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Prediction of Finite Population Totals Based on the Sample Distribution

MICHAIL SVERCHKOV and DANNY PFEFFERMANN*

ABSTRACT

This article studies the use of the sample distribution for the prediction of finite population totals under single-stage
sampling. The proposed predictors employ the sample values of the target study variable, the sampling weights of the
sample units and possibly known population vaues of auxiliary variables. The prediction problem is solved by estimating
the expectation of the study values for units outside the sample as a function of the corresponding expectation under the
sample distribution and the sampling weights. The prediction mean square error is estimated by a combination of an inverse
sampling procedure and a re-sampling method. An interesting outcome of the present analysis is that severa familiar
estimatorsin common use are shown to be specia cases of the proposed approach, thus providing them a new interpretation.
The performance of the new and some old predictors in common use is evauated and compared by a Monte Carlo

simulation study using area data set.
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1. INTRODUCTION

The sample digtribution is the parametric distribution of
the outcome vaues for units included in the sample. This
distribution is different from the population distribution if
the sample selection probabilities are correlated with the
values of the study variable even when conditioning on the
values of concomitant variables included in the population
modél. It is aso different from the randomization (design)
distribution that accounts for dl the possible sample
selections with the population values held fixed. The sample
distribution is defined and discussed with examples in
Pfeffermann, Krieger and Rinott (1998), and is further
investigated in Pfeffermann and Sverchkov (1999) who use
it for the estimation of linear regression models. Krieger and
Pfeffermann (1997) use the sample distribution for testing
population distribution functions and Pfeffermann and
Sverchkov (2003a) discuss its use for fitting Generalized
Linear Models. Chambers, Dorfman and Sverchkov (2003)
utilize the sample distribution for nonparametric estimation
of regression models, and Kim (2002) and Pfeffermann and
Sverchkov (2003b) apply it for small area estimation
problems.

In this article we study the use of the sample distribution
for the prediction of finite population totals under single-
stage sampling. It is assumed that the population outcome
values (the y-values) are random redizations from some
distribution that conditions on known values of auxiliary
varidbles (the x-values). The problem considered is the
prediction of the population tota Y based on the sample
y-values, the sampling weights for units in the sample and
the population x-values. The use of the sample distribution
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permits conditioning on al these values, which is not
possible under the randomization (design) distribution, and
the prediction of Y is equivalent therefore to the prediction
of the y-values for units outside the sample.

The prediction problem is solved by egtimating the
conditional expectation of the y-vaues (given the x-values)
for units outside the sample as a function of the conditiona
sample expectation (the expectation under the sample
distribution) and the sampling weights. The prediction mean
sguare error is estimated by a combination of an inverse
sampling procedure and a re-sampling method. As it turns
out, severa familiar estimators in common use and in
particular, classical design based estimators are specia cases
of the proposed procedure, thus providing them a new
interpretation. The performance of the new and old
predictors is evaluated and compared by mean of a Monte
Carlo smulation study using areal data set.

2. THE SAMPLE AND SAMPLE-COMPLEMENT
DISTRIBUTIONS

2.1 The SampleDistribution

Suppose that the population vaues {y,X}=
{(y;---YnN) s [X.-Xy]'} are random redizations with con-
ditional probability density function (pdf) f (y; [x;) that
may be discrete or continuous. The y-values are assumed to
be scaars but the x-values can be vectors. We consider
single stage sampling with sample incluson probabilities
n; =Pr(i0s)=g(y, X,Z,i) for some function g, where Z
defines the population values of design variables used for
the sampling process. Note that the y-values are random and
we aso consider the design variables as random so that the
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g-valuesarerandomaswell. Let |, =1 if ils and |, =0,
if i ds. Theconditiona marginal sample pdf isdefined as,
def
fs(yi|xi) = f(yi|xi!1i =1)
_ Pr(/, :1| yi’Xi)fp(yi|Xi)
Pr(l, :1|Xi)
with the second equality obtained by application of Bayes
theorem. Note that Pr (1, =1|y;,X;) isnot necessarily the
same as the actual sample sdection probability wr; =
gy, X,Z,i) (see Remark 1 below). It follows from (2.1)
that the population and sample pdfs are different, unless
Pr(l; =1]y,,x;) =Pr(l; =1]x;) for dl y,. When the
sample distribution differs from the population distribution

it becomes informative, and the sampling scheme can not be
ignored at the inference process.

2.1)

Remark 1. It is important to emphasize that the definition
and use of the sample distribution does not assume that the
sample selection probabilities are function of only (y;,X;).
As mentioned earlier and highlighted by expressing the
selection probabilities as w; = g(y, X,Z,i), the actud
selection probabilities may depend on dl the population
values (y, X,Z). However, as shown in Pfeffermann and
Sverchkov  (1999), E (m; |y, %) = Pr(l; =1]y;,x;).
Thus, athough the selection probabilities may depend on dl
the population values (y, X,Z), for given vaues (y;,X;)
they equal Pr(l, =1]y,,x;) ‘onaverage. In fact, &; may
not depend directly on y at al and only be a function of
(X,2), and dill the expectation E (m; |y;,%) equas
Pr(l; =1]y,,x;). The reason why the expectation may
depend on y, inthiscaseisthat Z may be correlated with y.
For example, the 1999 Canadian Workplace and Employee
Survey uses a disproportionate stratified sample with the
gsrata defined by region, activity, and the size of the
workplace. The size information is obtained from tax
records from 1998; see, Paak, Hidiroglou and Lavallée
(2000) for details. When modeing the payrolls in 1999
againg the number of employees, the sampling design is
found to be informative, which is explained by the fact that
the dratification is based in part on the size obtained from
the tax records in the previous year, which are correlated
with the payroll the year after. See Fuller (2003) for details
of theanalysis.

