
 
 
 
 
 
 
 
 
 

 
 
 

Abstract 
 
 

One of the imperfections of a sampling frame is miscoverage caused by delays in 

recording real- life events that change the eligibility of population units. For example, new 

units generally appear on the frame some time after they came into existence and units 

that have ceased to exist are not removed from the frame immediately. We provide 

methodology for predicting the undercoverage due to delays in reporting new units. The 

approach presented here is novel in a business survey context, and is equally applicable 

to overcoverage due to delays in reporting the closure of units. As a special case, we also 

predict the number of new-born units per month. The methodology is applied to the 

principal business register in the UK, maintained by the Office for National Statistics. 
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1.   Introduction 
Most sample surveys draw their samples from a frame. More often than not, part of the 

target population is not accessible from the frame; the survey will suffer from 

undercoverage. A reporting delay or, using an equivalent term, a birth lag is defined as the 

time from birth (for a frame of businesses, the date when the business began to trade) to 

frame introduction (the date when the business came onto the sampling frame). Conversely, 
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the death lag, causing overcoverage, is the time between cessation of activity (death) and the 

business being removed from the frame. It is believed that for the business surveys run by 

the Office for National Statistics (ONS) in the UK, reporting delays are the most important 

source of undercoverage.  

 

Most information on births and deaths is updated as soon as it is received in the ONS. 

However, some information relating to births and deaths is held back pending further 

information or investigation. When the size information indicates that the new unit has a 

workforce numbering twenty or more, and the unit cannot be matched against existing frame 

units, the recording of the unit is further delayed pending proving of the information about 

the unit. On average this adds about two months to the reporting delay these businesses 

would have otherwise. The lengths of birth lags form a highly skewed distribution. Some 

businesses report to the relevant authority in the UK as soon as they are set up, resulting in 

short lags. Others may have been operating for years below the level of annual turnover 

above which registration is compulsory, i.e. before their growth necessitates their 

registration. In these cases the lag may be very long indeed. Some businesses report to an 

administrative body in advance of their launch, sometimes resulting in a negative birth lag.  

 

Figure 1 shows the distribution of births over non-negative birth lags. The vast majority of 

new businesses (85%) have been registered on the ONS frame within four months of their 

birth. About 10% have birth lags longer than five months. 

 

The aim of the paper is to devise a method for estimating the undercoverage that is caused 

by birth lags. The approach is to fit a generalised linear model to historical frame records for 

which both birth dates and reporting delays have been recorded. The model will then be 

used for predicting forthcoming numbers and lags. While we could accommodate economic 

cycles that have been observed in historical data, we have not attempted to do so as the 

available usable data relate only to the period January 1995 – March 1998. Businesses that 

never come onto the frame, for example, very small businesses or businesses operating 

entirely on the black market, are ignored, as are businesses that die before they appear on the 

frame. 
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Figure 1. Number of observed births (in thousands) against birth lag (months). 

 

In general at the ONS it is not possible to tell whether a dead business has been closed 

because of a genuine death or because it has been part of a merger, takeover etc. Information 

that precedes the start of a business in legal terms is not recorded. The net number of births 

may therefore be more interesting than the gross total. Deaths are reported through the same 

administrative bodies and the resulting reporting delays will be similar to birth lags, 

although they tend to be longer. The net number of births can be estimated as the difference 

between the predicted gross numbers of births and deaths. While we focus on birth lags, the 

same methods could be applied to death lags. 

 

Table 1 indicates the birth lag distribution for businesses born between 1 January 1995 and 

22 March 1998. The rows of the table represent the numbers of businesses that were born in 

each month. We refer to the month a business started operating as its birth month. The 

columns are birth lags measured in months calculated as the number of complete months 

(successive periods of 30.4 days) between birth and frame introduction.  

 

The business registers of the ONS and the former Employment Department were merged in 

1993 to create the Inter-Departmental Business Register (IDBR). Before 1995 the IDBR was 

in a state of considerable flux as data from the two previous registers were being matched 

and duplication removed. Hence we only use data from 1 January 1995.  
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The administrative sources that the IDBR is built upon are two government departments: 

HM Customs and Excise and Inland Revenue. HM Customs and Excise provides 

information relating to Value Added Tax (VAT)-registered legal units daily (weekly up to 

1999). These indicate new registrations, and any traders that have deregistered. Inland 

Revenue provides a file of all Pay As You Earn (PAYE) employer records each quarter. In 

the PAYE scheme employers pay the employees’ income tax and national insurance 

contributions. From these notifications, new registrations and deregistrations can be detected 

by comparison with the file from the previous quarter.  

