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Abstract

Survey sampling textbooks often refer to the Sen-Yates-Grundy variance
estimator for use with without replacement unequal probability designs.
This estimator is rarely implemented, because of the complexity of deter-
mining joint inclusion probabilities. In practice, the variance is usually
estimated by simpler variance estimators such as the Hansen-Hurwitz with
replacement variance estimator; which often leads to overestimation of the
variance for large sampling fraction that are common in business surveys.
We will consider an alternative estimator: the Héjek (1964) variance es-
timator that depends on the first-order inclusion probabilities only and
is usually more accurate than the Hansen-Hurwitz estimator. We review
this estimator and show its practical value. We propose a simple alter-
native expression; which is as simple as the Hansen-Hurwitz estimator.
We also show how the Héjek estimator can be easily implemented with
standard statistical packages.

Key words: Design-based inference, Hansen-Hurwitz variance estimator, Inclu-
sion probabilities, m-estimator, Sen-Yates-Grundy variance estimator.

1 Introduction

Unequal probability sampling was first suggested by Hansen and Hurwitz (1943)
in the context of with-replacement sampling. Narain (1951), Horvitz and Thomp-
son (1952) developed the corresponding theory for sampling without replace-
ment. Gabler (1984) shows the superiority of sampling without replacement over
sampling with replacement. Variance estimation for sampling with-replacement
is straightforward (Hansen & Hurwitz, 1943). However, for sampling without
replacement, the design unbiased Sen-Yates-Grundy variance estimator (Sen,



1953; Yates and Grundy, 1953) is hard to compute because of joint inclusion
probabilities. Although exact computation of these probabilities is possible with
specific sampling designs like with the Chao (1982) sampling design, their cal-
culation becomes practically impossible when the sample size is large. It is also
inconceivable to provide these probabilities in released data-sets, as the set of
joint inclusion probabilities is a series of n(n —1)/2 values; where n denotes the
sample size. Moreover, standard statistical packages like SPSS®, SAS® | STATA®
do not deal with these probabilities. Specialized software like SUDAAN® needs to
be used. However, even SUDAAN® does not include actual computation of these
probabilities. They need to be specified by the user.

The aim of this paper is to show that it is possible to estimate the sampling
variance without computing joint inclusion probabilities by using the Héjek
(1964) variance estimator. Our aim is to show the practical importance of this
estimator and how it can be implemented using weighted least squares (WLS)
regression, which is straightforward with standard statistical packages.

In Section 2, we review the issue of variance estimation. In Section 3, we
introduce the Héjek variance estimator and we propose a simpler alternative
expression. In Section 4, we introduce alternative variance estimator that are
as simple as the Héjek variance estimator. In Section 5, the accuracy of the
Héjek estimator is studied through Monte-Carlo studies.

2 Complexity of Variance Estimation

Consider a finite population U = {1, ..., 4, ..., N} containing N units. Suppose
we wish to estimate the population total

Y = Zyz
i€U

where y; is the value of a study variable of a unit labelled i. The mw-estimator
(Narain, 1951; Horvitz and Thompson, 1952) of Y is

?ZZ%- (1)

1€s

where s is a sample, y; = ym;l and where 7; is the first-order inclusion proba-
bilities of unit 4; that is, the probability for unit ¢ to be sampled. The variance
of the m-estimator plays an important role in variance estimation, as most es-
timators of interest can be linearized to involve m-estimators. The sampling
variance of Y for fixed sample size designs is given by

oy =YY (wiy —mimy) il (2)
ieU jeU

mi; is the joint inclusion probabilities of unit ¢ and j; that is, the probability
that both units ¢ and j are selected.



