sample we predicted the population total of birth weight 
(measured in grams, divided by 10,000 in the present 
study), using gestational age as the auxiliary variable 
(measured in weeks). The sample inclusion probabilities 
depend therefore on the values of the study variable that 
defines the original strata. Notice that although the original 
sample was supposedly a stratified random sample, the 
sampling weights actually vary within the strata, which is 
why we used systematic PPS sampling for the simulation 
study. We considered three different sample sizes, n = 232, 
1,145, 2,429. The ‘population’ (original sample) size is 
N = 9,948. (For n = 232, .15.0)Pr(π002.0 <∈=< sii  For 
n = 1,145, .73.0π01.0 << i  For n = 2,429, <03.0  

99.0π <i  with mean 26.0π =  and standard deviation 
.29.0)π( =iStd  In the latter case some of the units were 

drawn almost with certainty). 
Some of the predictors considered for this study (see 

below) require the specification of either the sample model 
or the sample-complement model. We assumed for both 
models the third order polynomial regression, 

kkkkk xxxy εββββ 3
3

2
210 ++++=  (7.1) 

with independent residuals and constant variance. This 
model was found by Pfeffermann and Sverchkov (1999) to 
give a good fit to the ‘population’ (original sample) data 
with 61.02 =R  (see Figure 1), and it was found also to fit 
fairly well the sample data (with different coefficients) for 
several samples selected from this ‘population’. Notice, on 
the other hand, that with this strongly informative sampling 
scheme, it is unlikely that the sample model, the population 
model and the sample-complement model are all from the 
same family even if with different parameters. The present 
study enables therefore studying the performance of the 
various predictors when some or all of the three models are 
misspecified.  This important robustness question is further 
examined by fitting simple regression models instead of the 
third order polynomial regressions that is, by omitting the 
second and third powers of the auxiliary variable. The only 
exception is the model dependent predictor 1̂Y  (Equation 
4.4) where no coherent estimator for the expectation 

)|( jjs xwE  could be found when restricting to simple 
regression. (The method considered in Pfeffermann and 
Sverchkov (1999) for the estimation of this expectation 
assumes normality of the population model residuals. This 
is a valid assumption when fitting the third order polynomial 
regression model but is clearly violated when dropping the 
second and third powers of the auxiliary variable). 
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U.S. National Maternal and Infant Health Survey,1988. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Model Fitted: iiiii xxxy ε61.02.617.182717886 32 +−+−=  

61.0,2.603)ε(Var 2 == Ri  

Figure 1. Scatterplot of Birth Weight against Gestational Age in ‘Population’ (original Sample), and Predicted Values  
Under 3rd Order Polynomial Regression. 

  
The predictors considered for this study divide therefore 

into three groups. The first group consists of predictors that 
only use the sample y-values and the sampling weights. 
Included in this group are the Horvitz-Thompson estimator 

∑ ∈− = si ii ywY TH
ˆ , the predictor EIŶ  defined by (5.2) and 

Hajek’s estimator HajekŶ  defined by (5.3). The second group 
consists of predictors that use the working model defined by 
(7.1). Included in this group are the two regression pre-
dictors 1̂Y  and Reg,2̂Y  defined by (4.4) and (4.8) respec-
tively, the bias corrected predictor 3̂Y  defined by (4.12) and 
the GREG estimator defined by (4.14). The third group 
contains the same predictors as the second group (except for 

1̂Y , see above), but based on the simple regression model 
(only the first power of x).  

The MSEs of all the predictors considered in this study 
have been estimated by use of the two-step procedure 
described in section 6. However, because of computing time 
limitations, the MSE estimators were only computed for a 
random selection of 200 out of the 1,000 samples and are 
based on only 200 bootstrap samples from each pseudo 
population. For assessing the performance of the MSE 
estimators we computed the corresponding empirical MSEs 
based on the 1,000 samples selected from the study 
population. Thus, the ‘true’ MSE of a generic predictor Ŷ  
was computed as,  

∑ = −= 000,1

1
2

)( )ˆ(
000,1

1
)ˆ(MSE

r r YYY  (7.2) 

where )(̂rY  denotes the predictor computed from the rth 
sample. Notice that since the population values are fixed, 
the MSE in (7.2) is the randomization MSE over all possible 
sample selections, which is what the estimator (6.2) is 
intended to estimate.  
7.2 Results of Empirical Study 
 