 

Because the ONS is not notified continuously, frame introductions tend to be clustered in 

time. The total number of businesses on the IDBR in 1998 was about 1.8 million (in 

addition to the data analysed here there was a large number of businesses that went 

unchanged through a period starting in 1995 and ending in February 1998). 

 

With the observation window spanning the period January 1995 – March 1998 the longest 

observable birth lag is 38 months. The count of the rightmost cell in the first row of Table 1 

is unobservable (unless we gain access to data that go beyond the final date in the data 

currently available). Adhering to common terminology, cells with unknown counts are 

referred to as structural zeroes (see e.g. Agresti 1990); their unknown counts are represented 

in Table 1 with dashes. The term structural zero is conventional but in this case 

‘unobservable counts’ might have been more telling. With structural zeroes, the table is an 

incomplete contingency table. The rightmost diagonal of the upper triangle containing 

observed counts is partially unobservable.  

 

Another way of expressing the fact that we cannot observe new businesses that have not yet 

been introduced on the sampling frame is to say that the data are right-truncated. The 

problem of estimating the undercoverage due to birth lags is equivalent to estimating the 

number of businesses that have been subjected to right-truncation.  

 

On 31 March 1998, the undercoverage is the sum of the unknown counts in the lower 

triangle of Table 1. As a special case, the row totals can be predicted; they correspond to the 

number of births per month. Note that it is the column sums of Table 1, excluding partially 

truncated cells, that are graphed in Figure 1. 
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Table 1. Number of observed births per lag (in months) and birth month. Partially 

unobservable cell counts are indicated with a ≥  symbol, totally unobserved cell counts 

with a dash. 

 Birth lag 
 0 1 2 … 38 >38 Total 

Jan, 95  5,444  4,982  1,910  …  ≥ 6  –  16,054 
Feb, 95  5,333  4,069  1,280  …  –  –  13,425 

M  M  M  M  O   M  M  M 
Jan, 98  7,783  4,102  ≥ 1,346  …  –  –  13,231 
Feb, 98  7,075  ≥ 3,087  –  …  –  –  10,162 

Mar, 98  ≥ 5,888  –  –  …  –  –  5,888 
Total 226,582  156,517  61,346  …  6  – 549,386 

 

 

There is surprisingly little literature on reporting-delay induced undercoverage of a frame 

used for sample surveys, considering the importance of the problem and the fact that there is 

research on similar issues in other areas. The approach presented here to estimate the 

number of unobservable businesses is akin to and was inspired by estimation of the 

incidence of cases of AIDS in the presence of reporting delays, see Wang (1992), Sellero et 

al. (1996) and references therein. Our application is different; we have a very large dataset 

and a large contingency table. There is also a structure to our data that makes assumptions 

that are common in AIDS research less appealing.  

 

An extension to the problem of predicting the population size is to predict the population 

total of some variable. Most businesses in transition between start and frame introduction 

are part of the target population and hence their absence from the sampling frame will result 

in a negative bias in estimated totals if these are based solely on samples from the frame. We 

propose a method of estimating this bias. A similar estimation problem is addressed in 

actuarial science. Insurance companies need to estimate the net sum of claims that have yet 

to be settled; see, e.g., Haberman and Renshaw (1996).  

 

Section 2 explores the data behind the incomplete contingency table and the table itself. In 

Sections 3 and 4 Poisson regression models are fitted to the upper triangle of Table 1 to 

predict the unobservable cell counts in the lower triangle. In Section 5 the precision of each 

model is assessed by a cross-validation type of study. Section 6 addresses the problem of 

bias in estimates of the total in the presence of reporting delays. The paper concludes with a 

discussion in Section 7. 
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2.   Exploring the data 

It is useful to start with an in-depth data exploration. In addition to measuring the overall 

length of birth lags, we have also examined lags by industry classified by the Standard 

Industrial Classification 1992 (SIC92) and by region. There is little to choose between most 

of the different industries. However, it is clear that Health and Social Work has longer birth 

lags than any other industry. This is likely to be because registration in this sector is more 

dependent on the less frequent PAYE system. Most regions have very similar average lags 

except for Northern Ireland, which stands out as having greater than average lags. We do not 

take differential reporting delays in industries and regions into account in this paper. 