A design unbiased estimator of 0% is given by the Sen-Yates-Grundy esti-
mator 1
Gye = 522(7”%' — i)t (G = 4)° (3)
1€s jEs
The estimator (3) is hard to implement in practice, as the m;; are often unknown
except for special cases such as stratified simple random sampling (STSRS).
Moreover, the double sum feature is computationally inconvenient for large sam-
ples. Furthermore, the computation of the 7;; requires the values of the m; for
all the units of the population, whereas it is common to known the value of m;
only for the sampled units. In this case, the m;; cannot be computed. There
are alternative methods (Smith, 2001 )of variance estimation that do not involve
mi;, such as replication methods. In the next section, we show that the variance
can be easily estimated without using computationally intensive methods like
replication methods or any methods that would involve the actual computation
of the 5.

3 The H&ajek approach

The Héjek (1964) variance estimator can be interpreted as a modified Hansen-
Hurwitz (1943) estimator (see (11) below) for sampling without replacement.
The Héjek estimator is implemented by Statistics Sweden in the software CLAN®
(Andersson and Nordberg, 1994) and by the French Office for Statistics (IN-
SEE).

We suppose that the sampling design is a single stage stratified sampling
design with unequal probabilities within each stratum. Let us denote the strata
by Uy,...,Ug. We suppose that a sample s; of size nj is selected without
replacement within each stratum Uy, of size Np,. In this paper, we use design-
based arguments. For simplicity, we assume throughout that the sample data
are free from errors due to non-response and from errors of measurement.

3.1 The Hijek Variance Approximation
Héjek (1981) proposed the following approximation:
mij = mimg[l— (1= m) (1 —m5)dy, '] (4)

when i # j € Uy and where

dh = Z 7T,'(1 —ﬂ'i).

i€Uy,

Héjek (1964, 1981) showed that this approximation is valid when rejective sam-
pling is implemented in each stratum. Berger (1998) showed that this approx-
imation can be used for a larger class of highly randomized or high entropy
sampling designs; which includes the successive (Hdjek, 1964) and the Rao-
Sampford (Rao, 1965 and Sampford, 1967) sampling designs. The systematic



sampling design is not a high entropy sampling design. However, in Section 3.2,
we show briefly how the Héjek variance estimator can be extended to accom-
modate this sampling design.

By substituting m;; from (4) into (3), we obtain an estimator for the variance,
which is however not suitable, as the approximation (4) and the double sum in
(3) give unstable variance estimates. In order words, the Sen-Yates-Grundy
estimator involving approximations of 7;; can be unstable. In Section 3.2, we
propose an alternative method that consists of estimating an approximation to
the variance.

By substituting (4) into (2), we obtain the following approximation to the
variance

H
Oty = 3 Y mi(l =) (i — Bn)”
h=11i€U,,

where

Bh = d;l Z 7TZ(1 — ﬂ'l)ﬂz
€Uy

An alternative expression for 0%, ;18
2 2
OHaj = E Ci €; (5)
€U
where
e; = Ui— Bn (i € Un);

c; = ﬂ'i(l —7TZ‘).

An alternative expression for By, is

1
By, = ch 2, Zciﬂi Zih (6)

JjeEU €U

where z;, = 1 if the ¢ € Uj, and otherwise z;;, = 0. The stratification variables
z;p, are the indicator variables for the strata. It is useful to write By, this way,
as e; can now be interpreted as WLS residuals of the working regression

H
Ui = Z B zin + e;. (7)
h=1

The term ‘working regression’ is used to emphasize that we do not assume that
(7) is a super-population model. This regression is used to define e; in (5). The
fact that the e; can be interpreted as residuals is a consequence of approximation
(4) of the joint-inclusion probabilities. Obviously, the more the population is
stratified, the more the population scatter conforms to a linear pattern (7),
the smaller the population residuals e; and the smaller the variance. If the
population is not well described by (7), the improvement on the m-estimator
may be modest, but (5) is still a good approximation to the variance.