The discussion above should not be understood to mean
that =; is never a function of (y;,x;) only. A classica
example for the latter case is retrospective sampling. Thus,
in a case contral study, the selection probabilities of the
cases and controls usually only depend on the respective y
and x vaues (and often just on the y values). In the
empirica study of this paper we use areal data set where the
sample was drawn by a disproportionate stratified sample

with the strata boundaries defined by the vaues of the
dependent variable.

Inwhat follows we regard the probabilities =; asrandom
redizations of the random variable g(y,X,Z,i). Let
w, =1/m; define the sampling weight of unit i. The
following relationships, established in Pfeffermann and
Sverchkov (1999) hold for genera pairs of vector random
variables (u;,v;), with E, and E; defining expectations
under the population and sample pdfs respectively. (As a
specid case, U; = Y, Vi = X;).

Ep(ni|u' V')fp(ui|vi)

fo(uilvi) = £ (m ) (22
p\i i
Es(w ju;, vi) f(ui]v;
fp(ui|vi): S(W|;I(\\:V)|V.)(u |V) (2.3)
E,(wu;|v;)
Ep(Ui|Vi):W- 24)
It follows from (2.4) that
1
E v,) = ————
3 <(Wi[v;) E v
D E(u)= 2,
1
9 EM)Eg (25)

For a detailed discussion of the sample distribution with
illustrations, see Pfeffermann et al. (1998).

2.2 The Sample-Complement Distribution

Similar to (2.1), we define the conditiona pdf for units
outside the sample as,

def
fc(yi|xi) = fp(yi|xi1|i =0)
_ Pr(l; :0|Yi-xi)fp(Yi|Xi)
Pr(l, =0Jx;) '
The rdatonships (22)—(25) and the equaity
Pr(f; =0]u,v;) = 1= Pr(/, =1u,v) =
1-E, (m;|u;,v;) imply the following representations of
the sample-complement distribution for general pairs of
vector random variables (u;, v, ).

(2.6)

_ Ep[(l_ni)|u' V']fp(ui|vi)

Ep[(l_ni)|vi]

f<:(ui |Vi)

E [A-m, )|Vi] Eplm |Ui Vil

- Ep[(l—ni)|U- Vil Ep[ni|vi]

fo(uiv) (27)



Survey Methodology, June 2004

_EJw =Duy, v 1 (u|vy)

folu) === o~ 29

(Equation (2.8) follows by application of (2.58) to the
second expression in (2.7)). Also, by (2.8) and the first
equationin (2.7),

Ep[(l_”i)ui|vi] _ El(w, _1)Ui|Vi]

R i v B VT

2.9

Remark 2. In practical applicationsthe sampling fraction is
often very smdl and hence the sample selection proba-
bilities are smdll for at least most of the population units. If
m; <& with probability 1,

_ Ep[(l_ni)|ui 'Vi]fp(ui|vi)

£ ulv
() E [0 V]
= fy(ufv)+
Ep{[Ep(ni|Vi) _ni]|ui Vit fp(ui|vi)
Ep[(l_“i)|vi]

=f,(u; |v))2+4) (2.20)
where =6 <A <5/(1-9). It follows from (2.10) that for &
sufficiently small, the difference between the population pdf

and the sample-complement pdf is accordingly small, which
isnot surprising.

3. OPTIMAL PREDICTION OF FINITE
POPULATION TOTALS

Let Y =3N y. definethe population total. The problem
considered is how to predict Y based on the sample data and
possibly population values of auxiliary variables. Denote the
‘design information’ available for prediction by D, =
{(y;,w),i0s; (x;,1,), ] =1.N} _and let Y =Y(D,)
define the predictor. The MSE of Y with respect to the
population pdf given Dy is,

MSE(Y | D,) = E,[(Y - Y)?|D,]
=E,{[Y - E, (Y|D,)I?|Ds} +V, (Y| D,)
=[Y —E, (Y|D,)]? +V, (Y|D,)

since [Y - E,(Y|D,)] is fixed given Dy. It follows from
(3.1) that MSE(Y | D) isminimized when Y =E, (Y|D,).
The latter expectation can be decomposed as,

(3.1)
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N

Ep(Y|Ds) = ZizlEp(yi |Ds)

=X E,0i[D.. 1y =)+ > E (y;|Ds.l; =0)
ids jOs
=Zyi +ZEc(yj|Ds)
ils jOs
=Ty TR, x;) (32)

where in the last equality we assumethat y; for j s and
D, are uncorrelated given X;. The prediction problem
reduces therefore to the estimation of the expectations
E.(Y; [X;). In section 4 we consider semi-parametric
estimation of these expectations.

4. SEMI-PARAMETRIC PREDICTION OF FINITE
POPULATION TOTALS

Suppose that the sample-complement model takes the
form,
y; =Cp(x) *ej,
E.(e[x;) = 0, Ec(e3]x ) = 6°V(x)),
Ec(e& ;X\, ;) =0,k # ] (4.2)
where C; (x) isaknown (possibly nonlinear) function of x

that depends on an unknown vector parameter B. The
variances o* V(X;) are assumed known except for .

Remark 3. In actud applications the model (4.1) can be
identified by a two-step procedure, utilizing the equality
Ec(Yilx)=Es(riyilx;) with r=(w, —D/Eg[(w —1)Ix]
(follows from Equation 2.9). First, estimate E (w;|X;) and
hence r; by regressing w; againgt x; using the sample data
Let f; = (w —1)/[Eg(w]x;) -1 andtransform y; =fy;.
Second, study the relationship in the sample between y;
and x; for identifying the form of C,(x;). See
Pfeffermann and Sverchkov (1999, 2003a) for examples of
edimating E (w|x;). A smilar procedure can be applied
for identifying the variance function v(x;), using the
empirical residuals €, =y, — E.(f; ;] X;).

The function Cg(x;) in (4.1) with the true vector
parameter § satisfiesfordl jOs,

v(X;)

Cy(x;) =arg min E{

Cﬁ(xj)

[y; —Cs (x))]?

