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Abstract

This paper considers the combined problem of allocation and stratification in order to
minimise the variance of the expansion estimator of atotal, taking into account that the
population is finite. The proof of necessary minimum variance conditions utilises the
Kuhn-Tucker Theorem. Stratified simple random sampling with nor negligible sampling
fractions is an important design in sample surveys. We go beyond limiting assumptions
that have often been used in the past, such as that the stratification equals the study
variable or that the sampling fractions are small. We discuss what difference the sampling
fractions will make for stratification. In particular, in many surveys the sampling fraction
equals one for some strata. The main theorem of this paper is applied to two populations
with different characteristics, one of them being a business population and the other one a
small population of 284 Swedish municipalities. We study empiricaly the sensitivity of

deviations from the optimal solution.
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1. INTRODUCTION

It is essentid in surveys to minimise the sample Sze because of cogsinvolved. In officid gatidicsit is
a0 required to keep the response burden down. Stratification isawidely used sample survey
technique that serves many purposes, one of them being to improve precision or to reduce the sample
size. The sampling frame is divided into Strata, and independent samples are drawn from each stratum
without replacement. For example, the most widely used design in business surveysis dratified ample
random sampling, where the population is divided into, for example, subpopulations according to
industry. Each subpopulation is dratified by size, say by employment. We focus on size dratification
and we use the term population with the meaning subpopulation in the sense just described. For
highly skewed populations with asmdl number of extremedy influentid units, the Sze sratum with the
largest unitsistypicdly acertainty stratum (adso cdled saf-representing, complete enumeration or
take-dl sratum) where al units are selected for observation. Other stratain the population are
genuine sampling strata. Thistype of desgn is particularly common in business surveys and other
establishment surveys. In practice, the stratum boundaries are often determined by univariate
dratification with one continuous dratification variable, where the objective function is usudly the

estimator variance of one important study variable. Practitioners often use the cumﬁ rule (Ddenius

and Hodges 1959), which assumes that the sampling fractions are negligible. As noted above, thisis
not a suitable assumption for highly skewed populations. Further, the Daenius-Hodges rule assumes
thet the dratification varidble is the same as the sudy variable, which is either unredidtic or, if the two
variables are indeed smilar, makes dratification amost superfluous as such a powerful auxiliary

variable could be used in estimation instead.



Severd issues have to be addressed when designing a sratified sample (c.f. Sarndal, Swensson and
Wretman 1992, p. 101):

Congruction of Stratar (A1) Which sratification variable(s) is (are) to be used? (A2) How many
grata should there be? (A3) How should strata be demarcated? Choice of Sampling and Estimation
Methods: (B1) Sampling design for each stratum. (B2) An estimator for each stratum. (B3) The

sample sze for each stratum.

This paper focuses on questions A3 and B3 jointly. As set answers to the other questions we assume
that (A1) there is aframe with known vaues of a given dratification variable for every unit; (A2) the
number of strata, H, is predetermined; (B1) a smple random sample is drawn from each stratum;
(B2) the expanson estimator is used for each stratum. Asfor B3, wefix the overall sample sizeto be
a predetermined number, n, but the alocation of this sample to Stratais determined as part of the

optimisation problem.

First we put the problem into its context. For amore comprehensive overview of dratification, see

Sigman and Monsour (1995). The population U = {1,2, .. N} with study varigble

y= (yl,yz,...yN)( is gratified and asample is taken in order to estimate the population total

t=y, +y, +...+y, . Congder the expanson estimator of the total of y:

y
f,=a—"a Y. (1)



where N, and n, arethe number of frame unitsin stratum h and the sample szein stratum h,

respectively. The problem congdered hereisto find the univariate Stratification that minimisesthe

varianceof t,,
" N S2a® n o
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where S5 = (y, - ¥,)?/(n, - 1) isthe study varigble variance in stratum h, with ¥, being the

k=1
mean of the i in sratum h. The quantities N, and Sf,n are functions of the stratum boundaries. The
objective function, Var (fy ) , Ishere regarded as afunction of the stratum boundaries and the stratum

sample szes. We minimise it under the congraints that the sample sizes add up to n and that each

stratum sample Szeis no greater than the stratum population Size.