3.2 The H3jek Variance Estimator

A natural estimator of (T%{aj is given by

OHa_y Z ¢ A2 (8)

i€s

where & = ny(n, —1)"1(1—m;) (i € Uy) is a factor including a finite population
correction (FPC) and a correction for degrees of freedom (DF). The €; are the

WLS residuals .
Ui — Z Eh Zih (9)
h=1
where

—1
B _ (S e 2 5 i 2
h = Cj Zjin Ci Yi Zih-

JEs 1€s

Simple algebra establishes that (8) is algebraically equivalent to the stratum-
by-stratum Héjek (1964, p. 1520). If we substitute m; by np/Np into (8) when
1 € Up, we obtain the usual stratum-by-stratum variance estimator for STSRS

S
(28

where S = (ny, —1)7" Y, (vi — Up) and 7, = n, ! Y ics, Yi- Thus, when
the units are selected with equal probabilities in each stratum, (8) equals (3).
Thus, (8) is an approximation of (3) when we have varying first-order inclusion
probabilities within strata.

In practice, (8) is simple to compute, as it does not require the 7;;. Moreover,
(8) is stable as it is a simple sum that estimates a simple sum (5). If we know
in which stratum each unit belongs, it is easy to specify the H stratification
variables z;. As Bh is the usual WLS estimate of a regression coefficient, any
standard statistical packages can be used to compute the Bh and the set of
residuals ;. The variance (8) is just a weighted sum of these residuals. The
merit of this method is the fact that the variance estimator is only computed
through a set of residuals and only requires the values of m; for the sampled
units.

The set of (1 — m;) in (8) can be viewed as generalised FPC. Indeed, with
STSRS we have the usual FPC 1—7; = 1— f;. A correction for DF ny(n,—1)"!
is also included in (8). There are other effects of the sampling design also
included in (8). The effect of stratification is specified by the residuals e;,
as the working regression (7) uses the stratification variables as independent
variables. This is the major effect of the sampling design. The effect of the 7; is
also included in the residuals as the independent variables g; in (7) is the study
variable divided by the ;. There are remainder effects not included in (8); which
explains the slight differences in the variance (2) due to the method of sampling



used. The alternative expression (8) has the advantage of revealing the main
effects of the sampling design due to: stratification, the unequal probabilities,
the FPC and the correction for DF. This allows us to quantify the impact of
these effects on the variance.

Although E%a]‘ is applicable under single stage stratified sampling designs,
it can be generalised to more complex sampling designs. For example, with two
stage designs, the variance is usually estimated (Skinner, 1989) by a variance
between the primary sampling units (PSU). Thus, (8) can be implemented with
1 representing the PSU label and y; an estimate of the total of the i-th PSU.

As already stated, (8) is suitable for high entropy sampling designs. Thus,
(8) may not be suitable with systematic samples, as the entropy of this sampling
design is low. Berger (2003a, 2003b) proposes an adjusted Héjek variance esti-
mator for systematic sampling that includes additional independent variables in
the working regression (7). For example, if U is composed of a single stratum,
we have one additional independent variable given by

T; = ﬂ'g (Z qu - ’ILIZl) (10)
q=1

where 7§ = . ;. ic; Tj — ™i/2 is the smooth cumulative sum of the 7; and I
is the indicator variables for the group Gy ={i € u: ¢ — 1 < 7§ < ¢}; that is,
Iig = 11if i € G4 andl;; = 0 otherwise. These groups represents the implicit
stratification. The reason for using this variable is justified using the entropy in
Berger (2003b). A series of simulations in Berger (2003a, 2003b) shows that it
is recommended to incorporate (10) in the working regression with systematic
samples. An another approach proposed by Brewer (2002, page 159) consists
on creating pseudo strata with at least two sampled units and assuming high

entropy within strata. The approach are studied via simulation in Section 5.

