
 
 
 
 
 
 
 
 
 

 
 
 

Abstract 
 
 

This paper considers the combined problem of allocation and stratification in order to 

minimise the variance of the expansion estimator of a total, taking into account that the 

population is finite. The proof of necessary minimum variance conditions utilises the 

Kuhn-Tucker Theorem. Stratified simple random sampling with non-negligible sampling 

fractions is an important design in sample surveys. We go beyond limiting assumptions 

that have often been used in the past, such as that the stratification equals the study 

variable or that the sampling fractions are small. We discuss what difference the sampling 

fractions will make for stratification. In particular, in many surveys the sampling fraction 

equals one for some strata. The main theorem of this paper is applied to two populations 

with different characteristics, one of them being a business population and the other one a 

small population of 284 Swedish municipalities. We study empirically the sensitivity of 

deviations from the optimal solution. 
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ABSTRACT 

This paper considers the combined problem of allocation and stratification in order to minimise the 

variance of the expansion estimator of a total, taking into account that the population is finite. The 

proof of necessary minimum variance conditions utilises the Kuhn-Tucker Theorem. Stratified simple 

random sampling with non-negligible sampling fractions is an important design in sample surveys. We 

go beyond limiting assumptions that have often been used in the past, such as that the stratification 

equals the study variable or that the sampling fractions are small. We discuss what difference the 

sampling fractions will make for stratification. In particular, in many surveys the sampling fraction 

equals one for some strata. The main theorem of this paper is applied to two populations with 

different characteristics, one of them being a business population and the other one a small population 

of 284 Swedish municipalities. We study empirically the sensitivity of deviations from the optimal 

solution. 
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1. INTRODUCTION 

It is essential in surveys to minimise the sample size because of costs involved. In official statistics it is 

also required to keep the response burden down. Stratification is a widely used sample survey 

technique that serves many purposes, one of them being to improve precision or to reduce the sample 

size. The sampling frame is divided into strata, and independent samples are drawn from each stratum 

without replacement. For example, the most widely used design in business surveys is stratified simple 

random sampling, where the population is divided into, for example, subpopulations according to 

industry. Each subpopulation is stratified by size, say by employment. We focus on size stratification 

and we use the term population with the meaning subpopulation in the sense just described. For 

highly skewed populations with a small number of extremely influential units, the size stratum with the 

largest units is typically a certainty stratum (also called self-representing, complete enumeration or 

take-all stratum) where all units are selected for observation. Other strata in the population are 

genuine sampling strata. This type of design is particularly common in business surveys and other 

establishment surveys. In practice, the stratum boundaries are often determined by univariate 

stratification with one continuous stratification variable, where the objective function is usually the 

estimator variance of one important study variable. Practitioners often use the cum f rule  (Dalenius 

and Hodges 1959), which assumes that the sampling fractions are negligible. As noted above, this is 

not a suitable assumption for highly skewed populations. Further, the Dalenius-Hodges rule assumes 

that the stratification variable is the same as the study variable, which is either unrealistic or, if the two 

variables are indeed similar, makes stratification almost superfluous as such a powerful auxiliary 

variable could be used in estimation instead.  
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Several issues have to be addressed when designing a stratified sample (c.f. Särndal, Swensson and 

Wretman 1992, p. 101): 

Construction of Strata: (A1) Which stratification variable(s) is (are) to be used? (A2) How many 

strata should there be? (A3) How should strata be demarcated? Choice of Sampling and Estimation 

Methods: (B1) Sampling design for each stratum. (B2) An estimator for each stratum. (B3) The 

sample size for each stratum. 

 

This paper focuses on questions A3 and B3 jointly. As set answers to the other questions we assume 

that (A1) there is a frame with known values of a given stratification variable for every unit; (A2) the 

number of strata, H, is predetermined; (B1) a simple random sample is drawn from each stratum; 

(B2) the expansion estimator is used for each stratum. As for B3, we fix the overall sample size to be 

a predetermined number, n, but the allocation of this sample to strata is determined as part of the 

optimisation problem.  