The main results of this study are exhibited in 
Tables 1.1 – 1.3 (one table for each sample size). The third 
column of each table shows for every predictor Ŷ  the 
empirical bias, ],)/ˆ[( 1 )( YRYR

r r −∑ =  and the standard 
deviation (Std) of the empirical bias, computed as 

;]/)ˆ([ 2/1
1

22
)(∑ = −R

r Rr RYY  ∑ = == R
r rR RRYY 1 )( .000,1,/ˆ  

The next two columns show respectively the ‘true’ 
(empirical) RMSE (square root of Equation 7.2), and the 
square root of the mean of the corresponding Bootstrap 
estimators defined by (6.2).  

The main conclusions from Tables 1.1 – 1.3 are as follows: 
 

1- All the predictors considered for this study are virtually 
design unbiased with all three sample sizes, irrespective 
of the underlying working model. The predictor 1̂Y  has a 
statistically significant bias when tested by use of the 
conventional t-statistic but the actual bias is negligible 
when compared to the true population total. (The 
predictor 1̂Y  is the only predictor considered in this 
study that is not design consistent). 

 

The next three comments refer to the RMSE of the 
various predictors. 
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2- The predictors in Groups 2 and 3 that use the auxiliary 

values perform much better than the predictors in Group 
1, particularly for the smaller sample sizes. The pre-
dictors in Group 2 that employ the 3rd order polynomial 
regression model (7.1) perform better than the corre-
sponding predictors in Group 3 that employ the simple 
regression model as the working model, but the dif-
ferences diminish as the sample size increases.   

3- An important result emerging from this study is that the 
predictors Reg,2̂Y  and EIŶ  (and also 3̂Y  for the larger 
sample sizes), that only predict the y-values for units 
outside the sample indeed perform better than the other 
predictors in their respective groups (see also below). As 
surmised in Remark 7, this holds particularly with the 
larger sample sizes. Notice that the differences between 

Reg,2̂Y  and the GREG estimator for n =1,145 and 
n =2,250 are smaller under the polynomial model 
(Group 2) than under the simple regression model 
(Group 3), which is explained by the tight relationship 
between the study variable and auxiliary variables under 
the polynomial model. The predictor 3̂Y  is less stable 
than Reg,2̂Y  for n = 232 but for the other two sample 
sizes the two predictors perform similarly.  

 

4- The predictor Reg,2̂Y  performs somewhat better than the 
model dependent predictor 1̂Y  that employs the 
expectations )|( ii xwE  to adjust the sampling weights. 
We have no clear explanation for this result because as 
illustrated in Pfeffermann and Sverchkov (1999) using 

the same data, adjusting the sampling weights improves 
the estimation of the regression coefficients very 
significantly.  
Next consider the MSE estimators.   

5- The MSE estimators developed in section 6 perform 
very well for all the predictors and with all the sample 
sizes. For the sample size n = 232 there is a systematic 
under-estimation of the RMSE by up to 3%, which is 
explained by the fact that the pseudo population is in this 
case less variable than the actual study population (see 
Remark 9). The MSE estimators are almost unbiased for 
the other sample sizes with the largest difference 
between the estimated and true RMSE being again in the 
magnitude of 3%.  
Another way of assessing the bias of the various 

predictors and their MSE estimation is by studying the 
coverage properties of confidence intervals defined by these 
predictors. Tables 2.1 – 2.3 compare the empirical 
percentage coverage of the standard confidence intervals 

±Ŷ  EŜM2/α1−Z  with the corresponding nominal 
percentages for selected values of α  (one table for each 
sample size). The empirical percentages are somewhat 
erratic with n = 232 sample units but they stabilize as the 
sample size increases, particularly with the use of the 
predictors in the second and third group. The empirical 
percentages are close to the nominal percentages with all the 
predictors when n = 2,250.    