Ddenius (1950) minimises
n Iy S2
vif,)= 4 Nz=22, (3)
where S isthe dratification varigble variance in stratum h. Unlike ( 2 ), Dalenius presupposes that

H
N, = nNhsxh/é Nh Sy, isNeyman alocation under the assumptionthat S, » S, . Ddenius
h=1

derives the following equations as a necessary condition for stratum boundaries b, <b, <...<b,_;

minimising (3 ):

th +(bh - )_(h)z — S)f,thl-'-(bh - )_(h+l)2 ’ h =1' 2’ H _ 1’ (4)
S, S




where X;, isthe mean of the dratification variable in stratum h. Schneeberger (1985) points out that a

solution to (4 ) isnot necessarily alocal or globa minimum to ( 3 ). There may be, for example, two

solutions, one minimum and one maximum.  The function v(fx) approximates ( 2 ) under the following

assumption and gpproximation.

Assumption Al.a. Thevaues of the sudy varidble equa those of the stratification variable.
Approximation 1. Thefinite population correctionin ( 2) isignored.

In this paper we do not use Approximation 1 in any theorem. It isintriguing that when
Approximation 1 is dropped, the optima conditions remain smilar to (4 ) but finite population
corrections will emerge, as shown in Theorem 1 below. Thus, this problem isin a sense pardld to
meany other problems in survey sampling: you obtain formulae for finite populations by inserting finite
population corrections at appropriate places in the corresponding formulae for infinite populations.
Papers dedling with optima dratification that use Approximation 1 include Daenius (1950), Ekman
(1959), Daenius and Hodges (1959), Sethi (1963), Serfling (1968) and Mehta et al. (1996). Like
Daenius (1950), we use the following approximation.

Approximation 2. Thefinite population is approximated with a continuous digtribution.

Severd authors have addressed the problem of finding the point where the far tail of a skewed
digtribution should be cut off to form a certainty stratum. Daenius (1952), Glasser (1962) and
Hidiroglou (1986) have solved the two-stratum specid case, with one certainty stratum and one
genuine sampling stratum. These results are not easily generaised to more than two drata. Although
Glasser derives an exact result, as opposed to Daenius who uses Approximation 2, they arrive a

essentialy the same condition for the stratum boundary b;:



(bl' )_(1)2 = NlSlZ (5)

where unity as subscript refers to stratum 1, which is the genuine sampling stratum. We generdise this

result to an arbitrary but predetermined number of strata.

Thus, this paper generalises the previous results in two ways. Further, we solve the combined
problem of finding the optimal alocation and optimal dtratification when there are severd genuine
sampling strata and one certainty stratum. Although this can be solved in two steps (firgt by finding an
optimal dlocation and then by finding the optima stratification given the dlocation), it is il of
theoretical interest that the two steps can be solved smultaneoudy. Condition (5 ) turns out to be a

specia case of our results, whereas (4 ) does not.

An agorithm given by Lavdlée and Hidiroglou (1988) and Hidiroglou and Srinath (1993) minimises
the sample Sze under a precison congraint rather than the other way round. Detlefsen and Veum
(1991), Sweet and Sigman (1995), and Santa and Krenzke (1996) discuss convergence problems
of the agorithm and how to implement it. Unlike this dgorithm, we do not have any predetermined
alocation scheme and there will be no convergence problems, unless a very large proportion of the

units in the frame have the same vaue of the Sratification variable.

Baxi (1995) proposes an dgorithm for an approximately optima sratification where one unit is

sampled in each stratum. The finite popultion correction is not ignored.



We obtain further results under an assumption less restrictive than Assumption Ala
Assumption AL.b. A stochadtic relationship between a superpopulation study variable Yand a

drétification variable X holds. We shall show resultsunder Model 1a: Y =a +bX +e,, where a
and b are constants, and the e, are uncorrelated errors with zero mean and variance s *x?, for
some constants s 2 and g . These results can be extended to Model 1: Y =y (X)+e,, wherey (>)
isaknown function and e, hasagenera variance structure. The current paper isthe first oneto

obtain the minimum variance of the expandon estimator under Modd 1awithout relying on

Approximation 1.