 

First we put the problem into its context. For a more comprehensive overview of stratification, see 

Sigman and Monsour (1995). The population { }U N= 1 2, ,K  with study variable 

( )y =
′

y y yN1 2, ,K  is stratified and a sample is taken in order to estimate the population total 

Nyyyt +++= K21 . Consider the expansion estimator of the total of y:  
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where hN  and hn  are the number of frame units in stratum h and the sample size in stratum h, 

respectively. The problem considered here is to find the univariate stratification that minimises the 

variance of yt̂ , 
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where 2
yhS  ( ) ( )∑

=

−−=
hN

k
hhk nyy

1

2 1  is the study variable variance in stratum h, with hy  being the 

mean of the yk in stratum h. The quantities hN  and S yh
2  are functions of the stratum boundaries. The 

objective function, ( )yt̂Var , is here regarded as a function of the stratum boundaries and the stratum 

sample sizes. We minimise it under the constraints that the sample sizes add up to n and that each 

stratum sample size is no greater than the stratum population size. 

 

Dalenius (1950) minimises  

( ) ∑
=

=
H

h h

xh
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S
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2
2ˆ , ( 3 ) 

where 2
xhS  is the stratification variable variance in stratum h. Unlike ( 2 ), Dalenius presupposes that 

∑
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=
H

h
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1
 is Neyman allocation under the assumption that yhxh SS ≈ . Dalenius 

derives the following equations as a necessary condition for stratum boundaries b b bH1 2 1< < < −K  

minimising ( 3 ): 
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where hx  is the mean of the stratification variable in stratum h. Schneeberger (1985) points out that a 

solution to ( 4 ) is not necessarily a local or global minimum to ( 3 ). There may be, for example, two 

solutions, one minimum and one maximum.  The function ( )xtv ˆ  approximates ( 2 ) under the following 

assumption and approximation.  

Assumption A1.a. The values of the study variable equal those of the stratification variable. 

Approximation 1. The finite population correction in ( 2 ) is ignored.  

In this paper we do not use Approximation 1 in any theorem. It is intriguing that when 

Approximation 1 is dropped, the optimal conditions remain similar to ( 4 ) but finite population 

corrections will emerge, as shown in Theorem 1 below. Thus, this problem is in a sense parallel to 

many other problems in survey sampling: you obtain formulae for finite populations by inserting finite 

population corrections at appropriate places in the corresponding formulae for infinite populations. 

Papers dealing with optimal stratification that use Approximation 1 include Dalenius (1950), Ekman 

(1959), Dalenius and Hodges (1959), Sethi (1963), Serfling (1968) and Mehta et al. (1996). Like 

Dalenius (1950), we use the following approximation. 

Approximation 2. The finite population is approximated with a continuous distribution. 

 

Several authors have addressed the problem of finding the point where the far tail of a skewed 

distribution should be cut off to form a certainty stratum. Dalenius (1952), Glasser (1962) and 

Hidiroglou (1986) have solved the two-stratum special case, with one certainty stratum and one 

genuine sampling stratum. These results are not easily generalised to more than two strata. Although 

Glasser derives an exact result, as opposed to Dalenius who uses Approximation 2, they arrive at 

essentially the same condition for the stratum boundary b1:   
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xb =− , ( 5 ) 

where unity as subscript refers to stratum 1, which is the genuine sampling stratum. We generalise this 

result to an arbitrary but predetermined number of strata. 

 

Thus, this paper generalises the previous results in two ways. Further, we solve the combined 

problem of finding the optimal allocation and optimal stratification when there are several genuine 

sampling strata and one certainty stratum. Although this can be solved in two steps (first by finding an 

optimal allocation and then by finding the optimal stratification given the allocation), it is still of 

theoretical interest that the two steps can be solved simultaneously. Condition ( 5 ) turns out to be a 

special case of our results, whereas ( 4 ) does not.  

 

An algorithm given by Lavallée and Hidiroglou (1988) and Hidiroglou and Srinath (1993) minimises 

the sample size under a precision constraint rather than the other way round. Detlefsen and Veum 

(1991), Sweet and Sigman (1995), and Slanta and Krenzke (1996) discuss convergence problems 

of the algorithm and how to implement it. Unlike this algorithm, we do not have any predetermined 

allocation scheme and there will be no convergence problems, unless a very large proportion of the 

units in the frame have the same value of the stratification variable. 