=agminE | r,—— 1= | (4.2)
G (x)) V(XJ-)

[y, = C5(x,)1? ’ J
j

(The second equdity follows from (2.9)). Hence, by
subgtituting the sample expectation outside the curved
brackets by the sample mean (a straightforward application
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of the method of moments) and estimating r; by f, (see
Remark 3), the vector B can be estimated as,

[y: —C5(x)1?
B, = argmin L (4.3
%s:( v(x;)
The predictor of the population total takes then the form,
Y Dy +ZC (x;)- 4.9
i0s jOs

Alternatively, it follows from (4.1) that,
Y~ CB (Xj )] 2

[
:Ec [yj _Cﬁ(xj)]z
v(x;)

w; =1 |[y; = Cy(x))I?
=E ' Lt 45
SHES(W])—J v(x;) J 49

where the right hand side expectation is with respect to the
joint distribution of (y;, x;). Thus, B can be estimated as,

~ . _ [yi_CE(Xi)]Z
Bz_argmén%g(vvi l)TXi)

snce E(w)=condant. The predictor of Y with B
estimated by B, istherefore,

Y, =2V +2.C; (X)),

ids jOs

v(X;)

(4.6)

(4.7)

Remark 4. A notable advantege of the use of the predictor
Y, over the use of the predictor Y; isthat it does not require
the identification and estimaion of the expectation
wW(x) = E¢(w|x). On the other hand, in situations where
this expectation can be estimated properly, the predlctor Y
is likey to be more accurate since the weights r,

(W, =1)/[E;(wi]x;) —1] will often beless variable than the
weights (w; —1). This is because the weights r, only
account for the net effect of the sampling process on the
target conditional distribution  f_(y;|x;), wheress the
weights (w, —1) account for the effect of the sampling
process on the joint distribution f_(y;,x;). In particular,
when w, is a deterministic function of x;, such that
w, =w(X;), the sampling process is noninformative and
fo(yilx) = f(yilx;) = f,(yil%;). In this case the esti-
mator f, (but not B,) coincides with the optimal
generalized least square (GLS) estimator of B since r; =1
and the model (4.1) holds for the sample data. (For the data
anadysed in section 7, the empirica variance of the weights

r; is 1.36, whereas the empirical variance of the weights w,
IS 2.66). In contrast to this, when the sampling weights w,
areindependent of x;, theestimates §, and f8,, and hence
the predictors Y, and Y, areequal since w(x; ) = constant.

An interesting special case of the predictor Y, arises
when the working model postulated for the sample-
complement is linear with an intercept term and constant
variance. Let x| = (1, X/). Aseasily verified, the estimator
in this case takestheform,

Yﬂz, Reg — Z Yi +YAC + é!; [)Z(C) - )A(c] (48)
ils

where  X(€) = Zis %, (Yo, Xc) =[N =)/ Zips (W, ~1)]

[Zios(Ww =2)(y;, X;)] and B, is the probability weighted

estimator of the vector coefficient of X, but with the

weights (w, —1) instead of w..

Remark 5. The predictor YAz, Regy CAN be obtained as a
special case of the Cosmetic predictors proposed by Brewer
(1999). It should be emphasized, however, that the
development of the cosmetic predictors and the derivation
of their MSE assumes explicitly noninformative sampling.
An important property of Y, g, is that under general
conditions it is design consistent for Y, irrespective of the
true sample-complement moddl (see Lemma 1 below).
Many anaysts view ‘design consistency’ as an essentia
requirement from any predictor; see the discusson in
Hansen, Madow and Tepping (1983) and Sérnda (1980).
The following Lemma 1 defines conditions under which the
more general predictor Y, of (4.7) isdesign consistent for Y.

Lemma 1. The predictor Y is design consistent for Y if the
working model used for the computation of B2 satisfies the
conditions, i-C,(x) has an intercept term, ii-C;(x) is
differentiable With respect to B in the neighborhood of B,
and iii- v(x) = constant.

Proof: By (4.6) and condition iii, [§2 =arg minE
Tins(W DLy —C5(x, )]? and by condition i, C,(x) =
Bo +Cq (x) so that by condition i, a/aﬁo
{ Zios (W ~D[y, —=C;(x)1°}, ;5 =0, which implies
Zle(W l)[yl C (X )] 0 Or

Zwyl Zyl +Z ﬁz(xi)_zcﬁz(xi)' (49)

The proof is completed by noting that under mild
regularity conditions > W Y; is design consistent for Y,
and ZlDSWC (x;) is design consstent for z”lc (%;)-
Thus, the rlght hand side of (4.9) convergesin probablllty to
Y while the left hand side converges in probability to Y.

It is important to emphasize again that the Lemma does
not assume that the working model is the correct sample-
complement moddl.
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The use of the predictors \?1 and \?2 requires a
specification of the sample-complement model. Next we
develop another predictor that only requires the iden-
tification and estimation of the sample mode. The approach
leading to this predictor is a sample-complement analogue
of the ‘bias correction method’ proposed by Chambers et al.
(2003). The proposed predictor is based on the following
relationship,

ZEC(yj| Xj):ZES(yj| X;)
jOs jOs

1

+(N—n){N_anDS;EC{[yj ~£.0 %) xj}}

DZEs(yl‘| X;)
i0s

+(N- n){ﬁza[yj -] )]} @10
j0s

where in the second row we replaced the sample-
complement average of the conditional expectations
E.(y;Ix;) by its expectation over the sample-complement
distribution of the x-values (n denotes the sample size). By
(29),

E.ly; —Es(y;|x,)]
=E Wj—_l[y--E(y-|X-)] (4.11)
*|[Ew) -7+ = '

implying that the sample-complement mean in the second
rov of (410) can be edimaed a M, =1/n
Yo [(w =D /(W =D][y; - E(y;|x)]}, where W, =
Yins W, / n. The proposed predictor therefore takes the form,