The optima number of strataiis not discussed here. See Serfling (1968) and Singh (1971), both of
which draw on Approximation 1. Discussions of other designs and estimators than Stratified smple

random sampling and the expangon estimator include Wright (1983) who usesthe auxiliary

X = (xl,x2 e Xy )( in both the design and estimation stage, the latter with a GREG egtimator under a

specia case of Modd 1. Addressing both A3 and B3 Wright finds the dlocation and drtification
that minimise the anticipated variance (the variance under both the modd and the design). The
method of Wright is aso described in Sérndal, Swensson, Wretman (1992, sec. 12.4). Pandher
(1996) uses a GREG too, but with only two strata. Another model-based approach is Unnithan and

Nair (1995).

Sections 2 and 3 gate conditions for stratum boundaries minimising the variance. Applications are

presented in section 4. Concluding remarks are given in Section 5.



2. A SOLUTION UNDER ASSUMPTION Al1.A

We disregard nonsampling errors, that is nonresponse, measurement and coverage errors and
assume that every population unit corresponds to exactly one frame unit. The strata are determined
by stratum boundary points b, <b, <...<b,, , with tratadefined as A ={u: x, £b},

A ={u:b_,<x,£b}, h=23,.. . H-1,and A, ={u: b, , <x,}, wherex isthesratification

vaiable. Set b, =x, and b, = x,, . Wesesk vauesof (n,b)=(n,n,,....n,, by, b,,....b, )

that minimise ( 2 ) under the following condraints:

}gdnb)Onh-Nhﬁo,h=Lz“H (6)

H
| [o]
{91(n0)° A1y nEO
| =1

Note that these congtraints alow any stratum to be a certainty stratum. As auseful specia case the
congraintswill be further restricted:

igy(n,b)° n,- N, <0, h=12..H-1
|

:
.:'IQH(n’b)O ny- Ny =0 (7)
;

.I. o OH _

IQH+1(n’b) an-n=0

| h=1

We give now aframework that will alow usto apply optimisation theory for continuous functions.
The framework can either be seen as a superpopulation mode or Smply as an gpproximation
gpproach. In this section we adopt the latter viewpoint, which was introduced above as
Approximation 2. Let x, and x,, beapriori known lower and upper bounds for the values of X with
densty f, (x) . We will need three properties of the stratac probability, mean and variance. Let P,

denote the probability that X falsin stratum h:



bh 8
P, = Ofx (x)dx (8)

bh-1

The conditional mean and variance of X given X 1 (bh_ 1,bh) are:

m, = &fx(x)dx (%)
bh-1

bh 10
S = dX- mm)z fx(X)dX (1)
bh-1

Under the gpproximation gpproach, the integer N,, and the finite population mean X, and
vaianceS%, (whichequas Sih under Assumption Al.8) are assumed approximately equa to NP, ,
m,, and s 2,, respectively. We will denote NR, by N, (b) or just N,,. Thus N, isregarded asa
continuous function of the stratum boundaries. We also treat ny, n,,...n,, ascontinuous varigbles.

The function ( 2 ) isthen approximated by

n, © (11)
OF

Qo

f(n,b) =& N2(p) X::fb)éel- y

=y
1l

1

For notational smplicity, wewill in the sequel drop the argument b in the functions N, (b) and other

functions of the stratum boundaries.

Lemma 1 gives an optimum under congraints ( 6 ), whereas Theorem 1 gives an optimum under the

more restricted congtraints ( 7 ). The proofs arein Appendix A and B.