 

Baxi (1995) proposes an algorithm for an approximately optimal stratification where one unit is 

sampled in each stratum. The finite population correction is not ignored. 
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We obtain further results under an assumption less restrictive than Assumption A1.a:  

Assumption A1.b. A stochastic relationship between a superpopulation study variable Y and a 

stratification variable X holds. We shall show results under Model 1a: xXY εβα ++= , where α  

and β  are constants, and the xε  are uncorrelated errors with zero mean and variance γσ x2 , for 

some constants 2σ  and γ . These results can be extended to Model 1: ( ) xXY εψ += , where ( )⋅ψ  

is a known function and xε  has a general variance structure. The current paper is the first one to 

obtain the minimum variance of the expansion estimator under Model 1a without relying on 

Approximation 1.  

 

The optimal number of strata is not discussed here. See Serfling (1968) and Singh (1971), both of 

which draw on Approximation 1. Discussions of other designs and estimators than stratified simple 

random sampling and the expansion estimator include Wright (1983) who uses the auxiliary 

( )′= Nx,x,x K21x  in both the design and estimation stage, the latter with a GREG estimator under a 

special case of Model 1. Addressing both A3 and B3 Wright finds the allocation and stratification 

that minimise the anticipated variance (the variance under both the model and the design). The 

method of Wright is also described in Särndal, Swensson, Wretman (1992, sec. 12.4). Pandher 

(1996) uses a GREG too, but with only two strata. Another model-based approach is Unnithan and 

Nair (1995).  

 

Sections 2 and 3 state conditions for stratum boundaries minimising the variance. Applications are 

presented in section 4. Concluding remarks are given in Section 5.  
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2.    A SOLUTION UNDER ASSUMPTION A1.A 

We disregard nonsampling errors, that is nonresponse, measurement and coverage errors and 

assume that every population unit corresponds to exactly one frame unit. The strata are determined 

by stratum boundary points b b bH1 2 1< < < −K  with strata defined as { }11 bx:uA u ≤= , 

{ }huhh bxb:uA ≤<= −1 , 132 −= H,,,h K , and { }uHH xb:uA <= −1 , where x is the stratification 

variable. Set 10 xb =  and NH xb = . We seek values of ( ) ( )′= −12121 ,,,,,,,, HH bbbnnn KKbn  

that minimise ( 2 ) under the following constraints: 

( )
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( 6 ) 

Note that these constraints allow any stratum to be a certainty stratum. As a useful special case the 

constraints will be further restricted:  
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( 7 ) 

We give now a framework that will allow us to apply optimisation theory for continuous functions. 

The framework can either be seen as a superpopulation model or simply as an approximation 

approach. In this section we adopt the latter viewpoint, which was introduced above as 

Approximation 2. Let 1x  and Nx  be a priori known lower and upper bounds for the values of X with 

density ( )xf X . We will need three properties of the strata: probability, mean and variance. Let Ph  

denote the probability that  X  falls in stratum h: 
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( )∫
−

=
hb

hb
Xh dxxfP

1

 
( 8 ) 

The conditional mean and variance of X given ( )X b bh h∈ −1,  are: 

( )∫
−

=
hb

hb
Xxh dxxxf

1

µ  
( 9 ) 

( ) ( )∫
−

−=
hb

hb
Xxhxh dxxfx

1

22 µσ  
( 10 ) 

Under the approximation approach, the integer Nh  and the finite population mean hx and 

variance 2
xhS (which equals 2

yhS  under Assumption A1.a) are assumed approximately equal to NPh , 

xhµ  and 2
xhσ , respectively. We will denote NPh  by ( )Nh b  or just Nh . Thus Nh  is regarded as a 

continuous function of the stratum boundaries. We also treat n n nH1 2, ,K  as continuous variables. 

The function ( 2 ) is then approximated by  

( )φ n b, ( ) ( )
( )∑

=
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


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( 11 ) 

For notational simplicity, we will in the sequel drop the argument b in the functions ( )Nh b   and other 

functions of the stratum boundaries.  