Y, =2y + Y E(Y ) +(N-nM, (412

iOs jOs

with és(yj |x;) estimated from the sample data. The use
of Y, only requires the identification and estimation of the
sample regression E (y;|x;), which can be carried out
using conventiona regression techniques. Moreover, under
mild conditions Y, is design consistent for Y even if the
expectation E (y;|X;) is misspecified. This property
follows from the fact that X E (y;|x;) is design
consigtent for X Eq(y;1X;) and (N -n) M, is design
consgtent for M =¥ io6[y; = Eo(y;1%;)]-

Remark 6. If the modd fitted to the sample data is linear
regression with an intercept and constent residual variance,
the difference between the predictor Y, ., defined by (4.8)
and the predictor Y, is that Y, Uses a condstent
egtimator for the regression coefficients defining the linear

83

gpproximation to the model holding for the sample-
complement, whereas in Y, the regression coefficients are
estimated by ordinary least squares (OLS), thus estimating
the linear approximation to the sample modé!.

Findly, rather than only predicting the sample-
complement values as with the previous predictors, one
could ingtead predict dl the population vaues by their
estimated expectations under the population model. Assum-
ing that the latter model is linear regression with an intercept
term and constant residua variance, gpplication of (2.5b)
yields,

p=argminE, (v, - X,.B)?

Ej[w, (% =xiB)’]
Es(Wk)

=arg rr%in (413

Edtimating the sample expectation in the numerator of
(4.13) by the corresponding sample mean (application of the
method of moments) and minimizing the sample mean with
respect to P yields the familiar probability weighted
estimator B, = (X/q W, X(¢) " (X[g W, Y,), where
(X[s] ’Ys) :{ [X:I_._"'Xn]'! (ylyn)'} arld Ws: Dlag[wlAWn]
Let x; =@ X). Edimating E,(y,|x,)=X,B,, =
B, + X, B, and summing over all the population values
yields the familiar generalized regression (GREG) estimator
(Sé&rndal 1980),

iV
Zi[ls Vv'

Yores =N

+B’pw|:x(p)_N S W

Zi[lsvvixi } :

X(P)=X % (4.14)
Remark 7. By consdering the egtimaion of Y as a
prediction problem, the use of the predictor Y, o, in (4.8)
requires the prediction of (N - n) values whereas the use of
the GREG requires the prediction of N vaues. Hence, in
stuations where both the sample-complement model and
the population modd can be gpproximated fairly well by
linear regresson models with intercept terms (but possibly
with different vectors of coefficients for the two models),
one expects that for sufficiently large sampling fractions
n/N the predictor Y, g, Will be superior (see the empir-
ical resultsin section 7).

5. EXAMPLES
5.1 Prediction with No Concomitant Variables

Let x, =1 fordli. By (3.2),
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Y=Y+ E() =2y

ids jOs ids

+(N n)E {m

y} (5.1)

Egtimating the two sample expectations in the right hand
sde of (5.1) by the respective sample means yidds the
edtimator,

=2y +(N-n)= z_

= _(N-M) s -

_%;yi-'-Zius(Wi —1)%;(Wi Dy (62
In (52, YW -1y is a ‘Horvitz-Thompson

esimator’ of ¥ ;y;. The multiplier (N -n)/¥(w, -1)
isa‘Haek type correction’ for controlling the variability of
the sampling weights. Notice that Yy, is a specid case of
the predictor Y, ., defined in (4.8), obtained by setting
x; =1 fordli.Itisalsoaspecid case of the predictor Y, if
one edimaes E((y;) =y =YY, /n. For sampling
designs such that Z,DSW N foral s orif one edimates
E.(w) =N/n, the predictor YE, reduces to the familiar
Horvitz-Thompson estimator of the population totdl,
Yoot = ZicsW Y-

As with the GREG edtimator congidered in section 4,
rather than predicting the sample-complement total Y, =
YjmsY; and using the predictor Yg,, one could predict all
the population y-values by estimating their expectations
under the population mode. By (25b), E (y;)=
E.(Wy,)/ E (w). Estimating the two sample expectations
by the corresponding sample means yields the familiar
Hajek estimator,

Yo = ZK 1Ep(yk) NEs[A B J

E.(w)
N
= Wi Y.
ZiDs\Ni %S:

Here again, we anticipate \? to be more precise than
Yquk as the sampling fractlon increases (see dso the
empirical results in section 7). Note that Y, and YHa,ek are
the same and coincide with the Horvitz-Thompson
estimator for sampling designs satisfying Y oW, = N.

(5.3)

5.2 Optimal Prediction with Concomitant Variables,
Comparison with Optimal Predictors Under
Noninformative Sampling

Let the population mode be,
Yi =H (i) +g, Ep(8i|xi):01
E, (2| x,) =Vv(x;), E (g, X;, X;)=0, i #] (54)

and suppose that the sample inclusion probabilities can be
modeled as,

r, =K x|y g(x)+8], E, ] ;. ,)=0 (55)

where H;(x), v(x) and g(x) are positive functions and K
is a normalizing constant. (Below we consider the specia
cae of ‘regression through the origin’). This sampling
scheme is considered for illugtration only, athough in
section 2 we mention severd practica Situations where the
sample selection probabilities depend directly on the y and
x-values. In particular, this is the case with the data set
analysed in section 7. Under (54) and (5.5), = (x;) =
(Epgni|xi) = KH;(x;)g(x;). Hence, by (29), (54) ad
5.5),

_ 1-m,
E.(y,| X)) = E, T(x.)” X;
]

_E 1-n(x;) —Ke;g(x;) - K3,
P 1-n(x;)

Kg(x;)v(x;)
:Ep(y]|xl)_ 1_1]_5()()] )
J

The last expression in (5.6) shows that E.(y;|x;) <
E,(Y;IX;) =Hy(x;), which is clear since for the
inclusion probabilities defined by (5.5), the sample-
complement tends to include the units with the smaler
y-values for any given x-values. Note, however, that as
n/N -0 K-0 ad E,(y|x;)-E.(y;lx;) -0
(see Remark 2).