Table 1.1 
Bias, RMSE and Square Root of Mean of MSE Estimators, n = 232 

 

Group Predictor Bias (Std) RMSE EŜM  

TH
ˆ

−Y  -4.5 (11.6) 365.1 355.0 

EIŶ   1.5 (2.9)   91.1   89.8 
1 

No  x-values 

HajekŶ   1.7 (2.9)   93.0   91.6 

1Ŷ   4.4 (2.0)   64.0   63.0 

Reg,2Ŷ   3.5 (2.0)   63.4   62.4 

3Ŷ  -0.3 (2.1)   65.4   65.0 

2  

3rd order 

polynomial 

regression 
GREGŶ   3.4 (2.1)   63.6   62.6 

Reg,2Ŷ  -2.3 (2.2)   68.0   66.2 

3Ŷ  -0.3 (2.2)   68.6   67.4 
3 

Simple Regression 

GREGŶ  -2.3 (2.2)   68.3   66.5 
 

True ‘population’ total= 2710.7 
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Table 1.2 
Bias, RMSE and Square Root of Mean of MSE Estimators, n = 1,145 

 

Group Predictor Bias (Std) RMSE EŜM  

TH
ˆ

−Y  -9.1 (5.0) 157.1 156.1 

EIŶ   0.0 (1.1)   35.2   34.9 

 
1 

No  x-values 
HajekŶ  -0.1 (1.3)   39.5   39.3 

1Ŷ   3.0 (0.9)   27.6   28.1 

Reg,2Ŷ   2.0 (0.9)   27.4   27.3 

3Ŷ   0.5 (0.9)   27.4   27.7 

 
2  

3rd order 
polynomial 
regression 

GREGŶ   1.7 (0.9)   27.8   27.8 

Reg,2Ŷ   0.0 (1.0)   28.3   28.7 

3Ŷ   0.1 (1.0)   28.2   28.9 
 

3 
Simple Regression 

GREGŶ   0.0 (2.0)   29.1   29.6 
True ‘population’ total= 2710.7 

 

Table 1.3 
Bias, RMSE and Square Root of Mean of MSE Estimators, n=2,250 

 

Group Predictor Bias (Std) RMSE EŜM  

TH
ˆ

−Y   1.3 (2.7) 82.7 80.4 

EIŶ  -0.2 (0.6) 18.5 18.8 

 
1 

No  x-values 
HajekŶ   0.1 (0.7) 23.5 23.8 

1Ŷ   1.3 (0.5) 17.5 17.3 

Reg,2Ŷ   0.6 (0.5) 16.9 16.3 

3Ŷ  -0.3 (0.5) 17.1 16.5 

 
2  

3rd order 
polynomial 
regression 

GREGŶ   0.5 (0.5) 17.9 18.3 

Reg,2Ŷ  -0.3 (0.5) 17.3 16.8 

3Ŷ  -0.3 (0.5) 17.7 17.3 
 

3 
Simple Regression 

GREGŶ  -0.2 (0.6) 18.8 18.3 
True ‘population’ total= 2710.7 

 

Table 2.1 
Nominal and Empirical Percentage Coverage of Confidence Intervals, n = 232 

 

Group Predictor 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0 

TH
ˆ

−Y  2.5 3.5 5.5 10.0 90.0 97.0 99.0 99.5 

EIŶ  0.5 2.0 4.0 8.0 88.5 91.5 95.5 98.0 

 

1 

No  x-values 
HajekŶ  0.5 2.0 4.0 8.0 88.5 91.5 95.5 98.0 

1Ŷ  0.0 0.0 1.5 6.5 86.0 90.5 92.5 97.5 

Reg,2Ŷ  0.0 0.0 2.0 7.0 85.0 90.5 93.5 98.0 

3Ŷ  0.0 0.5 2.5 6.5 87.5 91.0 95.0 98.5 

 

2  

3rd order polynomial 

regression 
GREGŶ  0.0 0.0 2.0 7.0 85.0 90.5 93.5 98.0 

Reg,2Ŷ  0.0 1.0 2.5 7.0 87.0 91.5 97.5 98.0 

3Ŷ  0.0 1.0 2.5 7.0 86.0 91.5 96.5 98.0 

 

3 

Simple Regression 
GREGŶ  0.0 1.0 2.5 7.0 86.5 91.5 97.0 98.0 
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Table 2.2 
Nominal and Empirical Percentage Coverage of Confidence Intervals, n = 1,145 

 

Group Predictor 1 2.5 5.0 10.0 90.0 95.0 97.5   99.0 

TH
ˆ

−Y  4.0 7.0 9.0 13.5 95.5 98.0 98.5   99.5 

EIŶ  3.0 5.0 8.0 12.5 92.5 95.5 99.5 100.0 

 