Lemma 1. Suppose f, (x) >0 on(xl, Xy ) . If agratification and dlocation have aloca minimum of

(11) under congtraints ( 6 ) with at least two genuine sampling strata, then (12 ) and (13) are

satisfied:
\ - 12
:_h:thXh Ilha]dj Whaenh<thdnJ<NJ ( )

i I~

aN, A (13)

Cm 8N 49 Naga
(bh mm)gﬁ lz"' nhsxh

aN 0 N
(bh - rn(,hﬂ)zg nh+1 - 1=- h+15 f,h+1+(| h+1 = I h):O,

h+1 é nh+1
h=1,2..H - 1, for some non-negative red numbers |, and | ,,,. Thenatureof | ,, and | |, IS

discussed in Appendix A.

Theorem 1. Suppose strata 1, 2, ... H-1 are predetermined to be genuine sampling strata and
stratum H iis predetermined to be a certainty stratum. Then, if f, (x)>0 on(x,, x, ) , anecessary

condition for aloca minimum of (11 ) with respect to stratum sample sizes and stratum boundaries
under congtraints ( 7 ) isthe system of equations (14 ), (15) and ( 16 ) below.

Conditions for stratum sample sizes.

1 o1 (14)
no=(n- N Ns BB Ns, 2 h=123.. Hi
en=1 (%]

Conditions for the boundaries b, , b,,...b,_, of the genuine sampling Stratax

10



(15)

h+1 @

n, 0 N., 0
bn my, gi N_; S o bn_ 'Tkml)zgi' Nh LIts >2<,h+1
S S x,h+1
h=1,23..H-=2
Condition for the boundary b,, , of the certainty stratum:

N
(bH-l' m<,H-1)2:¢S f,H-l' (16)

My.g

Remarks:

1. This paper does not attempt to provide any sufficient condition for aloca minimum.

2. Equation ( 14 ) is Neyman dlocation when stratum H is a certainty stratum.

3. Finite population correction factors of thetype 1- n/N are often seen in survey sampling theory.
Interestingly, this problem is no exception: the proper finite population result ( 15 ) is obtained by
inserting finite population corrections at gppropriate places in the corresponding formula valid for an
infinite population, (4 ).

4. Equation ( 16 ) with H =2 isequivdentto (5).

5. When applying Theorem 1 in a practical Stuation, the unknown superpopulation parameters m,,

and s 2, must be esimated or guessed by the corresponding parameters of the finite popul ation and

thevauesof n, and N, haveto be rounded to nearest integer.

2.1. The special condition for certainty strata

What isthe difference between ( 15) and ( 16 ) in Theorem 1? It may be expressed this way.

Suppose you dratify by using acondition fairly closeto (15), likethe cumﬁ rule, usng thisrule

11



for al strata. Then you allocate the sample and end up with n,; = N, , what have you done? This
approach correspondstoh=H-1and | ,_; =1 =0 in(13)inLemmal, asshownin Appendix
A. Compare this with an gpproach where strata 1, 2, ... H-1 are predetermined genuine sampling
drata and stratum H may or may not be a certainty stratum. Then, in ( 13 ) with h = H-1, we have

l y.,=0and |, 3 0.Thustheabsenceof | , inthefirst approach tend to make either stratum H

too narrow or at least one of the other strata too wide.

3. A SOLUTION UNDER ASSUMPTION A1.B

Theorem 1 isnow generalised to Modd 1a under Assumption Al.b. Under this superpopulation

modd we have

XN ¥

N ) 5
= (‘)c‘)[bx+s x9 - bm(] felx(e|x)fx(x) dedx,
X1 - ¥

where s 5 Is the variance of Y. We shdl use amilar notation for dl moments of Y and X. Caculaing
the integra term by term, we obtain

si=b%? +s 2,

where s_e2 is the mean of the condiitiond variances of e, , given X:

s/

XN
=52 ()¢ f (x)dx. Using the anticipated variance as the meesure of effectiveness, the objective
X

function to be minimisad is

el (17)

E,, Var héz_l g—h Nigbzsfﬁs_;].

12



where E\ denotes expectation under the model, Var is as previoudy the variance over al posshle

_ 2 bhn
samples, ands 2 :SF 3¢ f, (x)dx . We state Theorem 2 without proof, asit is a straightforward
h bn-1
extension of that of Theorem 1.