 

As we focus on undercoverage due to birth lags, the businesses of interest are those which 

came on to the frame after they were born. In addition to this stipulation we selected for 

further analysis only those businesses with birth between 1 January 1995, and 28 February 

1998, to exclude the rightmost partly truncated diagonal in Table 1.  

 

Table 2. Number of observed births per year and monthly average.  

Born in year Number Average per month 

1995  174,300  14,500 

1996  172,600  14,400 

1997  171,300  14,200 

1998 (Jan and Feb)  19,000  9,500 

Total  537,200  14,100 

 

Table 2 and Figure 2 show some aggregates of births and the distribution of births. Except 

for the truncation effect clearly visible from November 1997 in Figure 2, the curve is 

astonishingly regular over time. Note that this curve represents the row sums of Table 1 

apart from partially truncated cells. Note also that the scales of Figures 1 and 2 are very 

different: there is far more variability in counts between lags, especially short lags, than 

between birth months. 

 

The longest birth lag we can fully observe is 37 months. Longer lags are entirely negligible 

as only 15 out of the 16,000 businesses that were born in January 1995 have 37 months birth 

lag; only 48 out of 30,000 businesses born in either January or February 1995 have 36 

months birth lag or more. 
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Figure 2. Number of observed births per birth month.  

 

 
 

Figure 3. Percent of observed births per day of the month. 

 

Figure 3 displays number of births by day for births in 1995 – 1997. The two panels contrast 

the distribution of birthday for Aprils with tha t of other months. In Aprils 38% of all new 
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businesses started trading on the first of the month, in other months the proportion was even 

higher. The eye-catching peak at April 6 in Figure 3 is due to this day being the start of the 

taxation year in the UK. In practice, owing to differing interpretation of what constitutes the 

start of a business, it is frequently hard to fix on one day as the actual birthday for a 

business. The first of the month is often perceived as a convenient date for administrative 

purposes, both for the business managers and for the administrative bodies. Also, there is 

some heaping visible in Figure 3 in that most of the bars for dates like 10, 15 and so forth 

are slightly taller than most other bars. Therefore, month seems to be the smallest viable unit 

in the classification of number of births; it does not seem meaningful to split months into 

smaller units.  

 

Figure 4 gives a contour plot of Table 1 with partly truncated cells excluded. The area with 

the largest counts is to the far left, and then the counts fall as we proceed to the right. The 

contour levels are 1096, 148, 21, and 3 (equal distances on a log scale), so area 1 consists of 

cells with counts greater than or equal to 1096. A couple of the ‘islands’ in area 4 are counts 

smaller than 3. The scarcity of islands in all areas indicates a large degree of homogeneity.  

 

The dashed horizontal lines mark Aprils. Areas 2 and 3, in particular, jut out along the 

dotted lines indicating areas with relatively large counts that are stretched to the right. This 

is partly due to the fact that there are more births in the month of April, partly due to a more 

skewed lag distribution for businesses born in April (the average birth lag is 2.5 months for 

businesses born in April and 1.6 months for businesses born in other months). There is also 

a diagonal pattern emerging in areas 2 and 3 above the horizontal line that indicates April 

1996.  

 

The diagonals correspond approximately to frame introduction months; that is, businesses 

that came onto the frame in the same month are located along one or two diagonals running 

from right to left in the contingency table. It appears likely that what produces these 

diagonal ridges visible in Figure 4 is the reporting of births from Inland Revenue. Since this 

is done in a roughly quarterly basis, the notifications of new businesses come in sizable 

batches. 
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Figure 4. A contour plot of the contingency table, Table 1. Levels for number of frame 

introductions. 

 

3.   Models 

The number of businesses in transition between birth and frame introduction can be viewed 

as a stochastic process over time. The process is not stationary since Figure 4 indicates 

among other things that birth lags tend to be longer for businesses born in April than for 

businesses born in any other time of year.  

 

In this section we fit models to the upper triangle of the contingency Table 1, excluding 

partially truncated cells. It is convenient to confine the class of models to generalised linear 

models (e.g. McCullagh and Nelder 1989). A generalised linear model has a random 

component, which identifies the probability structure of a response variable Y, a link 

function which specifies the relationship between the expected value µ of the  response and 

the systematic component, which in turn defines a linear function of the explanatory 

variables. The systematic component can rather easily accommodate the seasonality and the 

non-stationary structure we have observed.  
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Another advantage is that generalised linear models are useful even if the parametric 

assumption underlying the model is ill- fitting, since the ML estimation of parameters uses 

only the link function, choice of covariates and the variance function ( )µV , where 

( ) ( )µφVYV =  and φ  is known as the overdispersion parameter (Davison and Hinkley 1997, 

Ch. 7). Thus our approach is essentially semi-parametric. 