As a special case of (5.4), consder the case of a single
auxiliary varisble x and let Hy(x) = xB and v(x) = o°x
(‘regression through the origin with variance proportiond to
X'). For noninformative sampling and known B, the optima
unbiased predictor of Y minimizing E [(Y -Y)? D,] isin
this case, Y =Xy, +BXjnsX;. In the practica case of
unknown B, the optima unbiased predictor of Y is the
familiar Retio estimator Y, = Ny(X/x) with y denocting
the sample mean of Y and (X , X ) denoting the sample and
population means of x (Brewer 1963, Roya| 1970).

Now let g(x)=1 in (55) for dl x, so that =; =
n(y; +8,)/ X (y; +93;). For sufficiently large N, we can
approximate ~n(yI +8,)/(NBX), implying that
(%)= E (nlx) nx /(NX). By (56), E.(y;|x))=
X;B-o’x, /[ B(f*X -x;)] where f—n/N is the
sampllng fractlon 0 that for known p and o2 the optimal
predictor of Yis,

e, reg Zy.+BZX— Z

- —l—
i0s jOs BJDSf X=X

Lemma 2: Let the population model be defined by (5.4)
with Hy(x)=xp and v(x)=c’x Asume daw

yi|XJJ

(5.6)

(5.7)
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E, (¢ | x) = 0. Suppose that the sample units are selected
independently with probabilities defined as in (5.5), with
g(x) =1. Then,

MSE Ve, | Ds)=
0% X —(csz/B)zszS[xj2 (X =x,)%]. (58

Proof : By the independence of the population values and of
the sample selections,

MSEp(YAE,Reg|Ds)
= Ep[(YAE,Reg _Y)2|Ds]
=Y By ~Eoly [ x))17 1%}
By (56), [y, - Ec(yjlxj)lz ={e; +X}/[1_Tc(xi 0
where X; =Ko ?x;, K=n/BNX and n(x;)=E (| x;)=
nx; / (NX). Hence,
EALY, — Ec(y, [x)1%x;}
= E.(e2)x) + 2] /A= 1(x)Eq (e %)
+[X] /A= (x;)]%.

Now,
E.(e}]x;)
= E 1~ /@-m(x) )e|x,]
= B [1-m(x) ~Ke, ~ K3, /(L-n(x,)) &F[x,]
= Ep(aﬂxj) =(52Xj
and
E.(e,[x;)

= E,[1-n(x;) - Ke; ~K8, [{L-n(x))) & [x;]
=-x; /A-n(x;)).

It follows therefore that MSE (YE reg | Ds) =
¥ DX, /@))%, QED.

Remark 8: For noninformative sampling and with known
B, the prediction MSE of the optima predictor Y =
ins Vi TBEpsX; is EG[(Y -Y)?|D] = GszDsz . This
MSE is larger than the MSE obtained under the informative
sampling scheme defined by the Lemma, which is obvious
since the latter scheme tends to sample the units with the
larger y-values and hence aso with the larger x-vaues and
the larger standard deviaions.

2
o ZjDs i

6. MEAN SQUARE ERROR ESTIMATION

Esimating MSE(Y | D,) = E,[(Y -Y)? |D,] for the
predictors Y considered in section 4 requires strict moddl
assumptions that could be hard to vdidate. This is largely
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due to the conditioning on the design information D.. In
order to ded with this problem, we propose to estimate
instead the unconditional MSE, MSE(Y) = E[(Y Y)?] =
Ep {E, [(Y Y)? |D.]}, where E, =ELE, defines the
expectatl on over the sample di sIrlbutl on (given the sdlected
sample) and over al possible sample selections. Notice that
E [(Y Y)?|D,] can be viewed as a random variable
u(D) 0 that MSE(Y)— Ep, [u(Dy)] defines its ‘best
predictor’ with respect to the mean sguare loss function
under the distribution f, over which the expectation E,_
is taken. By changing the order of the expectations, the
unconditional M SE can be expressed as,

MSE(Y) = E.E,Eo[(Y - Y)?|y]
= E,Eol(Y -Y)?|y] (6.1)

where y ={y;; i OU}. Estimating the unconditional MSE
of any of the predictors Y can be carried out therefore by
estimating its randomization MSE, see Pfeffermann (1993)
for further discussion. Estimation of the randomization MSE
of the various predictors has the additiond advantage of
alowing their use under the design based approach.
Estimation of randomization variances of design based
edimators is considered extensively in the literature and
many diverse methods are in routine use. However, in view
of the complicated structure of some of the predictors
consdered in this study and in order not to redtrict to
particular sampling schemes, we propose below the use of a
two-step procedure that combines an inverse sampling
process (Step 1) and what can be viewed as a bootstrap
resampling agorithm (Step 2). A notable advantage of this
procedureis that it is general and applies ‘equaly’ to al the
predictors. Also, unlike other variance estimation methods
in common use, it does not require knowledge of the pair
wise joint selection probabilities =; =Pr(i, jUs). As
discussed later, a valid application of the first step requires
aufficiently large samples. The two steps of the proposed
procedure are as follows:
Sep 1- Generate a single ‘pseudo population’ by selecting
with replacement N units from the origina sample with
probabilities proportiond to w, =1/x,, where N is the
population size. The judtification for this step is given
below, see dlso Remark 10. Denote by Y, the sum of they-
vauesin the pseudo population.

Step 2- Select independently a large number B of bootstrap
samples from the pseudo population generated in Step 1,
using the same sampling scheme as used for the selection of
the original sample, and re-estimate the population totd.