Theorem 2. Suppose strata 1, 2, ..., H-1 are predetermined genuine sampling strata and stratum H
isapredetermined certainty stratum. Suppose further that Modd 1aholdsand that f, (x) >0,
x1 (xl, Xy ) . Then, anecessary condition for aloca minimumof ( 17 ) with respect to stratum

sample Szes and stratum boundaries under congtraints ( 7)) isthe system of equations (18 ), (19)

and (20).

Condition for stratum sample Szes.

-1
n, = (N Ny N,5 3 +520 2 85 N,yfs % #5202

eh=1 (4]

Conditions for the boundaries b, b,,...b,_, of the genuine sampling strata:

o, ma )+ 026 /) s 453072
[Savsap)

(19)

[(bh - r‘r-l<,h+1)2 +S Zbr? b -2](1_ nh+l/Nh+1)+S >2<,h+1 +S—ez,h+lb 2

2 2 -2} 05
(S x,h+L +s e,h+lb )

h=12..H-2,

Condition for the boundary b,, , of the certainty stratum:

13



(bH-l B m<,H-1)2 +S Zbﬂ.lb'zzh(s i,H-l +S—ez,H-1b_2)' (20)

H-1
Remarks:

1. Equation ( 18 ) is Neyman alocation under Model 1a. It is a specid case of the optimal dlocation
scheme shown by Serfling (1968) and Singh (1971) who minimises the variance under Modd 1 and
Approximations 1 and 2.

2.1f 1- n, /N, =1- n,,,/N,., =1, (19) isaspecid case of acondition given by Daenius and

Gurney (1951). They, too, use Model 1 and Approximetions 1 and 2.

3.1. Do we need assumption A1.b?

Now we consider heurigticdly the difference between the conditions ( 18 ) — ( 20 ) and the parale

conditions (14 ) — ( 16 ) in Theorem 1. To make the comparison more transparent we shall only

consider the homoscedastic special case of Model 1 with g = 0, which mekes s 2 =s 2, " h. Then
the difference between the conditions is additive congtants involving s b > which are grossed by
factorscontaining N,,. If N,s *b? isnegligiblecomparedto s 2, h =1, 2... H-1, and probably
therefore dso negligible to (bh - m, )2, the optimal sratification could be done according to
Theorem 1, without having to rely on Modd 1. Thereis a close relationship between s *b "2 and

r, (nNow suppressing subscript h). Wehave's ,, =bs ? ands ? =b”s ; +s  under Model 1a. It
iseasily shown that s ?b 2 /s 2 = (1- r fy)/rfy . Hence a strdtification satisfying the condiitionsin

Theorem 2 is not close to a gtratification done according to Theorem 1, unless r , ishigh. In case of

heteroscedadticity, the Stratifications can be quite different even if the corrdation is high.

14



4. APPLICATIONS

In this section we give some numericd illudrations of the results obtained in section 2. Applications
under Assumption Al.aare of interest, dthough they may be unredigtic, because a comparison of
methods using this assumption provides amore critica test of their performances than Assumption
Alb. Further, as Theorem 1 was derived under Approximation 2, it isinteresting to seeif there
exigs a drdification with even lower variance than one given by thistheorem. We apply the results

to two populations.

The annud census of Swedish manufacturing industry collects data on sdes, cost of materids, energy
used in the production process, etc, for al businesses above a certain employment leve. The census
together with derived variables, such as vaue added, is frequently used as a sampling frame for other
surveys. We agpplied our results to the 1989 frame with vaue added as dratification variable. The
frame here referred to as the value added population, contains 7326 units and its skewnessis 12.4
(which could be compared with skewness 2.0 of an exponentia distribution). The population was
divided into H = 4 drata. The stratum comprising units with the largest values of the Stratification
variable was a certainty stratum, the other strata were genuine sampling strata. The sample Sze was

set to 400.