 

Let r be the number of rows in the table and let mij be the expected number of businesses 

that were born in month i, i = 1, 2, …, r, and that were introduced on the frame in month 

1−+= jid , that is with a birth lag j, j = 1, … c, where c is the maximum birth lag we can 

observe. For convenience, we renumber the index j to start at 1 rather than at 0.  

 

We have seen that the birth rate is higher in some months, such as Aprils, than in other 

months. It seems plausible that a higher (or lower) birth rate for certain months should give 

roughly proportionally larger (or smaller) counts of new businesses for all birth lags. Hence 

it seems more plausible that birth months, birth lags and other effects that potentially could 

be part of the systematic component are multiplicative rather than additive. This leads us to 

the following type of log- linear model: 

( ) ( )ijij uum +=log ,       ( 1 ) 

for i = 1, 2, …, r,  j = 1, 2, …, c – i + 1, where u is an intercept and ( )iju  is a parameter for 

cell i and j in the fully observed triangle in Table 1, with total number of rows r and columns 

c = r, here r = 38. Hence the link function is the logarithmic function, which conveniently 

converts multiplicative effects on the original scale to additive effects on the log scale. The 

variance function ( ) ijmV =µ  is reasonable even if the cell counts are not independent and 

Poisson distributed, since the overdispersion parameter can account for discrepancies 

between the variance of the response and the variance function. 

 

One of the most parsimonious models (i.e. with fewest parameters) that we may be 

interested in is a log- linear model with just birth lag effects with ( ) ( )jlagij uu = , where ( )jlagu  

is a parameter associated with birth lag  j only. Considering Figures 1 and 2, the lag effect 

should be far more important than a birth month effect. The latter effect may perhaps even 

be dropped altogether. Although this may be an oversimplification, the model with a lag 

effect only is interesting as a reference model. Under this model all cells in a column have 

the same expected value.  
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Another log- linear model arises from the assumption that the expected cell counts are 

separable into quasi- independent row effects and column effects with 

( ) ( ) ( )jlagibirthmonthij uuu += . See McDonald (1998) for a definition of quasi- independence and 

ML estimation for incomplete tables. Since the underlying stochastic process is not 

stationary, there is in fact an interaction between birth months and lags, which the quasi-

independence model fails to capture. 

 

A third model is one with a seasonal effect and a lag effect. The underlying assumption is 

that some of the rows of the contingency table show a repetitive pattern in that their effects 

are the same and do not depend on year. Figure 2 suggests that all Januaries are similar, and 

so forth. It seems reasonable to examine a model with twelve ‘season’ parameters, as 

opposed to 38 birth month parameters. The model is: 

( ) ( ) ( )jlagkseasonij uuumlog ++= ,     ( 2 ) 

i = 1, 2, …, 38,  j = 1, 2, …, 138 +− i , ( )12 moduloik = . 

 

When this model is fitted to the fully observed counts in Table 1, the residuals show a clear 

diagonal pattern, a pattern that is visible in Table 1 itself. A diagonal effect can be added to 

the model to obtain a better fit. Further, an ‘April effect’ can accommodate part of the 

observed longer lags for businesses with births in April: 

( ) ( ) ( ) ( ) ( )4log =++++= kjIuuuum ddiagjlagkseasonij α ,   ( 3 ) 

with i, j and k defined as for the model in ( 2 ), 1−+= jid , a is a parameter and ( )⋅I  is an 

indicator function taking value 1 if the argument is true, 0 otherwise.  

 

The models above were fitted to the fully observed upper triangle of Table 1 using ML 

estimation. The usual likelihood ratio test statistic (the ‘G2 statistic’) and the Pearson chi-

squared test statistic gave very similar results. The estimation of parameters was done with 

Proc Genmod in the SAS System® version 8.02 for Windows, see Zelterman (2002). To 

ensure that the Genmod procedure gives correct results, it was run on some well-known 

datasets with structural zeroes. To check the numerical stability for the very large table 

analysed, the order of columns was changed, likewise the order of the rows for the model 

( ) ( ) ( )jlagibirthmonthij uuu += , but the results remained the same.  
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Table 3 gives the values of test statistics for four models. The p-values are not given in the 

table below; all are miniscule. The G2-values in Table 3 are extremely large due to the very 

large cell counts and the large number of cells. It is not meaningful in this application to use 

G2-values for significance tests since any useful model would be rejected. We can, however, 

use G2-values for the comparison of models without formal tests. Another general strategy 

for dealing with large counts in a contingency table is to look for non-random patterns 

among residuals for different models. We will also study how well the models predict future 

observations. 