Let Y represent any of the predictors and denote the
predictor obtained for bootstrap sample b by Y,?p. Estimate,

Eo (Y -Y)2 _—Zb (Y2 -Y)2 (62
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The performance of the estimator (6.2) in estimating the
randomization MSE depends obvioudy on the ‘closeness
of the pseudo population generated in Step 1 to the actud
population from which the origind sample was drawn. The
closeness of the two populations can be verified in part by
noting that the margina distribution of y; | x; in the pseudo
population is the same as in the origina population. To see
this, note that the pseudo population generated in Step Lisa
‘sample with replacement’ from the original sample with
slection probabilities Cw, on each draw, where
C=1U3x4Lw. Denoting by f,(y;|x;) the margind
pseudo population distribution we find usng (2.2) and
(2.59),

_ Es(CWi|yi X)) (Y, |Xi)
fpp(yi|xi)_ E (CVV|X)

- Ep(ni|xi)fs(yi |Xi) (63)

Ep(ni|yi!xi)

=f,(y, |Xi)'

Remark 9. Equation (6.3) only refers to the margina
distribution of 'y, |x;. Like with the standard bootstrap
method, a successful application of the proposed procedure
requires that the original sample sizeis sufficiently large and
that the sample measurements are approximately inde-
pendent. Pfeffermann et al. (1998) establish conditions
under which for independent population measurements the
sample measurement are ‘asymptotically independent’
under commonly used sampling schemes with unequa
selection probabilities.

Remark 10. Step 1 is similar and asymptotically equivalent
to duplicating sample unit i w, times. Notice, however, that
the use of this duplication procedure does not yield pseudo
populations of size N unless YL, w; = N. Itisalso not clear
how to egtablish the relationship (6.3) when using this
procedure.

7. EMPIRICAL ILLUSTRATIONS

7.1 Description of Empirical Study

In order to illustrate the performance of the predictors
and the associated MSE estimates discussed in previous
sections we use ared data set, collected as part of the 1988
U.S. National Materna and Infant Hedth Survey. The
survey uses a digproportionate dratified random sample of
vital records with the strata defined by mother’s race and
child's birth weight; see Korn and Graubard (1995) for
details. For the empirical study in this section we considered
the sample data as ‘population’ and selected independently

1,000 samples with probabilities proportiona to the inverse
of the origind sampling weights, usng a systematic PPS
sampling scheme. The list of ‘population units was
randomly ordered before every sample selection. For each
sample we predicted the population tota of birth weight
(measured in grams, divided by 10,000 in the present
study), using gestational age as the auxiliary varigble
(measured in weeks). The sample inclusion probabilities
depend therefore on the values of the study variable that
defines the origina strata. Notice that although the origina
sample was supposedly a stratified random sample, the
sampling weights actualy vary within the gtrata, which is
why we used systematic PPS sampling for the simulation
study. We considered three different sample sizes, n=232,
1,145, 2,429. The ‘population’ (origina sample) sze is
N =9,948. (For n=232, 0.002<x; =Pr(i 0s) <0.15. For
n=1145 0.0l1<zw, <0.73. For n=2429, 0.03<
m; <0.99 with mean ©=0.26 and standard deviation
Sd(w;) =0.29. In the latter case some of the units were
drawn dmost with certainty).

Some of the predictors considered for this study (see
below) require the specification of either the sample model
or the sample-complement modd. We assumed for both
models the third order polynomial regression,

Vi =Bo +BiXy tPoXE +BaXE +ey (7.1

with independent residuals and constant variance. This
mode was found by Pfeffermann and Sverchkov (1999) to
give a goad fit to the ‘populaion’ (origind sample) data
with R? = 0.61 (see Figure 1), and it was found also to fit
fairly well the sample data (with different coefficients) for
several samples selected from this ‘population’. Notice, on
the other hand, that with this strongly informative sampling
scheme, it is unlikely that the sample model, the population
model and the sample-complement model are al from the
same family even if with different parameters. The present
study enables therefore studying the performance of the
various predictors when some or al of the three models are
misspecified. This important robustness question is further
examined by fitting simple regression models instead of the
third order polynomia regressions that is, by omitting the
second and third powers of the auxiliary variable. The only
exception is the model dependent predictor Y, (Equation
4.4) where no coherent estimator for the expectation
Es(w; | x;) could be found when redtricting to smple
regression. (The method considered in Pfeffermann and
Sverchkov (1999) for the edtimation of this expectation
assumes normality of the population modd resduds. This
isavalid assumption when fitting the third order polynomia
regression mode but is clearly violated when dropping the
second and third powers of the auxiliary variable).
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U.S. National Maternal and Infant Health Survey,1988.
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Figure 1. Scatterplot of Birth Weight against Gestational Agein ‘Population’ (original Sample), and Predicted Values

Under 3" Order Polynomial Regression.

The predictors considered for this study divide therefore
into three groups. The first group consists of predictors that
only use the sample y-values and the sampling weights.
Included in this group are the Horvitz-Thompson estimator

Yoot = ZiosW Y; , the predictor YEI defined by (5.2) and
Hajek’ s estimator YHaek defined by (5.3). The second group
consigs of predictors that use the working model defined by
(7.1). Included in this group are the two regression pre-
dictors Y, and Y, ., defined by (4.4) and (4.8) respec-
tively, the bias corrected predictor Y, defined by (4.12) and
the GREG edimator defined by (4.14). The third group
contains the same predictors as the second group (except for
Y, , See above), but based on the smple regression model
(only thefirgt power of X).

The MSEs of al the predictors considered in this study
have been estimated by use of the two-step procedure
described in section 6. However, because of computing time
limitations, the MSE egtimators were only computed for a
random selection of 200 out of the 1,000 samples and are
based on only 200 bootstrap samples from each pseudo
population. For assessing the performance of the MSE
estimators we computed the corresponding empirical MSEs
based on the 1,000 samples sdlected from the study
population. Thus, the ‘true MSE of a generic predictor Y
was computed as,

MSE(Y) =~ (Y - Y)?