The dataset MU284 contains data on Swedish municipdlities. It can be found in Sarndal, Swensson,

Wretman (1992; Appendix B) and in StatLib (http:/lib.stat.cmu.edu) submitted to StatLib by

Esbjérn Ohlsson. There are 284 municipalitiesin Sweden, which makes this dataset asmall one. We

consider the variable P75, which isthe 1975 population (in thousands). Since the P75 variable has

15



only 68 digtinct vaues, it is not a variable you would think of as well gpproximable by a continuous

distribution. For MU284, the sample size was st to 80.

4.1. Performance measure
We searched for the Sratification with the smallest estimator variance ( 2 ), which we refer to asthe
best possible stratification. We let the maximum x-value of each stratum be the stratum boundary.

Clearly, aswe now congder a specific Stuation, with specified vaues of X, sample sze n and number
of drataH, there exists a best possible gratification (a globd minimum). Var (fy) was computed for a
large number of combinations of the stratum sizes N,, N, and N,. We do not, however, giveafull
account of the search method here. We denote the estimator variance for a specific Sratification by
Var(f,;N), where N = (N,....,N,, ), H = 3. The variance ratio is defined asthe ratio of the

estimator variance obtained by a particular sratification and the estimator variance using the best

possible dratification.

The best possible dratification of the vaue added population is shown in Table 1. Even with

stratum 4 removed, the remaining population is highly skewed, the skewness being 3.5. The minimum
coefficient of variationof this population, (ty ) L N ‘fy; N j , congtructing 4 strata of any kind and

sampling 400 units, is 1.688 %.

4.2. Onthe equations (4)and (15)

Recdl that the Ddenius equations ( 4 ) are derived under Approximation 1 and that condition ( 15)
is derived for predetermined genuine sampling strata only. For these reasons, the Size of certainty

16



sratum unitsis held fixed to its best possible sze and the andyses in this subsection are confined to

genuine sampling drata. The finite population factorsin ( 15 ) moderate the impact of (yh - rrp,)2 and

(yh - m,+1)2 , and if they increase from stratum 1 to stratum H, which islikely if the population is

highly skewed, the effect of them is stronger on the right hand side of each equation. Consequently,

(15) tendsto produce dtrata less unequd in Size than Stratagiven by (4).

Usudly, when (4) or ( 15) are gpplied to afinite population an exact solution does not exist. The
stratum boundariesb; and b, in Table 1 isasolutionto (4 ) or ( 15) in the sense thet they minimise
the sum of the absolute differences between the right hand and |eft hand Side of each equation. The
dratifications are different; however, the difference in variance ratio is not large. For MU284 the

dratificationsby (4) and (15) areidentical, see Table 2.

17



Table 1. Stratificationsfor the value added population with four methods sorted by

ascending varianceratio

Sraum  Best possible (15) SA (4)

N, n, N, n, N, n, N, n,

1 5225 74 5096 67 5086 66 5400 85

2 1433 66 1555 72 1572 74 1320 67

3 482 74 489 75 482 74 420 62

4 186 186 186 186 186 186 186 186

Variance 1.000 1.001 1.002 1.004
ratio

NOTE: Itdicised numbers are fixed to the best possible ones.

18



Table 2. Stratificationsfor the M U284 population with four methods sorted by ascending

varianceratio

Stratum  Best possible (15) (4) SA
Nh o Ny Nh Ny Ny o My Ny Ny

1 111 12 101 10 101 10 92 9
2 73 10 80 11 80 11 92 14
3 51 9 54 10 54 10 53 10
4 49 49 49 49 49 49 47 47

Variance 1.000 1.019 1.019 1.038

retio

NOTE: Itdicised numbers are fixed to the best possible ones.