 

Table 3. Goodness of fit for Models 1 – 4. 

 

Model 

 

# para-

meters 

 

Degrees of 

freedom 

 

G2 

 

Decrease  in 

G2  

 

Knoke-Burke-

ratio 

1. Lags only 38 703 49,323     

2. Lags and 

seasons 

49 692 38,259  11,064  22% 

3. Lags and birth 

months  

75 666 36,888  12,435  25% 

4. Lags, seasons, 

diagonals and 

April effect 

87 654 21,829  27,494  56% 

 

The Knoke-Burke ratio (Knoke and Burke 1980) is 221 refalt GG− , where 2
refG  is the value of 

the test statistic under a reference model (here Model 1, lag effect only) and 2
altG  under an 

alternative model that includes the reference model as a special case. Note that if the 

alternative model is the saturated model then the Knoke-Burke ratio attains its maximum, 

100%. Knoke and Burke (1980) suggest that this ratio may be used for very large datasets; a 

large value indicates that the alternative model is satisfactory. We refer to the models using 

the order number in Table 3. Clearly, Model 4 gives the best fit. It is the addition of the 

diagonal effect that accounts for the major part of the reduction in G2. Adjusted residuals 

from Model 4 are large but show no clear pattern. 

 

There are other modelling approaches in the AIDS diagnoses literature. Harris (1990) and 

Wang (1992) discuss parametric and non-parametric methods, respectively, to estimate the 
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size of the population. Generalised additive models is a class of models that includes 

generalised linear models (Hastie and Tibshirani 1986). The link function in these models is 

a sum of nonparametric curve components. Davison and Hinkley (1997, examples 7.4 and 

7.12) contrast what here is termed Model 3 with a generalised additive model which gives 

smoother predictions of unobservable counts in a register of English and Welsh AIDS 

patients. In our problem we could take ( ) ( ) ( )juuum kseasonij ++=log  with ( )ju  being some 

nonparametric curve describing the marginal relationship between cell counts and birth lags. 

Figure 1 suggests that the flat part of the curve may not need a different parameter for each 

birth lag, as they have in Models 1 - 4. We leave these ideas for future research. 

 

4.   Predicting undercoverage and number of births per month  

The models fitted to the upper triangle of the contingency table in Table 1 are now used for 

predicting counts in the lower triangle. To fix notation we first give a brief general account 

of Poisson log- linear models with ‘matrix notation’. The contingency table has r rows, c 

columns and arc =  cells. A general log- linear model is 

( ) µ1Xßm +=log ,       ( 4 ) 

where ( )′= ammm ,,, 21 Km  is a vector of the expected cell counts, with the cells labelled 

from left to right starting with the first row, β  is a parameter vector and  the design matrix X 

specifies the model. The quantity µ is a parameter and 1 is a vector of ones with the 

dimension given by the context. In the presence of structural zeroes the cells in ( 4 ) that 

correspond to them would not be included in the model. What remains of m and X after 

omission of rows that correspond to structural zeroes is denoted by *m  and *X .  

 

For example, consider a two-way table with r =  c = 2 and without structural zeroes. Then a 

model with a row factor and a column factor and no interaction would have 



















=

1010
0110
1001
0101

X . 

 

If the fourth cell is a structural zero  
















=

0110
1001

0101
*X , 
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and 

( ) µ1ßXm += **log ,        ( 5 ) 

with ( )′= *
3

*
2

*
1

* ,,, mmm Km .  

 

Let o be the number of cells that are not structural zeroes (o for ‘observed’, a for ‘all’).  Let 

the set of the fully observed cells be denoted by O and the set of all cells by A. The 

difference between A and O is denoted by S, which includes both partially observed cells 

and cells with structural zeroes. Like above, we distinguish quantities that are defined for O 

only by a star. In general, we have ** pm on= , where ( )′= oppp ,,, 21
* Kp  is the vector of 

true probabilities under the Poisson distribution and no is the sum of the cell counts in O. 