1000 (7.2

where \?(r) denotes the predictor computed from the r™
sample. Notice that since the population vaues are fixed,
the MSE in (7.2) isthe randomization MSE over dl possible
sample sdections, which is what the estimator (6.2) is
intended to estimate.

7.2 Resultsof Empirical Study

The man results of this study are exhibited in
Tables 1.1-1.3 (one table for each sample size). The third
column of each table shows for every predictor Y the
empiricd  bias, [(ZR, (r)/R) Y], and the sandard
deviation (Std) of the empiricd bias, computed as
[Zr_l(Y(r) -Yo)? IR Y =3RyY,, /R, R=1000.
The next two columns show repectively the ‘true
(empiricd) RMSE (sguare root of Equation 7.2), and the
sguare root of the mean of the corresponding Bootstrap
estimators defined by (6.2).

Themain condusonsfrom Tables1.1-1.3 areasfollows

1- All the predictors considered for this study are virtualy
design unbiased with all three sample sizes, irrespective
of the underlying working model. The predictor Y, hasa
satisticdly significant bias when tested by use of the
conventiona t-statistic but the actud bias is negligible
when compared to the true population totd. (The
predictor Y, is the only predictor considered in this
study that is not design consistent).

The next three comments refer to the RMSE of the
various predictors.
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2- The predictors in Groups 2 and 3 that use the auxiliary
values perform much better than the predictors in Group
1, paticularly for the smaller sample sizes. The pre-
dictorsin Group 2 that employ the 3 order polynomial
regression model (7.1) perform better than the corre-
sponding predictors in Group 3 that employ the simple
regression model as the working model, but the dif-
ferences diminish asthe sample size increases.

3- Animportant result emerging from this study is that the
predictors Y, r,, ad Yy (and dso Y; for the larger
sample sizes), that only predict the y-values for units
outside the sample indeed perform better than the other
predictorsin their respective groups (see dso below). As
surmised in Remark 7, this holds particularly with the
larger sample sizes. Notice that the differences between
Y, rg ad the GREG edimator for n=1,145 and
n=2250 are smaler under the polynomia model
(Group 2) than under the smple regresson model
(Group 3), which is explained by the tight relationship
between the study variable and auxiliary variables under
the polynomial model. The predictor Y; is less stable
than Y, e, for n=232 but for the other two sample
sizesthe two predictors perform similarly.

4- The predictor \?2' reg PErfOrms somewhat better than the
model dependent predictor Y, that employs the
expectations E(w, | x;) to adjust the sampling weights.
We have no clear explanation for this result because as
illustrated in Pfeffermann and Sverchkov (1999) using

the same data, adjusting the sampling weights improves
the edtimation of the regression coefficients very
significantly.

Next consider the MSE estimators.

5- The MSE edimators developed in section 6 perform
very wdll for dl the predictors and with dl the sample
sizes. For the sample size n= 232 there is a systematic
under-estimation of the RMSE by up to 3%, which is
explained by the fact that the pseudo population isin this
case less variable than the actua study population (see
Remark 9). The MSE estimators are amost unbiased for
the other sample szes with the largest difference
between the estimated and true RMSE being again in the
magnitude of 3%.

Another way of assessing the bias of the various
predictors and their MSE edtimation is by studying the
coverage properties of confidence intervals defined by these
predictors. Tables 21-23 compare the empirica
percentage coverage of the standard confidence intervals
Y+ 7z ,2\/|\/|éE with the corresponding nominal
percentages for selected values of o (one table for each
sample size). The empirical percentages are somewhat
eratic with n=232 sample units but they stabilize as the
sample size incresses, particularly with the use of the
predictors in the second and third group. The empirica
percentages are close to the nominal percentages with dl the
predictors when n = 2,250.

Table1.1
Bias, RM SE and Square Root of Mean of MSE Estimators, N = 232

Group Predictor Bias (Std) RMSE \/ MSE
Yoot -4.5(11.6) 365.1 355.0

1 i
Y, 15(2.9 91.1 89.8

No x-values H 29

\ 17(2.9) 93.0 916
5 Y, 44(2.0) 64.0 63.0
3 order Ys, Reg 35 (2.0) 63.4 62.4
polynomial Ys -0.3(2.1) 65.4 65.0
regression Yorea 3.4(2.1) 63.6 62.6
Yz, Reg -23(2.2) 68.0 66.2

3 X
_ _ Ys -03(2.2) 68.6 67.4

Simple Regression R

Yereo -23(2.2) 68.3 66.5

True ‘population’ total= 2710.7
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Table1.2
Bias, RMSE and Square Root of Mean of M SE Estimators, N = 1,145
Group Predictor Bias (Std) RMSE \/ MSE
Yoot -9.1(5.0) 157.1 156.1
1 Yg 0.0 (L1) 35.2 34.9
No x-vaues .
\ -0.1(1.3) 395 39.3
Y, 3.0(0.9) 27.6 28.1
2 ~
29 order YZYAReg 2.0(0.9) 274 27.3
polynomid Ys3 0.5(0.9) 274 217
regresson Yoree 1.7(0.9) 278 278
Ys, reg 0.0 (1.0) 28.3 28.7
3 Ys 0.1(1.0) 28.2 28.9

Simple Regression -
YereG 0.0 (2.0) 29.1 29.6

True ‘population’ total= 2710.7

Tablel13
Bias, RM SE and Square Root of Mean of M SE Estimators, N=2,250
Group Predictor Bias (Std) RMSE \/ MSE
Yoot 1.3(2.7) 82.7 80.4
1 Yg -0.2 (0.6) 185 18.8
No x-values -
Yhiaiek 0.1(0.7) 235 23.8
Y, 1.3(0.5) 175 17.3
2 ~
29 ordler YZYAReg 0.6 (0.5) 16.9 16.3
polynomial Ys3 -0.3(0.5) 17.1 16.5
regression Yoree 0.5(0.5) 179 183
Yy, reg -0.3(0.5) 17.3 16.8
3 Ys -0.3(0.5) 17.7 17.3