1 

No  x-values HajekŶ  3.5 5.0 9.5 12.5 92.5 96.0 99.5 100.0 

1Ŷ  0.5 2.0 5.0   7.5 86.5 93.5 96.0   97.0 

Reg,2Ŷ  0.5 3.0 6.0   9.0 86.5 94.5 96.5   97.0 

3Ŷ  0.5 2.0 6.0   9.5 88.0 94.0 97.0   98.0 

 

2  

3rd order polynomial 

regression GREGŶ  0.5 3.0 5.0   9.0 86.5 94.0 96.5   98.0 

Reg,2Ŷ  0.5 3.0 6.0 11.0 90.0 93.0 97.0   99.5 

3Ŷ  0.5 2.5 5.5 10.5 90.0 94.0 97.0   99.5 

 

3 

Simple Regression GREGŶ  1.0 3.0 6.0 11.0 90.5 94.0 97.5   99.0 

 

Table 2.3 
Nominal and Empirical Percentage Coverage of Confidence Intervals, n = 2,250 

 

Group                Predictor 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0 

TH
ˆ

−Y  0.5 1.0 5.5 11.0 95.0 97.5 99.0 99.5 

EIŶ  1.0 3.0 5.5   9.0 91.5 96.0 99.0 99.5 

 

1 

No  x-values HajekŶ  1.0 2.5 5.5   9.0 93.0 97.0 98.5 99.5 

1Ŷ  0.5 2.0 5.0   9.0 91.0 94.5 96.5 97.5 

Reg,2Ŷ  0.5 2.5 6.5 10.5 90.5 94.5 96.5 98.0 

3Ŷ  0.5 2.0 7.5 12.5 91.5 95.5 96.5 97.5 

 

2  

3rd order polynomial 

regression GREGŶ  0.5 2.0 6.0 11.0 91.0 94.5 96.0 98.0 

Reg,2Ŷ  1.0 3.0 6.0 11.0 91.0 95.0 97.5 99.0 

3Ŷ  1.0 2.0 6.0 12.0 90.0 95.0 97.5 98.0 

 

3 

Simple Regression GREGŶ  0.0 1.5 5.0 11.5 91.5 95.0 97.5 99.0 
 

 
As implied by the theoretical developments of this article 

and illustrated in the empirical study, predicting only the y-
values for units outside the sample employing the sample-
complement model yields better predictors for the 
population total than predicting all the population values by 
use of the population model, as implicitly implemented 
when using the GREG or Hajek’s estimators. Clearly, the 
differences are only appreciable when the sampling 
fractions are not negligible.  

In order to highlight this point further, we present in 
Table 3 the mean prediction error (mpe) in the original scale 
(grams) over the 1,000 samples when predicting the sample-
complement values; 

[ ] 000,1)()ˆ(mpe
000,1

1∑ ∑= ∉ −−=
r Sj jj

k
nNyy

 

where rS  defines the rth selected sample. The mpe’s are 
shown for three predictors, all utilizing the working model 
(7.1) and thus having the general form, += 0β̂ˆ jy  

.,β̂β̂β̂ 3
3

2
21 sjxxx jjj ∉++  For the first predictor the 

vector )β,β,β,β(β 3210 ′=  is estimated by OLS, which 
corresponds to the use of the sample model; for the second 
predictor β  is estimated by the probability weighted 
estimator ,ˆ

pwB  that corresponds to the use of the population 
model whereas for the third predictor β  is estimated by the 
estimator cB̂  which is computed similarly to pwB̂  but with 
weights ( 1−iw ), that corresponds to the use of the sample-
complement model.  
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Table 3 
Mean Prediction Errors and Std of Means (in brackets) Under Three Prediction Models 

 

Sample size Sample Model Population model Sample-Complement model 

   232 329.0 (2.2) 10.3 (2.3) 4.3 (2.3) 

1,145 375.0 (0.9) 37.7 (1.1) 2.4 (1.1) 

2,250 387.5 (0.6) 85.8 (0.7) 0.9 (0.8) 

 
 

The clear conclusion emerging from Table 3 is that the 
use of either the population model or the model holding for 
units in the sample for the prediction of y-values of units 
outside the sample can result in appreciable biases. Notice 
that the bias induced by use of the population model 
increases as the sampling fraction increases, which agrees 
with the previous discussion asserting that the difference 
between the sample and sample-complement models only 
shows up with relatively large sample sizes (see Comment 
2).  