 

Lemma 1 gives an optimum under constraints ( 6 ), whereas Theorem 1 gives an optimum under the 

more restricted constraints ( 7 ). The proofs are in Appendix A and B. 
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Lemma 1. Suppose ( ) 0>xf X  on( )x xN1, . If a stratification and allocation have a local minimum of 

( 11 ) under constraints ( 6 ) with at least two genuine sampling strata, then ( 12 ) and ( 13 ) are 

satisfied: 

xjj

xhh

j

h

N
N

n
n

σ
σ

=   jh  and ∀  where hh Nn <  and jj Nn <  
( 12 ) 

( ) −+
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
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
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h
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N
n
N

b λλσµ ,  

( 13 ) 

h H= −1 2 1, K , for some non-negative real numbers λh  and λh+1 . The nature of λh  and λh+1  is 

discussed in Appendix A. 

 

Theorem 1. Suppose strata 1, 2, ... H–1 are predetermined to be genuine sampling strata and 

stratum H is predetermined to be a certainty stratum. Then, if ( ) 0>xf X  on( )x xN1, , a necessary 

condition for a local minimum of ( 11 ) with respect to stratum sample sizes and stratum boundaries 

under constraints ( 7 ) is the system of equations ( 14 ), ( 15 ) and ( 16 ) below. 

Conditions for stratum sample sizes: 

( )
11

1

−−

=









−= ∑

H

h
xhhxhhHh NNNnn σσ ,  h = 1, 2, 3 ... H–1. 

( 14 ) 

Conditions for the boundaries b b bH1 2 2, ,K −  of the genuine sampling strata: 
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( 15 ) 

Condition for the boundary bH −1  of the certainty stratum: 

( ) 2
1

1

12
11 −

−

−
−− =− H,x

H

H
H,xH n

N
b σµ . ( 16 ) 

 

Remarks:  

1. This paper does not attempt to provide any sufficient condition for a local minimum.  

2. Equation ( 14 ) is Neyman allocation when stratum H is a certainty stratum.  

3. Finite population correction factors of the type Nn−1  are often seen in survey sampling theory. 

Interestingly, this problem is no exception: the proper finite population result ( 15 ) is obtained by 

inserting finite population corrections at appropriate places in the corresponding formula valid for an 

infinite population, ( 4 ). 

4. Equation ( 16 ) with  H = 2 is equivalent to ( 5 ). 

5. When applying Theorem 1 in a practical situation, the unknown superpopulation parameters xhµ  

and 2
xhσ  must be estimated or guessed by the corresponding parameters of the finite population and 

the values of hn  and hN  have to be rounded to nearest integer. 

 

2.1.  The special condition for certainty strata 
 

What is the difference between ( 15 ) and ( 16 ) in Theorem 1? It may be expressed this way. 

Suppose you stratify by using a condition fairly close to ( 15 ), like the cum f  rule, using this rule 
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for all strata. Then you allocate the sample and end up with n NH H= , what have you done? This 

approach corresponds to h = H–1 and λ λH H− = =1 0  in ( 13 ) in Lemma 1, as shown in  Appendix 

A. Compare this with an approach where strata 1, 2, ... H–1 are predetermined genuine sampling 

strata and stratum H may or may not be a certainty stratum. Then, in ( 13 ) with h = H–1, we have 

λH − =1 0  and λH ≥ 0 . Thus the absence of λH  in the first approach tend to make either stratum H 

too narrow or at least one of the other strata too wide.  

 

3.    A SOLUTION UNDER ASSUMPTION A1.B 
 

Theorem 1 is now generalised to Model 1a under Assumption A1.b. Under this superpopulation 

model we have 

2
yσ = [ ] ( ) ( )∫ ∫

∞

∞−

−+
Nx

x
Xxx dxdxfXfxx

1

22 εεβµσβ ε
γ ,  

where 2
yσ  is the variance of Y. We shall use similar notation for all moments of Y and X. Calculating 

the integral term by term, we obtain 

2222
εσσβσ += xy ,   

where 2
εσ  is the mean of the conditional variances of xε , given X:  

2
εσ  ( )∫=

Nx

x
X dxxfx

1

2 γσ . Using the anticipated variance as the measure of effectiveness, the objective 

function to be minimised is  

( ) [ ]∑
=

+







−=

H

h
hxh

hh
hyM Nn

Nt̂VarE
1

2222 11
εσσβ , 

( 17 ) 
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where EM denotes expectation under the model, Var is as previously the variance over all possible 

samples, and ( )∫
−

=
hb

hb
X

h
h dxxfx

P
1

2
2 γ
ε

σ
σ . We state Theorem 2 without proof, as it is a straightforward 

extension of that of Theorem 1.  