4 Alternative Estimators for the Variance

If we substitute & by nj(n, — 1)~ (i € Uy) into (8), we get

H
agwr = Znh(nh - 1)_1 Z(gl - B;;)27 (11)
h=1 1€8y,

where E?—Z =n;" > ics, Yi- The variance estimator G2,y is the usual stratum-
by-stratum Hansen-Hurwitz variance estimator. We note that (8) is as simple
as (11) to compute, as both involve single sums and does not depend on un-
known quantities. It is well known that variance estimation is greatly simplified
by treating the sample as if the units were sampled with replacement. This
approach is often adopted in practice. However this approach usually leads to
overestimation of the variance. The Héjek estimator is as simple as the with-
replacement variance estimator (11) and has a smaller bias.



If & = (1 — m;)log(1 — m;)m; ", (8) is algebraically equivalent to the Rosén
(1991) estimator implemented by Statistics Sweden. If & = (1 — m;) [1— d, 2
Dies(l — 7:)?]7t (i € Uy), (8) gives the Deville (1999) variance estimator.
These estimators are close to (8).

The Brewer’s family of simple estimators also merited consideration (Brewer
2002, Chap. 9). This family uses the approximate formula for the m;; derived
by Hartley and Rao (1962). An estimator of this family is given by

ﬂBrewe'r Z C; A*Q (12)

1€Es

where & = §i;— S/, B} zip, are the ordinary least squares (OLS) residuals and
B; is the OLS coeflicient defined by

-1
2 o
E Zjh E Yi Zin

JEs 1€s

Note that E,’; =n,? Y ics, Ui- Brewer (2002, Chap. 9) proposed different choice
for ¢ (i € Up):

(1) é;k =1- 5
(ii) ¢ =np(np — 1)1 —m) =&
(i) & = &+ (nn = )7 [ Ljep 73 —

The first choice ignores the correction of DF and is not recommended when
few unit are sampled per stratum. The last choice depends on Z iU 7r which
is unknown if the m; for i ¢ s are not available. With the second chou:e7 the
same weights are used in (8) and in (12). In this case, the only difference is in
the regression coefficient: we have the WLS regression coefficients and in (8),
and the OLS regression coefficients in (12). In the rest of this section, we show
why WLS regression coefficients are recommended. R

Let Z= D ics(Zity s zig)' = (n1,...,ng)" and B = (By,...,Bg)’. As Z is
a fixed (non-random) vector, we have 0% = var(Y — ZB); where var(-) denotes
the variance operator. Thus (2) equals

H
ZZ (1—m) (@ — Br)?+ A (13)
h=1i€U,

where By, is defined by (6) and

A == Z Z(ﬂ'ij —ﬂ'l'ﬂ'j) €;€;

iceU jeU
J#i



which is negligible compared to the first term of (13), as if we replace (4), we have
A = 0 (see also Brewer, 2002 Chap. 9). However, as the actual m;; are different
from (4), A approximately equals zero. Consider a family of approximation
given by

02 =3 il - m) (@i — Bi)?

h=11i€U,

where (3, is any constant. It is well known that the (3, minimise 02 when
B, = Bp. Thus, the error |02 — 02| of the approximation is minimal when
By = Bu; that is, when 0® = 0%,;. Finally, we recommend to use WLS
regression coefficients By, as this should reduce the error in the approximation.
Thus, when ¢ = ¢;, the bias of Ezaj should be smaller than the bias of 6%, ,yer-

5 Simulations

In this Section, the Héjek variance estimator is studied through simulation stud-
ies. We consider a population of N = 7000 with a study variable y; generated
from the distribution of weekly household total expenditures estimated from
the 98-99 UK Family Expenditure Survey. The total household expenditures
are adjusted for the differing sizes and compositions of households (Department
of Social Security, 2001). This study variable has a skewed distribution with a
coefficient of skewness of 2.57 and coefficient of variation of 0.6.