 
8. CONCLUDING REMARKS  

In this article we use the sample and sample-complement 
distributions for developing design consistent predictors of 
finite population totals. Known predictors in common use 
are shown to be special cases of the present theory. The 
MSEs of the new predictors are estimated by a combination 
of an inverse sampling algorithm and a resampling method. 
As supported by theory and illustrated in the empirical 
study, predictors of finite population totals that only require 
the prediction of the outcome values for units outside the 
sample perform better than predictors in common use even 
under a design based framework, unless the sampling 
fractions are very small. The MSE estimators are shown to 
perform well both in terms of bias and when used for the 
computation of confidence intervals for the population 
totals. Further experimentation with this kind of predictors 
and MSE estimation is therefore highly recommended. 

 
ACKNOWLEDGEMENT  

The authors would like to thank the associate editor and 
two referees for very constructive comments.  

 
REFERENCES  

 
 

BREWER, K.R.W. (1963). Ratio estimationand finite populations: 
some results deducible from the assumptions of an underlying 
stochastic process. Australian Journal of Statistics. 5, 93-105.   

BREWER, K.R.W. (1999). Cosmetic calibration with unequal 
probability sampling. Survey Methodology. 25, 205-212. 

 

CHAMBERS, R.L., DORFMAN, A. and SVERCHKOV, M. 
(2003). Nonparametric regression with complex survey data. In, 
Analysis of Survey Data, (Eds. C. Skinner and R. Chambers). 
New York: John Wiley & Sons, Inc. 151-174. 

 

FULLER, W. (2003). Statistical analysis from complex survey 
data. Tutorial presented at the International Statistical Institute 
meeting, Berlin, Germany. Slides of the Tutorial appear in 
http://cssm.iastate.edu/academic/ staff/fuller.html. 

 

HANSEN, M.H., MADOW, W.G. and TEPPING, B.J. (1983). An 
evaluation of model-dependent and probability-sampling 
inferences in sample surveys (with discussion). Journal of the 
American Statistical Association.. 78, 776-807. 

 

KIM, D.H. (2002). Bayesian and empirical Bayesian analysis 
under informative sampling. Sankhyā B. 64, 267-288. 

 

KORN, E.L., and GRAUBARD, B.I. (1995). Examples of 
differing weighted and unweighted estimates from a sample 
survey. The American Statistician. 49, 291-295. 

 

PATAK, Z., HIDIROGLOU, M. and LAVALLÉE, P. (2000). The 
methodology of the Workplace and Employee Survey. 
Proceedings of the Second International Conference on 
Establishment Surveys, June 17-21, 2000, Buffalo, New York, 
American Statistical Association. 223-232.  

 

PFEFFERMANN, D. (1993). The role of sampling weights when 
modeling survey data. International Statistical Review. 61, 317-
337. 

 

PFEFFERMANN, D., and KRIEGER, A.M. (1997). Testing of 
distribution functions from complex sample surveys. Journal of 
Official Statistics. 13, 123-142.  

PFEFFERMANN, D., KRIEGER, A.M. and RINOTT, Y. (1998). 
Parametric distributions of complex survey data under 
informative probability sampling. Statistica Sinica. 8, 1087-
1114. 

 

PFEFFERMANN, D., and SVERCHKOV, M. (1999). Parametric 
and semi-parametric estimation of regression models fitted to 
survey data. Sankhyā, Series B. 61. 166-186. 

 

PFEFFERMANN, D., and SVERCHKOV, M. (2003a). Fitting 
generalized linear models under informative probability 
sampling. In Analysis of survey Data, (Eds. C. Skinner and R. 
Chambers). New York: John Wiley & Sons, Inc. 175-195. 

 

PFEFFERMANN, D., and SVERCHKOV, M. (2003b). Small area 
estimation under informative sampling. Proceedings of the 
Section on Survey Research Methods, American Statistical 
Association (to appear). 

 
 



92 Sverchkov and Pfeffermann:  Prediction of Finite Population Totals Based on the Sample Distribution 
 
ROYALL, R.M. (1970). On finite population sampling theory 

under certain linear regression models. Biometrika. 57, 377-
387.  

SÄRNDAL, C.E. (1980). On π -inverse weighting versus best 
linear unbiased weighting in probability sampling. Biometrika. 
67, 639-650. 

 