4.3. The certainty stratum

To apply Theorem 1 we need to solve ( 15) and ( 16 ) smultaneoudy. The results of the previous
subsection indicate that the Daenius equations (4 ) are satisfactory as an gpproximate solution to
(15). Tosolve (4 ) we used the approximate method proposed by Ekman (1959), which has been
shown to give excellent results (Cochran 1961; Hess, Sethi and Baakrishnan 1966; Murthy 1967).
To solve ( 16 ) the dgorithm went through al possible values of the Sze of the certainty stratum from

N, =0 to N, =n-15, and for each vaue determined the other stratum boundaries by afast

numerica dgorithm for the Ekman rule (Hedlin, 2000). This procedureisin Tables 1 and 2 referred
to as the dratification agorithm, SA. Note that SA in Tables 1 and 2 solves abigger problem than

(4)and(15) and 4till is competitive.

19



4.4. Flatness of the objective function

Under variation of the three sratification parameters, Ny, N, and N3, the estimator variance

Var (fy;N) forms aresponse surface in a four-dimensiona space. Let P; be the response surface
projected on the two-dimensiond space(Nj Var (fy;N)) forj =1, 2, 3and 4. Figure 1 displays P,
forj =1, 2, 3and 4, with the variance ratio along the y-axis. The most driking fegture of the plotsin
Figure 1 isthe flatness of the estimator variance surface. Plot (d), for example, showsthet if the Size

of the certainty stratum iswithin (120, 230) it is possible to hit the minimum variance:if the other

drata are chosen optimdly. Theinterva (120, 230) must be consdered very wide asthe certainty

dratum with atota sample sze of 400 cannot contain more than 400 units. If the certainty sratum s

chosen within thisinterva and the three genuine sampling strata are determined by the Ekman rule,
theworst variance ratio is 1.05 (achieved for N, = 120). Thisrepeated for the interval (140, 230)

gives 1.02 asthe worst variance ratio (achieved for N, = 230). A large certainty stratum combined

with asmall sze of stratum 3 yields variance ratios that are unacceptable.
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Figure 1. The varianceratio for alarge number of gratifications of the value added population. Plot
(8 showsthe varianceratio for stratum 1 with N, aong the x-axis. For each N; there are a number
of choicesof N, N3 and N,. The variance ratio of each combination is represented by a point in the

scatter plot. For enhanced vighility, the points are randomly moved horizontaly by addition of asmall
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normaly distributed quantity. The best possible size of stratum 1 is marked on the x-axis. Plot (b), (€)
and (d) are andogous, with N,, N3 and Ny, respectively, instead of N;. All combinations of N;, N,

N3 and N4 are shown in each plot.

5. CONCLUDING REMARKS

We have derived necessary conditions for the combined problem of dlocation and Stratification in
order to minimise the variance of the expanson estimator. In doing so, we have relied on the
gpproximation of the finite population with a continuous didtribution. An gpplication to a population
with 284 units and only 68 digtinct values of the dtratification variable does not indicate that this
goproximation is sendtive. Thisis further supported by the fact that Glasser (1962) obtains the same

result as a gpecid case of the main theorem of this paper without this gpproximation.

If adtratum is predetermined as a certainty sratum, the condition for its minimum variance Szeis

subgantidly different from those of genuine sampling strata

Asfor genuine sampling strata, the finite population correction can give a drdification thet isfar from
what you would get with a conventional method such as the Ddenius-Hodges rule, which is derived
for an infinite population. However, the deviation from the optimum that the Daenius-Hodges rule
necessaily gives should not often be of greet practical importance. Thisis due to the empirica fact
that in mogt practica applications the estimator variance surface is flat around the best possible
stratum boundaries for genuine sampling strata. Surprisingly, one gpplication indicates that this may be

true for the certainty stratum aswell.
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APPENDIX A. PROOF OF LEMMA 1

To prepare the proof we give the partial derivatives of the function f (n,b), see (11), and the
congtraints (6 ) and (7). As f(x) isassumed continuous, B, = N, /N, myand s /, see(8) -
(10), are continuous and differentieble functions of b, , and by, on (b, ,b,, ). Thismakes (11 ) and

the condraints differentiable functions. From ( 8 ) we seethat, forh=1, 2, ..., H,