With a linear model, we generate a size variable correlated with the study
variable and with a coefficient of correlation of 0.6. We use the Dalenius &
Hodges (1959) method to construct H strata according to the size variable. We
consider a proportional allocation over the strata and a design with a within
strata first-order inclusion probabilities proportional to the size variable. We
will compare the bias and the accuracy of (8), (11) and (12) when ¢ = ¢;.
We use the Chao (1982) sampling design to select units in each stratum since
the m;; can be computed exactly (Chao, 1982). This allows us to compare the
distribution of 3% o with the distribution of ?f\fqaj.

To compare the performance of the variances estimators, we draw M = 1000
Chao samples to compute the empirical relative bias (RB) and the empirical root
mean square errors (RMSE) for each variance estimator: (3), (8) and (11). The
RB of a variance estimator 5 is given by RB(6%) = 100Bias(5°)o~2; where

M
o 1 2
Bias(6%) = — E oo — o
M =

where 0? is the empirical variance of the m-estimator; that is, 0 = M !
SM (V=YY = M 1M ¥, Y, is the point estimates (1) and 32, is a
variance estimates from the mth sample drawn. In addition, we present values of
ratios of RMSE: RM SE(63,,,)/RMSE(6%), RMSE(57; )/RMSE(53¢)

O Brewer



and RMSE(52

swr

)/RMSE (5 ), where

~2 1 - 2
RMSE(G") = | 37 mZ:l(Om — 02)2
These ratios are given in between bracket in column 4, 5 and 6. A ratio smaller
than 1 means that the RMSE of the corresponding variance estimator is smaller
than the RMSE of 6y.

Table 1 gives the empirical RB for different sampling fraction (f) and dif-
ferent number of strata (H). We expect Efqaj to be slightly biased as it is an
estimator of an approximation (5) of the variance. Nevertheless, we see that
the RB of ﬁfqaj is negligible and as the same order of the RB of 65, but not

always. Although, E%/G is unbiased, the RB of 3%/0 is different from zero, as
RB is an estimate of the actual bias. For small sampling fraction (f < 0.05),
ﬁfqaj is as accurate as 62, and 62, is even better when the number of strata
is large. This is not surprising as the FPC is negligible for small sampling frac-
tions. For large sampling fraction, ﬁfwT has a large positive bias and ﬁfgaj is
a better option. As expected (see last paragraph of Section 4), the bias of the
Brewer estimator 65,.,., is slightly larger than the bias ?f\zaj.

The H4jek variance estimator is computationally simpler than the Sen-Yates-
Grundy variance estimator and yet leads to values close to the Sen-Yates-Grundy
variance. This conclusion is based on this simulation study and other studies
may or may not confirm these results. However, Hajek (1964) derived (8) for
the maximum entropy rejective sampling design. The high entropy of the Chao
sampling design can explain why 3%{@' is as good as 32YG.

Table 2 gives the empirical RB and ratios RMSE when the sample is se-
lected using the systematic sampling design with unequal probabilities. This
series of simulation is based on the same data-set sorted according to the size
variable. The systematic sample is selected assuming that the population is
composed of a single stratum. However, for variance estimation, we create H
pseudo strata. These pseudo strata are constructed as above. The column 3?3
gives the RB of Berger (2003a, 2003b) variance estimator (see Section 3.2) with
a working regression having two independent variables: the intercept (as U is
composed of a single stratum) and an additional independent variable (10).
The RB of 5% is the same for varying values of H, as o5 does not depends
on the pseudo-strata. The value in between brackets give ratios of RMSE; that
is RMSE(6%,,;)/RMSE(6%), RMSE(52,,)/RMSE(5%). We have intention-
ally omitted the RB of E%G in Table 2. Although, it is possible to compute ex-
actly the m;; of the systematic sampling design (Connor, 1966; Pinciaro, 1978,
Hidiroglou and Gray, 1980), most of m;; equal zero, implying that E%/G is bi-
ased. Therefore, E%G can be misleading and is not recommended for systematic
sampling (Sdrndal et al., 1992 p. 47).