 

Theorem 2. Suppose strata 1, 2, ..., H–1 are predetermined genuine sampling strata and stratum H 

is a predetermined certainty stratum. Suppose further that Model 1a holds and that ( ) 0>xf X , 

( )x x xN∈ 1 , . Then, a necessary condition for a local minimum of ( 17 ) with respect to stratum 

sample sizes and stratum boundaries under constraints ( 7 ) is the system of equations ( 18 ), ( 19 ) 

and ( 20 ).  

 

Condition for stratum sample sizes: 

( )
11

1

222222
−−

=

−− 
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
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
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( 18 ) 

Conditions for the boundaries b b bH1 2 2, ,K −  of the genuine sampling strata: 
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h H= −1 2 2, K , 

 

( 19 ) 

Condition for the boundary bH −1  of the certainty stratum: 
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( ) ( )22
1

2
1

1

12
1

22
11

−
−−

−

−−
−−− +=+− βσσβσµ ε

γ
H,H,x

H

H
HH,xH n

N
bb . ( 20 ) 

Remarks: 

1. Equation ( 18 ) is Neyman allocation under Model 1a. It is a special case of the optimal allocation 

scheme shown by Serfling (1968) and Singh (1971) who minimises the variance under Model 1 and 

Approximations 1 and 2.  

 2. If 111 11 =−=− ++ hhhh NnNn ,  ( 19 ) is a special case of a condition given by Dalenius and 

Gurney (1951). They, too, use Model 1 and Approximations 1 and 2.  

 

3.1.  Do we need assumption A1.b? 
 

Now we consider heuristically the difference between the conditions ( 18 ) – ( 20 ) and the parallel 

conditions ( 14 ) – ( 16 ) in Theorem 1. To make the comparison more transparent we shall only 

consider the homoscedastic special case of Model 1 with 0=γ , which makes hh ∀=   ,22 σσε .  Then 

the difference between the conditions is additive constants involving 22 −βσ  which are grossed by 

factors containing hN . If 22 −βσhN  is negligible compared to 2
xhσ , h = 1, 2... H–1, and probably 

therefore also negligible to ( )2
xhhb µ− , the optimal stratification could be done according to 

Theorem 1, without having to rely on Model 1. There is a close relationship between 22 −βσ  and 

xyρ  (now suppressing subscript h). We have 2
xxy σβσ =  and 2222 σσβσ += xy  under Model 1a. It 

is easily shown that =− 222
xσβσ ( ) 221 xyxy ρρ− . Hence a stratification satisfying the conditions in 

Theorem 2 is not close to a stratification done according to Theorem 1, unless xyρ  is high. In case of 

heteroscedasticity, the stratifications can be quite different even if the correlation is high. 
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4.    APPLICATIONS 
 

In this section we give some numerical illustrations of the results obtained in section 2. Applications 

under Assumption A1.a are of interest, although they may be unrealistic, because a comparison of 

methods using this assumption provides a more critical test of their performances than Assumption 

A1.b. Further, as Theorem 1 was derived under Approximation 2, it is interesting to see if there 

exists a stratification with even lower variance than one given by this theorem.  We apply the results 

to two populations. 

 

The annual census of Swedish manufacturing industry collects data on sales, cost of materials, energy 

used in the production process, etc, for all businesses above a certain employment level. The census 

together with derived variables, such as value added, is frequently used as a sampling frame for other 

surveys. We applied our results to the 1989 frame with value added as stratification variable. The 

frame here referred to as the value added population, contains 7326 units and its skewness is 12.4 

(which could be compared with skewness 2.0 of an exponential distribution). The population was 

divided into H = 4 strata. The stratum comprising units with the largest values of the stratification 

variable was a certainty stratum, the other strata were genuine sampling strata. The sample size was 

set to 400.  