Mg, ilif h=]
fin, %Ootherwise

iNf(b,) if j=h-1
=i- Nf(b,) if j=h
10 otherwise

=

O
b,

N—

whereas the derivative of gy isadways one for any of the components of n, and always zero for the

components of b. Rewriting (11) to

HaN, 06 (A1)
f(n,b)= c—2- 1:N,s 2
( ) Elgnh 5 S h
we see that
qf N2s 2 (A2)
i R h=12..H
h nh
ad
af
——=Nflb
M)
(A3)
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To prove Lemma 1, we first show that the gradients of the congtraints are linearly independent in all
feasble points, thet is, dl points (n,b) sisfying (6 ). If they were not, there would exist non-zero

scaarsay, as, ... , aps tha would satidy

a, (0,00,,..1 0,0,0 ...  Nf (b, ,)°*
a,. 0,0, 0 coorreererrsssee ,0)¢

=0.
Thena, =a,,,, and Nf(b,)@,.,- a,)=0,h=1,2, ..., H-1,and Nf(b,_,)}a,, = 0. Under the
presumptionthat f (x)>0 ,dla,=0,h=1,2, ..., H,and we must have a .+, = 0. Hence all

scdarsag, as, ... , ans+ aezero and the gradients are linearly independent in dl feasible points.

Thisisarequirement for the Kuhn-Tucker Theorem (e.g. Luenberger, 1973). By this theorem, if

T

+1

n",b") isalocd minimum, then Nif (n",b" )+ § | Ng,(n",b" )= 0 foravector | T R"* with
( ) ( ) h gh( )

=

il Q)o

1

| 30and | ,g,(n",b")=0, h=1 2...H +1. The H first componentsin the Kuhn-Tucker

equations, which are associated with the stratum sample sizes ny, give the following set of equations:

"ﬂ\lhsh‘?2 (A4)

h
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By hypothesis there are at least two strata from which less than al units are sampled. Denote the

indices of two such strataby sandt, andwehave | . =1, =0,

| b =(Ns )?n:2, " s with n, <N, . Hence

S

0 _E—:GNtSt('_j " (A5)
8 : _8 =, " sandtwheren, < Ngandn, <N;.
Ny @ n, o

Thus (12 ) is proven. Now, for one particular stratum boundary, by, where

h=1,2, .., H-1, weobtan

N (by)
e A 2 .. PR

by m ) e (e 02 B (A9)
é nh 1} nh r]h+1 4] rlh+1 0

#Nf(by)(1 per - 1) =0, =22, .H- 1.
By hypothess 1‘(bh)1 0 and ( 13) isproven. Note that if dl strata are predetermined genuine

sampling strata, then | |, =0, h=1, 2... H, butif thiscondraint isnot imposed then | |, 3 0.

APPENDIX B. PROOF OF THEOREM 1

Equation ( 14 ) follows from Lemma 1. To prove ( 15), first note as the congtraints 9,,9, ,.-.,0,_;
in (7)) are predetermined to be satisfied with grict inequdity, | , and 1 ,,,h=1,2, ... H-2,in
(13) both vanish. After alittle dgebra, ( 15 ) isobtained from (13) and ( 14). To prove ( 16), set
h=H-1in(13)and notethat | ,, , =0, whereas | , isderived asfollows. Proceeding asin the
proof of Lemmal, use ( A.4) twicewith h=H and h = H-1 to obtain

2 -2

— 2 -2 — - ; —
T _(NHSH) ny~ and | H+1_(NH-1S H-l) Ny, .Sinceny =Ny wehave
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N

(B.1)

I-O:

» &Ny Sy :

|H=sH-g7
n
H-1

Insert (B.1) into(13)withh=H-1and n, =N, to obtain

-l

.2
aalNy. 0 Ny, _,
ShH-17T SH-1
Ny g Ny,

aN . o]
(bH—l' W-l)zgﬁ' 1+g=g

Divide both sdesby N, ,/n,_, - 1, whichby (7) isgreater than zero, and ( 16 ) is obtained.
Thereis some ambiguity in the representation of |, in( B.1) aswe could have focused on another

genuine sampling stratum than H—1. Any of the other possible choices lead to conditions equivaent to

(16), dthough less gppeding.
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