Simple Regression A
Yarea -0.2(0.6) 18.8 18.3

True ‘population’ total= 2710.7

Nominal and Empirical Percentag;— g?;LZr%a;e of Confidence Intervals, n = 232
Group Predictor 10 25 5.0 10.0 90.0 95.0 97.5 99.0
\?H_T 25 35 55 10.0 90.0 97.0 99.0 99.5
1 \?a 0.5 20 4.0 8.0 88.5 915 95.5 98.0
No x-values \?Ha-ek 0.5 20 4.0 8.0 88.5 915 95.5 98.0
\?l 0.0 0.0 15 6.5 86.0 90.5 925 97.5
2 \?2, Reg 0.0 0.0 20 7.0 85.0 90.5 93.5 98.0
3 order polynomial \?3 0.0 0.5 2.5 6.5 87.5 91.0 95.0 985
regression Yereo 0.0 0.0 2.0 7.0 85.0 9.5 93.5 98.0
YAZY Reg 0.0 10 25 7.0 87.0 915 97.5 98.0
3 \?3 0.0 10 25 7.0 86.0 915 96.5 98.0
Simple Regression Yereo 0.0 1.0 25 7.0 86.5 915 97.0 98.0

89
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Nominal and Empirical Percentage-gli)t\)/ﬁazéi of Confidence Intervals, n = 1,145
Group Predictor 1 25 5.0 10.0 90.0 95.0 97.5 99.0
Yoot 4.0 7.0 90 135 955 98.0 985 99.5
1 Yg 30 5.0 80 125 925 955 99.5 100.0
No x-values " 35 5.0 95 125 925 96.0 99.5 100.0
\?1 0.5 20 5.0 75 86.5 93.5 96.0 97.0
2 Yz, Reg 05 30 6.0 90 865 94.5 9.5 97.0
3 order polynomial YAS 0.5 2.0 6.0 9.5 88.0 94.0 97.0 98.0
regression YoreG 05 30 5.0 90 865 94.0 96.5 98.0
\?2’ Reg 0.5 3.0 6.0 11.0 90.0 93.0 97.0 99.5
3 Y, 05 25 55 105 900 94.0 97.0 99.5
Simple Regression Yereo 1.0 30 6.0 11.0 905 94.0 975 99.0
Table2.3
Nominal and Empirical Percentage Coverage of Confidence Intervals, N = 2,250
Group Predictor 1.0 25 5.0 10.0 90.0 95.0 97.5 99.0
Yoot 05 1.0 55 110 950 975 99.0 995
1 Yg 1.0 30 5.5 90 915 9.0 99.0 995
No x-values \ 1.0 25 55 9.0 93.0 97.0 985 995
Y, 05 2.0 5.0 90 910 945 9.5 975
2 Yz, Reg 05 25 65 105 905 945 9.5 98.0
3% order polynomial \?3 0.5 20 7.5 125 915 95.5 96.5 97.5
regression YoreG 05 2.0 60 110 910 945 96.0 98.0
Yz, Reg 1.0 30 60 110 910 95.0 97.5 99.0
3 YAS 1.0 20 6.0 120 90.0 95.0 975 98.0
Simple Regression Yoreo 0.0 15 5.0 115 915 95.0 97.5 99.0

Asimplied by the theoretical developments of this article
and illugtrated in the empirical study, predicting only the y-
values for units outside the sample employing the sample-
complement modd yields better predictors for the
population total than predicting al the population values by
use of the population mode, as implicitly implemented
when using the GREG or Hgek’s estimators. Clearly, the
differences are only agpprecidble when the sampling
fractions are not negligible.

In order to highlight this point further, we present in
Table 3 the mean prediction error (mpe) in the origind scale
(grams) over the 1,000 samples when predicting the sample-
complement values,

mpe = thfo[z‘tjuq (91 Y )/(N - n)] /1’000
where S, defines the "™ selected sample. The mpe's are
shown for three predictors, all utilizing the working mode!
(7.1) and thus having the general form, ¥, =B, +
BiX; +B,X; +B5x°, jOs For the first predictor the
vector B =By, By, By, B3) is estimaed by OLS, which
corresponds to the use of the sample modd; for the second
predictor B is edimated by the probability weighted
edimator B,,,, that corresponds to the use of the population
model wheress for the third predictor B is estimated by the
edimator B, which is computed similarly to B, but with
weights (w, —1), that corresponds to the use of the sample-
complement modd.
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Table3
Mean Prediction Errors and Std of Means (in brackets) Under Three Prediction Models
Sample size Sample Model Population model Sample-Complement model
232 329.0(2.2) 10.3(2.3) 4.3(2.3)
1,145 375.0 (0.9) 37.7(L1) 2411
2,250 387.5(0.6) 85.8 (0.7) 0.9(0.8)

The clear conclusion emerging from Table 3 is that the
use of either the population modd or the mode holding for
units in the sample for the prediction of y-vaues of units
outside the sample can result in appreciable biases. Notice
that the bias induced by use of the population model
increases as the sampling fraction increases, which agrees
with the previous discusson asserting that the difference
between the sample and sample-complement models only
shows up with relaively large sample sizes (see Comment
2).

8. CONCLUDING REMARKS

In this article we use the sample and sample-complement
distributions for developing design consistent predictors of
finite population totals. Known predictors in common use
are shown to be specid cases of the present theory. The
MSEs of the new predictors are etimated by a combination
of an inverse sampling agorithm and a resampling method.
As supported by theory and illustrated in the empirica
study, predictors of finite population totals that only require
the prediction of the outcome values for units outsde the
sample perform better than predictors in common use even
under a design based framework, unless the sampling
fractions are very small. The MSE estimators are shown to
perform well both in terms of bias and when used for the
computation of confidence intervals for the population
totals. Further experimentation with this kind of predictors
and M SE egtimation is therefore highly recommended.
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