 

The dataset MU284 contains data on Swedish municipalities. It can be found in Särndal, Swensson, 

Wretman (1992; Appendix B) and in StatLib (http://lib.stat.cmu.edu) submitted to StatLib by 

Esbjörn Ohlsson. There are 284 municipalities in Sweden, which makes this dataset a small one. We 

consider the variable P75, which is the 1975 population (in thousands). Since the P75 variable has 
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only 68 distinct values, it is not a variable you would think of as well approximable by a continuous 

distribution. For MU284, the sample size was set to 80. 

  

4.1.  Performance measure  

We searched for the stratification with the smallest estimator variance ( 2 ), which we refer to as the 

best possible stratification. We let the maximum x-value of each stratum be the stratum boundary. 

Clearly, as we now consider a specific situation, with specified values of x, sample size n and number 

of strata H, there exists a best possible stratification (a global minimum). ( )ytVar ˆ  was computed for a 

large number of combinations of the stratum sizes N N1 2,  and N 3 . We do not, however, give a full 

account of the search method here. We denote the estimator variance for a specific stratification by 

( )N;ˆ
ytVar , where ( )HNN ,,1 K=N , H = 3. The variance ratio is defined as the ratio of the 

estimator variance obtained by a particular stratification and the estimator variance using the best 

possible stratification. 

 

The best possible stratification of the value added population is shown in Table 1. Even with 

stratum 4 removed, the remaining population is highly skewed, the skewness being 3.5. The minimum 

coefficient of variation of this population, ( ) ( )N;ˆ1
yy tVt − , constructing 4 strata of any kind and 

sampling 400 units, is 1.688 %.  

 

4.2.  On the equations ( 4 ) and ( 15 ) 
 

Recall that the Dalenius equations ( 4 ) are derived under Approximation 1 and that condition ( 15 ) 

is derived for predetermined genuine sampling strata only. For these reasons, the size of certainty 
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stratum units is held fixed to its best possible size and the analyses in this subsection are confined to 

genuine sampling strata. The finite population factors in ( 15 ) moderate the impact of ( )yh h− µ
2

and 

( )yh h− +µ 1
2

, and if they increase from stratum 1 to stratum H, which is likely if the population is 

highly skewed, the effect of them is stronger on the right hand side of each equation. Consequently, 

( 15 ) tends to produce strata less unequal in size than strata given by ( 4 ).  

 

Usually, when ( 4 ) or ( 15 ) are applied to a finite population an exact solution does not exist. The 

stratum boundaries b1 and b2 in Table 1 is a solution to ( 4 ) or ( 15 ) in the sense that they minimise 

the sum of the absolute differences between the right hand and left hand side of each equation. The 

stratifications are different; however, the difference in variance ratio is not large. For MU284 the 

stratifications by ( 4 ) and  ( 15 ) are identical, see Table 2. 
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Table 1. Stratifications for the value added population with four methods sorted by 

ascending variance ratio  

Stratum Best possible 

 Nh    nh  

( 15 ) 

 Nh    nh  

SA 

 Nh    nh  

( 4 ) 

 Nh    nh  

1  5225  74  5096  67  5086  66  5400  85 

2  1433  66  1555  72  1572  74  1320  67 

3  482  74  489  75  482  74  420  62 

4  186  186  186  186  186  186  186  186 

Variance 

ratio 

 1.000  1.001  1.002  1.004 

NOTE: Italicised numbers are fixed to the best possible ones. 

 



  19 

Table 2. Stratifications for the MU284 population with four methods sorted by ascending 

variance ratio  

Stratum Best possible 

 Nh    nh  

( 15 ) 

 Nh    nh  

( 4 ) 

 Nh    nh  

SA 

 Nh    nh  

1  111  12  101  10  101  10   92  9 

2  73  10   80  11   80  11    92  14 

3  51  9  54  10  54  10  53  10 

4  49   49  49  49  49  49   47   47 

Variance 

ratio 

 1.000  1.019  1.019  1.038 

NOTE: Italicised numbers are fixed to the best possible ones. 

 

4.3. The certainty stratum 
 

To apply Theorem 1 we need to solve ( 15 ) and ( 16 ) simultaneously. The results of the previous 

subsection indicate that the Dalenius equations ( 4 ) are satisfactory as an approximate solution to 

( 15 ). To solve ( 4 ) we used the approximate method proposed by Ekman (1959), which has been 

shown to give excellent results (Cochran 1961; Hess, Sethi and Balakrishnan 1966; Murthy 1967). 