~2

~2

~2

~2

f H Iyq O Haj 9 Brewer O swr
0.01 15 293 7.06 (1.14) 7.20 (1.14)  3.58 (1.00)
0.0l 30 0.02 3.42(1.56) 471 (1.56) 0.9 (1.00)
0.01 50 5.07 13.04 (1.56) 13.67 (1.56) 6.58 (1.00)
0.05 15 3.36 3.73 (1.02) 3.74(1.02)  7.18 (1.00)
0.05 30 -4.72 -4.34(1.06) -4.33 (1.06) -0.76 (1.00)
0.05 50 0.09 -0.10(1.09) -0.05(1.09) 4.53 (1.00)
0.08 15 5.12  5.32 (1.01)  5.34 (1.01) 12.00 (1.01)
0.08 30 -1.02 -0.62(1.03) -0.60 (1.03) 4.88 (1.00)
0.08 50 1.32 1.04 (1.06) 1.06 (1.06) 8.84 (1.01)
0.10 15 3.44 3.69 (1.01) 3.72 (1.01) 12.11 (1.02)
0.10 30 -3.53 -3.12(1.02) -3.10 (1.02)  3.81 (1.00)
0.10 50 0.40 0.16 (1.04) 0.18 (1.04) 9.95 (1.02)
0.15 15 3.46 3.9 (1.01) 4.05 (1.01) 15.65 (1.01)
0.15 30 10.11 10.52 (1.03) 10.58 (1.03) 25.92 (1.05)
0.15 50 5.53  5.50 (1.03)  5.55 (1.03) 21.63 (1.14)
0.20 15 2.70  3.36 (1.00)  3.47 (1.00) 17.77 (1.00)
0.20 30 1.65 2.12(1.01) 2.23(1.01) 21.70 (1.06)
0.20 50 -4.53 -4.43(1.02) -4.34 (1.02) 16.07 (1.08)
025 15 -1.83 -0.55 (1.01) -0.34 (L.01) 20.98 (1.03)
0.25 30 -1.40 -0.68 (1.01) -0.51 (1.01) 22.16 (1.01)
0.25 50 541 6.18 (1.02) 6.34 (1.02) 33.17 (1.02)

Table 1: RB (%) of Efqaj, 6yGr OBrower and 62, with Chao sampling.

Ratios of RMSE are in between brackets.

~2

~2

~2

f H OB UHaj O swr
0.05 2 7027 64.62(0.85) 68.18 (0.85)
0.05 5 7027 90.36 (1.33) 95.70 (1.35)
0.05 12 70.27 29.91 (0.65) 38.27 (0.69)
0.10 5 30.01 1859 (0.39) 23.29 (0.40)
0.10 10 39.01 2.16 (0.31)  7.61 (0.32)
0.10 25 39.01 49.25 (1.51)  63.70 (1.64)
020 10 10.33 1171 (1.33) 18.73 (1.34)
020 20 10.33  6.45 (0.98)  14.90 (1.01)
020 50 10.33 -37.63 (0.32) -27.02 (0.35)

Table 2: RB (%) of 5%, Ff\zaj and 52, with unequal probability systematic

sampling. Ratios of RMSE are in between brackets.

As far as the RMSE is concerned, Ff\fqaj sounds to be the best choice when the
number of pseudo strata H is large, but not too large. When H is large, E%Iaj
can be worst than ?T\QB and could even have a large negative bias, which is not

10



recommended for inference. Although EQB is not the most accurate estimator,
it appears to be the most conservative choice, as its bias appears to be always
positive.

6 Conclusion

Variance with unequal probability sampling without replacement can be easily
estimated with the Héjek (1964) variance estimator. The contribution of this
paper is to give an alternative expression of this estimator as a weighted sum of
residuals. This alternative expression is computationally simpler than the Sen-
Yates-Grundy variance estimator and does not require computation of joint-
inclusion probabilities. Moreover, simulations show that the Héjek variance
estimator is as accurate as the Sen-Yates-Grundy variance estimator.
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