Note that for a model pertaining to O only, *p  is not defined outside O. Thus 

( )µ1ßXp += ** expon .      ( 6 ) 

 

Since the elements of *p  add up to unity, we obtain an estimator of *p  by summing over the 

columns of each side of ( 6 ) and replacing the parameter vector ß  with, e.g., maximum 

likelihood estimates:  

( ) ( )[ ]ßX1ßXp ˆexpˆexpˆ *** ′= .     ( 7 ) 

 

The estimator µ is 

( ) ( )[ ]ßX1 ˆexploglogˆ *′−= onµ .     ( 8 ) 

 

Let so TTT += , where To and Ts are the sum of observable and unobservable cell counts, 

respectively. Then it is natural to predict T by so T̂TT̂ += , where sT̂  is a predictor for Ts. 

Under the natural assumption that ( 5 ) can for Models 1-3 be extended to model ( 4 ) by 

replacing *X  with X we have for cell i 

( )µ+′= ßXiim exp ,       ( 9 ) 

where and iX′  is the ith row of X. Thus iX′  corresponds to the ith cell in the contingency 

table. The parameters β  and µ, which in ( 5 ) are defined for O only, will for Models 1-3 

remain the same for A, with the predicted sum over the cells in S 

=sT̂ ( )∑∑ ∈∈
+′=

Si iSi im µ̂ˆexpˆ ßX .     ( 10 ) 
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For Model 4 it is assumed that the diagonal pattern observed for the last 12 months can be 

extrapolated periodically; that is, to predict cells along a diagonal d ′  in the part of the 

lower-right triangle where 121 +<′≤+ cdc , the parameter associated with diagonal 

12−′d  in the upper- left triangle is used. To predict cells along a diagonal in the next band 

of twelve consecutive diagonals, 2413 +<′′≤+ cdc , the parameter associated with 

diagonal 24−′′d  is used, and so on. Thus, only the rightmost band of 12 diagonals in the 

observed triangle is used for prediction. While this may seem to underutilize the 

information, there does not seem to exist a periodic model for the diagonal effects that uses 

all observed diagonals and gives smaller prediction errors than the model just described that 

only uses the last 12 observed diagonals. 

 

Table 4 gives the number of births aggregated to year levels. As seen in the table the 

observed count in 1997 is about 8-9% less than the predicted count. The difference between 

the sum of the predicted counts under Model 4 and the observed count is 570,000 – 542,000 

= 28,000. Hence, in terms of number of businesses the undercoverage due to reporting 

delays is about 1.6% (28,000 on 1.8 million). 

 

Table 4. Observed number of births per year and the  predicted to observed ratio. 

  Ratio predicted count to observed count 

Year Observed 

number of 

births 

Model 1 Model 2 Model 3 Model 4 

1995  175,898 1.00 1.00 1.00 1.00 

1996  174,013 1.01 1.01 1.01 1.01 

1997  172,570 1.09 1.08 1.09 1.08 

1998  19,103 1.75 1.74 1.92 1.69 

 

 

Figure 5 shows the observed and predicted number of births per month for Models 2 - 4. 

The dashed curve in Figure 5 is the same one as in Figure 2. Judging from Figure 5 there is 

little to choose between the prediction methods with only Model 3 being somewhat 

separated from the others. There is a 1% truncation effect as early as September 1995 that 

each model captures. 
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Figure 5. Predicted number of births per month under Models 2-4. The observed 

counts are graphed with a dashed line.  

 

5.   Prediction error 

To assess the prediction error, we can turn the clock back, for example to the end of May 

1995, and pretend that all observed businesses born afterwards are unknown. Hence there 

will be a 5x5 square subtable with observed counts in the upper- left triangle and ‘missing’ 

counts in the lower-right triangle. A natural estimate of the error is obtained by estimating 

parameters for the upper triangular subtable and basing the prediction error on the difference 

between the observed and predicted counts in the lower-right triangle.  

 

Using this approach, Figure 6 shows the number of births per month for data cut off at the 

end of April 1997. The dashed curve is the number of births per month obtained from the 

full original table (that is, it is the same curve as in Figure 2). Models 3 and 4 are 

indistinguishable while Model 2 predicts the rise in births in April rather better than the 

other models.  

 

Thus the ends of the solid curves in Figure 6 show the predicted number of births for the 

month that corresponds to the last row of the particular triangular subtable which has been 

obtained by cutting the full table off at the end of April 1997.  

Model 3 

Models 2 and 4 
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Figure 6. Predicted number of births based on data up to 30 April 1997: Models 2 - 4 

and observed counts as at 28 February 1998 (dashed line). 