To solve ( 16 ) the algorithm went through all possible values of the size of the certainty stratum from 

N H = 0  to N nH = -15, and for each value determined the other stratum boundaries by a fast 

numerical algorithm for the Ekman rule (Hedlin, 2000). This procedure is in Tables 1 and 2 referred 

to as the stratification algorithm, SA. Note that SA in Tables 1 and 2 solves a bigger problem than 

( 4 ) and ( 15 ) and still is competitive. 
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4.4. Flatness of the objective function 

Under variation of the three stratification parameters, N1, N2, and N3,  the estimator variance 

( )N;ˆ
ytVar  forms a response surface in a four-dimensional space. Let Pj  be the response surface 

projected on the two-dimensional space ( )( )N;ˆ, yj tVarN  for j = 1, 2, 3 and 4. Figure 1 displays Pj  

for j = 1, 2, 3 and 4, with the variance ratio along the y-axis. The most striking feature of the plots in 

Figure 1 is the flatness of the estimator variance surface. Plot (d), for example, shows that if the size 

of the certainty stratum is within ( )120 230,  it is possible to hit the minimum variance if the other 

strata are chosen optimally. The interval ( )120 230,  must be considered very wide as the certainty 

stratum with a total sample size of 400 cannot contain more than 400 units. If the certainty stratum is 

chosen within this interval and the three genuine sampling strata are determined by the Ekman rule, 

the worst variance ratio is 1.05 (achieved for N4 = 120). This repeated for the interval ( )140 230,  

gives 1.02 as the worst variance ratio (achieved for N4 = 230). A large certainty stratum combined 

with a small size of stratum 3 yields variance ratios that are unacceptable. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

Figure 1. The variance ratio for a large number of stratifications of the value added population. Plot 

(a) shows the variance ratio for stratum 1 with N1 along the x-axis. For each N1 there are a number 

of choices of N2, N3 and N4. The variance ratio of each combination is represented by a point in the 

scatter plot. For enhanced visibility, the points are randomly moved horizontally by addition of a small 
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normally distributed quantity. The best possible size of stratum 1 is marked on the x-axis. Plot (b), (c) 

and (d) are analogous, with N2, N3 and N4, respectively, instead of N1. All combinations of N1, N2, 

N3 and N4 are shown in each plot. 

 
5.  CONCLUDING REMARKS 
 

We have derived necessary conditions for the combined problem of allocation and stratification in 

order to minimise the variance of the expansion estimator. In doing so, we have relied on the 

approximation of the finite population with a continuous distribution. An application to a population 

with 284 units and only 68 distinct values of the stratification variable does not indicate that this 

approximation is sensitive. This is further supported by the fact that Glasser (1962) obtains the same 

result as a special case of the main theorem of this paper without this approximation. 

 

If a stratum is predetermined as a certainty stratum, the condition for its minimum variance size is 

substantially different from those of genuine sampling strata. 

 

As for genuine sampling strata, the finite population correction can give a stratification that is far from 

what you would get with a conventional method such as the Dalenius-Hodges rule, which is derived 

for an infinite population. However, the deviation from the optimum that the Dalenius-Hodges rule 

necessarily gives should not often be of great practical importance. This is due to the empirical fact 

that in most practical applications the estimator variance surface is flat around the best possible 

stratum boundaries for genuine sampling strata. Surprisingly, one application indicates that this may be 

true for the certainty stratum as well. 
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APPENDIX A. PROOF OF LEMMA 1 

To prepare the proof we give the partial derivatives of the function ( )φ n b, , see ( 11 ), and the 

constraints ( 6 ) and ( 7 ). As ( )f x  is assumed continuous, NNP hh = , µh and σ h
2 , see ( 8 ) –

 ( 10 ), are continuous and differentiable functions of bh−1  and bh  on ( )Hb,b0 . This makes ( 11 ) and 

the constraints differentiable functions. From ( 8 ) we see that, for h = 1, 2, …, H, 



 =

=
otherwise 0

 if 1 jh
n
g

j

h

∂
∂

 

( )
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−=

=
otherwise  0

  if  ,

1 if  ,
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b
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h

h

j

h

∂
∂

 

whereas the derivative of gH+1 is always one for any of the components of n, and always zero for the 

components of b. Rewriting ( 11 ) to 

( )φ σn b, = −








=
∑

N
n

Nh

h
h h

h

H

1 2

1
 

( A.1 ) 

we see that  
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∂

σ
n

N
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h h

h

= −
2 2

2 ,  h H= 1 2, K  
   ( A.2 ) 
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( A.3 ) 
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To prove Lemma 1, we first show that the gradients of the constraints are linearly independent in all 

feasible points, that is, all points ( )bn,  satisfying ( 6 ). If they were not, there would exist non-zero 

scalars α1, α2, … , αH+1 that would satisfy 

( ( ) )
( ( ) ( ) )

( ( ))
)′+

′+

′−+

′−

+

−

0....,....................,0,0,0

.,..........,0,0,0,1...,,,0,0,0

0...,,0,,,0...,,,0,1,0

0..,..........,0,0,,0...,,,0,0,1

1

1

212

11

H

HH bNf

bNfbNf

bNf

α

α

α

α

MM
 

= 0. 

Then 1+= Hh αα  and ( )( ) 01 =−+ hhhbNf αα , h = 1, 2, …, H-1, and ( ) 01 =− HHbNf α . Under the 

presumption that ( ) 0>xf  , all αh = 0, h = 1, 2, …, H, and we must have αH+1 = 0. Hence all 

scalars α1, α2, … , αH+1  are zero and the gradients are linearly independent in all feasible points. 

 

This is a requirement for the Kuhn-Tucker Theorem (e.g. Luenberger, 1973). By this theorem, if 

( )n b* *,  is a local minimum, then ( ) ( ) 0bnbn =∇+∇ ∑
+

=

**
h

H

h
h

** ,g,
1

1

λφ  for a vector 1+∈ HRλ  with 

λ ≥ 0  and ( ) 0=**
hh ,g bnλ , 121 += H,h K . The H first components in the Kuhn-Tucker 

equations, which are associated with the stratum sample sizes nh, give the following set of equations: 

λ λ
σ

h H
h h

h

N
n

+ =






+1

2

, h H= 1 2, K . 
( A.4 ) 
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By hypothesis there are at least two strata from which less than all units are sampled. Denote the 

indices of two such strata by s and t, and we have 0== ts λλ  , 

( ) sssssH NnsnN <∀= −
+   with ,22

1 σλ . Hence 

N
n

N
n

s s

s

t t

t

σ σ





 =









2 2

, ∀ < <s t n N n Ns s t t and  where  and . 
( A.5 ) 

Thus ( 12 ) is proven. Now, for one particular stratum boundary, bh, where  

h = 1, 2, ..., H–1,  we obtain 
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( A.6 ) 

By hypothesis ( )f bh ≠ 0  and ( 13 ) is proven. Note that if all strata are predetermined genuine 

sampling strata, then 0=hλ , H,h K21= , but if this constraint is not imposed then 0≥hλ . 

 

APPENDIX B. PROOF OF THEOREM 1 

Equation ( 14 ) follows from Lemma 1. To prove ( 15 ), first note as the constraints 121 −Hg,,g,g K  

in ( 7 ) are predetermined to be satisfied with strict inequality, λh  and λh+1 , h =1, 2 , … H–2, in 

( 13 ) both vanish. After a little algebra, ( 15 ) is obtained from  ( 13 ) and ( 14 ). To prove ( 16 ), set 

h = H–1 in ( 13 ) and note that 01 =−Hλ , whereas λH  is derived as follows. Proceeding as in the 

proof of Lemma 1, use ( A.4 ) twice with h = H and h = H–1 to obtain 

( ) 22
1

−
+ =+ HHHHH nN σλλ and ( ) 2

1
2

111
−

−−−+ = HHHH nN σλ . Since n NH H=  we have 
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2
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Insert ( B.1 )  into ( 13 ) with h = H–1 and HH Nn = , to obtain 
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Divide both sides by 111 −−− HH nN , which by ( 7 ) is greater than zero, and ( 16 ) is obtained. 

There is some ambiguity in the representation ofλH  in ( B.1 ) as we could have focused on another 

genuine sampling stratum than H–1. Any of the other possible choices lead to conditions equivalent to 

( 16 ), although less appealing.  
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