 

Figures 7 and 8 show the prediction errors for a series of subtables, from the one obtained by 

cutting off at the end of December 1995 to the one where data after December 1997 were 

discarded. In Figure 7 the final-month errors are shown, defined as the difference between 

the predicted number of births in the last month of the subtable and the observed number of 

births in the same month in the part of the original table covered by the subtable.  

 

The part of Figure 7 to the right of July 1997 is clearly influenced by the bias resulting from 

truncation of the original series. In the beginning of the series the error is, as expected, large 

due to the fact that in the beginning of the series there is less data for the estimation of 

parameters. It seems reasonable to forego the prediction errors before July 1996 and after 

July 1997.  

 

As seen in Figure 7, Model 2 gives smaller final-month errors than Model 3 for each month 

in this interval. This may seem paradoxical since Model 3 has more parameters and gave a 

better fit to the upper triangle of the contingency table (see Table 3). However, the models 

play two roles here. One is to fit counts in the upper triangle of the contingency table. The 

other is to be a tool for prediction. Good performance in one of these roles does not 

necessarily imply good performance in the other. Model 3 does not draw on the seasonal 

Model 2 

Models 3 and 4 
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pattern. Stated somewhat loosely, Model 2 borrows strength from similar months in 

previous years. With Model 3, the predictions depend completely on single rows of the table 

and are much more variable. Model 2 has the additional advantage over model 3 that it 

allows prediction beyond February 1998. Model 4 often gives smaller errors than Model 2, 

but certainly not always. 

 
Figure 7. Difference between predicted and observed number of births for the final 

month in successive subtables. Three models: Model 2 (thick line), Model 3 (dashed 

line), and Model 4 (thin line). 

 

The largest prediction error in absolute terms for Model 2 in the interval July 1996 – July 

1997 is about 1800, which occurs in November 1996. Thus the ratio of the prediction error 

to the average number of births per month, 14,000, is about 17%. Cross-validating in the 

same way for the second last row gives 2000 as the estimated prediction error. The 

estimated error for the third last row is 1700. The sum of all rows is about 10,000. Thus, a 

conservative estimate of the error of the estimated undercoverage is 10,000.  

 

The difference between the sum of monthly predictions and observations is a measure of 

error more directly connected to the estimation of the undercount. These differences for a 

sequence of subtables are displayed in Figure 8. In the beginning of the series the difference 

is negative because the predictions for 1995 are too low. The difference becomes positive 

when the truncation effect in the original series becomes pronounced.  
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Figure 8 makes it clear that Model 4 is better than Model 2. As seen in Figure 8, the largest 

prediction error in absolute terms for Model 2 in the interval July 1996 – July 1997 is less 

than 10,000. For Model 4 the largest error is less than 6,000.   

 
Figure 8. Difference (in thousands) between the sum of predicted number of births and 

observed number of births in successive subtables. Three models: Model 2 (thick line), 

Model 3 (dashed line), and Model 4 (thin line). 

 

6.   Bias resulting from reporting delays 

The undercoverage will lead to a negative bias in an estimate of the total or mean. Suppose 

the aim is to estimate the total ∑=
U ky yt  of a study variable ( )Nyyy ,,, 21 K=′y  on a 

population U with unit labels { }N,,2,1 K . Let Uij be the population of businesses with birth 

month i and reporting delay j. The total of the unseen part of the population, tUs, is the sum 

of ∑=
Uij kyij yt  over the not fully observed cells (i, j) in Table 1, each of which holds the 

population Uij.  

 

We draw on actuarial science to find a method for predicting tUs, which is in that context 

interpreted as, for example, the sum of incurred but not reported (IBNR) losses for which 

the clients are insured. The chain ladder method is widely used in insurance practice. For 

this method transferred to the current issue, consider an auxiliary variable xk, k = 1, 2, …N, 
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and let ∑
=

=
j

xiij tC
1ι

ι  be the cumulative totals of the auxiliary variable for businesses with 

birth month i and birth lag not longer than j. Introduce the development factors 
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where rj ≤  and r = c is the total number of rows (columns) in the table. The development 

factors are applied to the largest observed cumulative total in row i, that is Ci,r-i+1 to give an 

estimate of the cumulative total for the subsequent columns in row i: 
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and so on. Hence the assumption, for simplicity expressed here for unobservable cell (2,c) 

only, is that  
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1,2

1,1 =
−

− . 

 

Mack (1991) and Renshaw and Verrall (1998) show that the chain ladder technique 

necessarily gives the same cell predictions as the quasi- independence model, which is 

labelled Model 3 in this chapter. An extension of the chain ladder technique is thus to apply 

Models 2 and 4 to observed totals of some frame variable to predict non-observed cell totals 

of this variable. 

 

There are other approaches in actuarial science. In the often used Bornhuetter-Ferguson 

technique (Bornhuetter-Ferguson 1972), the Cic are taken as known constants as though they 

were available in external sources and the only free parameters are the lag parameters. Using 

an argument from credibility theory, Mack (2000) discusses the approach where the final 

predictions are linear combinations of the Bornhuetter-Ferguson predicted values and the 

predictions obtained through the chain- ladder method. Overviews of the IBNR prediction 

problem are given by England and Verrall (2002) and De Vylder (1996, Ch. 7). It is usual to 

assume stationarity for IBNR prediction. 

 

Alternatively, one can fit a model to the frame variable to obtain an estimate of the expected 

value in each cell and multiply this by the predicted number of units in that cell. Klugman, 

Panjer, and Willmot (1998, p. 292) argue that modelling counts and the continuous variable 
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separately has some advantages in the IBNR losses context. In the situation in this paper, it 

is useful to compare the distribution of the study variable for different birth lags with that of 

the counts. Also, to investigate the impact of legal and procedural changes (for example if 

the VAT threshold for mandatory reporting to the relevant UK authority changes or if new 

proving processes are introduced at the ONS) it is helpful to model the distribution of the 

counts and the study variable separately to avoid confounding. We do not pursue this 

approach here. 

 

 
Figure 9. Average turnover in £000 at frame introduction against birth lag. 

 

The variable turnover at frame introduction was stored for the businesses whose counts are 

reported in Table 1. Figure 9 shows that businesses that are very large when they come onto 

the frame tend to have long birth lags. It is believed that few of these large businesses are 

genuinely new; rather they are the result of mergers and other types of restructuring. To 

avoid duplication large businesses that are reported as new are subjected to an often lengthy 

proving process which can not usually be done without the help of the business itself. 

However, there is little information stored on the frame on the history of a business.  

 

Figures 10 and 11 show the distribution of total turnover at frame introduction against birth 

lag and birth month. The similarity of these to Figures 1 and 4 suggests that the cell totals of 

turnover can be modelled with the methods we applied to the counts.  
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Figure 10. Total turnover at frame introduction in £bn against birth lag (months). 

 

 
Figure 11. A contour plot of levels for total turnover at frame introduction. The levels 

are 54, 1000, 22000 and 1.2m (all in £000). 
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Figure 12. Difference in £bn between predicted and observed number of births for the 

final month in successive subtables. Three models: Model 2 (thick line), Model 3 

(dashed line), and Model 4 (thin line). 

 

Cross-validation errors that parallel those of Figure 7 are displayed in Figure 12. The 

estimated total undercoverage is £2.400bn. Unfortunately, the errors displayed in Figure 12 

are of similar size as the point estimate. The large businesses with long lags, clearly visible 

in the contour plot but also in Figure 10, make prediction intrinsically difficult. They enter 

the frame irregularly and produce large variation in total turnover per birth month. 

 

7.  Discussion 

Undercoverage is arguably the most important type of frame imperfection. We believe that 

the work initiated here provides a useful measure of frame quality. A time series of the 

undercoverage as estimated each month in terms of number of businesses is a useful tool for 

monitoring frame quality. For example, a long-term increase will spur questions about what 

developments in the processes cause the changes in the reporting delay distribution. 

 

We have predicted gross totals with a log-linear model. The prediction error was estimated 

with a non-parametric method that has considerable natural appeal. At the end of February 
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1998 the undercount was 28,000 businesses, or 1.6% of all registered businesses. The error 

of this estimate was predicted to be less than 6,000.  

 

The sum of the turnover of the unobservable businesses was not possible to predict with any 

accuracy due to a heavy tail in the reporting delay distribution. The heavy tail is due to the 

fact that many businesses that are very large when they enter the frame are not genuinely 

new businesses. Since the history of businesses is currently not stored on the business 

register of the ONS, it has been proposed to create a new life status variable that will store 

more complete information about changes to businesses. This will be a log of events that 

have occurred in the life of the business and will allow the separation of genuinely new 

businesses from businesses that are new only in a legal sense. Being able to predict 

accurately the bias of a frame variable enables estimation of the bias of survey variables 

through models of the association between the frame variable and each survey variable.  
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